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Onset of wave fronts in a discrete bistable medium
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The transition from a standing front to a traveling front is studied in an array of symmetric bistable coupled
oscillators. The mechanism leading to propagation may be understood in the contegluofgabifurcation
involving a pair of homoclinic loops. The velocity of the front shows a logarithmic dependence with the
coupling strength according to this mechanism.
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Pattern formation has become one of the most active areasudied[5,10,12,13, multivariable cells i>1) may show
of research 1]. The development of patterns can be attrib-interesting phenomena, like the scenario leading to front
uted to the combination of diffusion and local nonlinear dy- propagation described below.
namics. Interfacial paterns can be distinguished due to the In our case, we deal with the well-known Lorenz oscilla-
fronts that separate domains of different uniform or quasiunitor [14] as a unit cell. In order to be the most general as
form states. possible, two kinds of coupling have been considered here,
One of the main categories in the reaction-diffusion syssuch as(i) the off-diagonal casel{= y,,= 6x16,2) and (ii)
tems corresponds to those whose local dynamics possessbge on-diagonal casd’'E vy = 6k26)2),
two stable states: two fixed points, one fixed point and a a

cycle, etc. Here we focus on the case where two stable steady )'(j =o(y;—x)+ %(yj Y12y,
states coexist. Bistability is a simple phenomenon that ap-
pears in a great variety of contexts. Particularly important ) Db
examples are found in opti¢&], chemical systemg3], and Yj=rXj—Xjz;—y;+ 7(yj+l+ Yi-1—2Yj),
biology [4-6].
Front propagation is an important mechanism for pattern 'ZJ. =xy;— Bz, j=1,...N. 2

formation in continuous and discrete systems. Phenomena
such as crystallographic pinning and lattice anisotropy occuParametersr and b are chosen to be the standard ones,
naturally in spatially discrete material models. In biology, =10 and3=38/3. Depending on the kind of coupling, two
examples of applications of spatially discrete models includelifferent values of the parametel{15] were selected(i) r
the bidomain model for cardiac tissu@efibrillation), tissue =8 and(ii) r =14. For both cases, the Lorenz oscillator does
filtration, gas exchange in lungs, and calcium waves. So fanot exhibit a chaotic attractdtl6], but simply asymmetric
most attention has been devoted to bistable nonsymmetrigistable phase space with two stable spiral poi@ts=
systems where the domain corresponding to the most stable- \/3(r—1),=JB8(r—1),r—1) and a saddle point located
state advances through the less stable one. Discrete bistakiethe origin.
systems have been studied in this context, so propagation |In Eq. (2), D? and D” account for the coupling coeffi-
succeeds above a critical couplin® % Dy,). In particular,  cients between cells for the two cases studied here; the off-
the propagation failure phenomenfgh-10] has been widely and on-diagonal coupling, respectively. From now on, since
considered. However, one important fact is that symmetrynost of the results are independent of the kind of coupling,
does not preclude front propagation in nongradient systemsve will use D both for the off- ©*=D,D"=0) and on-
For example, Hagberg and Mer¢gdl] have shown for the diagonal D?=0D"=D) cases. The dynamical system
continuous FitzHugh-Nagumo model that wave propagatiombove was numerically integrated using a fourth order
may be initiated through a symmetry breaking mechanism; ®unge-Kutta method. Free ends were considered forythe
pitchfork bifurcation. variable. As initial condition, half of the oscillators were con-
In this Rapid Communication, we show a transition sidered to be in the steady stale , while the rest of cells
standing—oscillating—traveling front in an array of were located a€_ .
symmetric multivariabléistable units. This transition seems  Depending on the coupling strengtd, different

to be exclusive for a discrete medium. asymptotic states were obtained, Fig. 1. The transition to the
As starting point, we consider a one-dimensional arraypropagating solution is as follows; as the coefficiéntis
consisting of bidirectionally coupled identical units, increased the boundary between domains of both solutions
. D (C, andC_) becomes smoother than the steplike boundary
=)+ 5 L(rjeatrj-1—2ry), (1) observed forD=0. That is, some oscillators move to the

vicinity of C, andC_ . For a given value ob the boundary
wherer;eR". D is the coupling parameter and is the starts to oscillate, i.e., the front undergoes a Hopf bifurcation,
coupling matrix. Although the case=1 has been widely but it does not propagate. Finally, for values Dfgreater
than some threshold,,, propagation occurs. Both senses are
equally probable because of the symmetry of the system,
*E-mail address: diego@fmmeteo.usc.es; http://chaos.usc.es although in Fig. 1 we show the transition froB, to C_.

1063-651X/2001/6465)/0652034)/$20.00 64 065203-1 ©2001 The American Physical Society



RAPID COMMUNICATIONS

DIEGO PAZOAND VICENTE PEREZ-MUNUZURI PHYSICAL REVIEW E 64 065203R)

FIG. 1. Spatiotemporal evolu-
tion of the wave front as the cou-
pling strength D is increased.
A steplike initial condition
is imposed for an open
array of N=50 oscillators: r;
~C,, i=1,...,25 r=C_,
j=26,...,50. Depending on the
value of D, three different states
are achieved. Fob<7.5 (D=4
andD=7.5 are shown at the pan-
els abovgthe system evolves to a
standing front, forD=8.8<Dy,
the front oscillates but still does
not propagate, while foD=28.9
>Dy, the front propagates
through the array shifting the os-
cillators from C,. to C_. The
time interval shown is 20 time
units and the kind of coupling
used in this figure was the off-
diagonal one.

For a finite open arraynull-flow boundary conditioy the To better describe the transition to front propagation once
whole system collapses finally to one of the two stable soluthe Hopf bifurcation occurs, instead of considering the array
tions. On the other hand, for the case of a ripgriodic  as a dynamical system with many degrees of freedom, it is
boundary condition stationary wave-front solutions can be worthwhile to describe the transition to propagation in a re-
found. Note as well that for values & greater than the duced phase space with coordinates,

threshold valueDy,, the front oscillates with some fre-

guency, which increases with the coupling strength. 1 N
Each regimeoscillating or propagatingis characterized E=— E Xjty; mod2y2B(r—1)), 3)
by an intrinsic quantity. We measured the period of oscilla- \/E =1

tion (T,) for the oscillating regime, and the speed of the

front (c) for the propagating one. Some special features at 1 N
both sides of the critical poirid,, were obtained. First of all, n=— Z =Xy, (4)
the period of oscillation of the frontT(;) diverges as one V2 =1

approaches t®d, from below, while forD>Dy, we ob-

tained a non-standard dependence of the front velaaiith ~ with the coordinate defined cyclic. The movement of the
D. The velocity grows from zero abruptly B&t=D,,,, butit  front shifts a cell fromC.. to C.. so the system returns to a
does not follow the typical square root law dependence wittstate dynamically equivalent. In our case, as the front
D [17]. The divergence of ; andc™ ! is of logarithmic type moves to a new cell, the value of increases or

in the neighborhood oDy, as it is shown in the left-most decreases an amounté=1/\2(2y/B(r—1)+2yJB(r—1))
graphs of Fig. 2. Two semilog plots df;/2 andc™! as a =2+2pB(r—1), which is the range wher@&must be defined.
function of|D — Dy,| are shown in the right-hand side of Fig.  Figure 3 shows the evolution of the front in the cylindrical
2 for both kinds of coupling used in this Rapid Communica-phase space determined §yand 7. For D larger than some
tion. The meaning of the slope for both curvesX;') is critical value, the system undergoes a supercritical Hopf bi-
explained below. It is remarkable th@{/2 andc™* behave furcation, so the front starts to oscillate around the steady
quite similarly undetD — Dy;,| for a large interval of values, stateé= =0. The cycle grows ab is increased and for a
and for both, off- and on-diagonal couplings. On the othercritical point Dy, the orbit transforms into two homoclinic
hand, for larger values af (e.g.,r ~20), the transition be- loops. The situation is quite similar to a pendulum with the
comes more convoluted for both types of coupling studiectritical energy for its dynamics to go along one of the two
here. The front displayspontaneougeversals just above separatrices that isolate libration from rotation. In our case
Dy, which makes it difficult to measure the front velocity libration corresponds to the oscillation of the front, while
with high precision. Nonetheless, far enough from the transotation corresponds to front propagation. We can character-
sition (in absence of front reversaJone observes that;/2  ize our phase space, near the threshold, with the equivalent
and 1¢ decay with In[D—Dy,|) and both curves follow simi- phase spacfl8] illustrated schematically in Fig. 4. The bi-
lar functions within a 20% of tolerance. furcation consists in a gluingresp. splitting of two (resp.
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ong cycles. Analogougluing bifurcationsappear in systems for both couplings.
with Z, symmetry[19,20, as it happens in our system. Note  In 1990, Gaspar{i21] obtained the period lengthening of

that Eq.(2) is invariant under the transformation a limit cycle that collides with a hyperbolic fixed point re-
sulting in a homoclinic connection. This scenario is charac-
(X1,Y1,Z10 - XNGYNGZN) = (T X, = Y120, - Xy, terized by the logarithmic divergence of the period of the

— v Zn) (5) orbit as the threshold value is approached as it was shown in
NN Fig. 2. Then, it is straightforward to extend the analysis to
our case(see Fig. 4 where adoublehomoclinic connection
o8 o8 o8 B appears. The period of the oscillatiori, ) of the front be-
- 5 _ o ® . / \ haves when approachingy, in the following manner,
7
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FIG. 3. Evolution of the reduced phase spaégen) as the cou- FIG. 4. Schematic of the bifurcation sequence for the double-

pling strengthD increases for the off-diagonal case.Bsncreases, homoclinic connection in a plane phase portrait. This transition has
oscillations enlarge their amplitude. Finally, foD =Dy, been previously namedluing bifurcation [20]. For D<Dy;, the
~8.841526 the orbit collides with itseffin a cylindrical phase trajectory approaches twice per cycle to the saddle point and the
space, resulting in two homoclinic connections. Some spurious in-front oscillates. Beyon®,;,, the double homoclinic loop splits into
tersections arise fab~D,, because of the projection onto a two- two cycles, corresponding to both senses of propagation of the
dimensional space. front.
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where\, is the unstable eigenvalue of the saddle and the>—p>0) [22]. In this casgsee Ref[19]), a more complex
factor 2 appears because the orbit crosses twice per cyckenario developsincluding homoclinic chaos that origi-
close to the saddle point. nates spontaneous reversals of the fro28].

On the other hand, for the propagating region the period Which are all the necessary ingredients to find the bifur-
of oscillation (in the periodic phase spacis the inverse of cation route explained here is still a matter a of future re-

the velocity(c) of the front. Then, search. Nonetheless, some conditions must be fulfilled: mul-
1 1 tivariable nongradient units and a coupling preserving global
T .= _ Z, symmetry.
¢ 2= % )\uln(D Din)- ™ Finally, it must be noted that previous studigs9] that

take the value of the coupling strength up to which all the

Therefore, close to the threshold both magnitude&  stationary solutions of the array continue to exist, as a lower
and 1¢ should exhibit the same dependence with|Dn( pound for wave propagation, are not suitable for the scenario
—Dy)). Moreover, it must be noted that close to the onset thexxplained here.
fast dynamicdi.e., far from the saddle poinwill be quite In conclusion, a route to front propagation in arrays of
similar in the propagating region and in the oscillating one pjstable systems has been presented. The dependence of the
Thus, it is expected that, ~2a,. This last reasoning and the velocity of the front with the coupling strength is explained
logarithmic dependence did —D,y,| predicted by Eqs(6) by the occurrence of a double homoclinic connection which
and(7) are successfully confirmed by Fig. 2 for both types ofis found for different couplingf24]. The logarithmic vanish-
coupling studied in this paper. Even for larger valuesr of ing of the front velocity withD is different of the standard
where some discrepancies were found betweg@ and 1¢  root square dependence, found in multitude of systems.
as a function of the logarithmic coupling strength, the differ-  Some phenomena, for example the short wavelength bi-
ences were smaller enough to consider that the main undefarcation[25], do not have the trivial continuum limit. This

lying mechanism continues to be the one explained aboves the case of our transition that must be considered a genu-
although in a more complex way. Thus, for high values of ine effect of discreteness.

the homoclinic connection is of saddle-focus tyffee stable

eigenvalues are complex conjugates;=p=*iw). This The support by DGES and MCyT under Research Grant
would not be important regarding the phenomena discussedos. PB97-0540 and BFM2000-0348 is gratefully acknowl-
in this paper unless the Shil'nikov condition is fulfilled (  edged.
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