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Transmission fluctuations in chaotic microwave billiards with and without time-reversal symmetry
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Transmission fluctuations have been studied in a microwave billiard in dependence to the number of at-
tached wave guides on its entrance and exit. To investigate the influence of breaking time-reversal symmetry,
ferrite cylinders were introduced into the billiard. The obtained transmission intensity distributions are com-
pared with predictions from the random matrix theory. Because of the strong absorption caused by the ferrites,
the existing statistical scattering theories had to be modified, by incorporating a number of additional absorbing
scattering channels.
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Random matrix theoryRMT) has a very long and suc- perimental findings. First, a small loss of phase coherence
cessful record in describing the spectral fluctuations of chadue to inelastic processes, which can be phenomenologically
otic (or complex quantum systemjsl]. The broad variety of modeled by additional nonconducting channfis8]. Sec-
systems where this statistical model has been applied rangesd, suppression of conductance fluctuations due to thermal
from isolated resonances in compound nuclear reactions ismearing of the Fermi distribution at the leads. Both pro-
the early 1960s to conductance peaks of quantum dots in theesses depend on temperature, but in different w@jsA
Coulomb blockade regime in the late 1990s. In each of sucfirst clear observation of time-reversal symmetry breaking
nearly isolated systems the statistical analysis of the relevamnd non-Gaussian the conductance fluctuations was given in
observables revealed a distinct fingerprint of an universaa recent paper of Marcus and co-workéfd]. Indepen-
pattern. The situation is quite the opposite for open chaotidently, Godijnet al.[11] studied the thermopower of a cha-
systems. Here the statistical analysis of cross sections atic quantum dot as a function of the magnetic field and also
transmission probabilities gives in general Gaussian-likeobserved the influence of the symmetry class on the mea-
fluctuations. One might argue that due to the central limitsured fluctuation properties.
theorem, for a sufficiently large number of channels this isto An alternative approach to the study of transmission dis-
be expected, irrespective of the intrinsic nature of the systentributions,P 4(T), is available through microwave techniques
To avoid such a situation and to experimentally verify RMT[12,13. In a microwave cavity with attached wave guides
predictions that significantly deviate from a Gaussian distrithe total transmission in Eql) is directly obtained from the
bution, there is a need to investigate cases where only a feexperiment. Here the temperature is not an issue and it is
channels are open. straightforward to control the number of attached channels,

In this line open quantum dots are excellent candidates. Aas well as the system shape. In the quantum dot experiments
sufficiently low temperatures, where all inelastic processesnentioned above, the reliable determination of the number of
are frozen out, the conductance through an open quantum dotodes supported by each lead and temperature effects were
is given by the Landauer formula, key problemd5]. On the other hand, breaking time-reversal
symmetry, which is straightforward in a quantum dot, is dif-

2e . ficult in a microwave billiard. In this study we circumvented
G= TT’ with T:azl b:%‘zﬂ |Sanl®, @ this difficulty, as we shall discuss below. Thus, we were able
! to produce an experiment showing clear RMT-like statistical
where the sum is taken over &l (N,) incoming(outgoing fluctuations in open systems characterized both by the num-
channels(in this study we takdN=N;=N,) andS,, is the  ber of channeldN and by time-reversal symmetry breaking.
scattering amplitude connecting chanbelo channela. Up Figure 1 shows the microwave resonator used in our ex-
to the universal factor &/h the conductance is thus identi- periment. There ar&l=2 attached wave guides both at the
cal to the total transmission through the systen(The fac-  entrance and at the exit of the cavity, whose sizeais
tor 2 is due to spin.For chaotic cavities th& matrix can be =237 mm and=375-424.5 mm. The resonator height is
statistically modeled by RMT. Within this approach expres-
sions for the distribution of transmission intensities were ob-
tained[2,3] depending on the number of open channéls
The statistical theory also distinguishes time-reversal sym-
metric systems #=1) from those without such symmetry
(8=2). Details can be found, for instance, in REf].

The first experimental statistical studies exploring the
smallN regime in open quantum dof§,6] failed to observe
deviations from Gaussian-like conductanfteansmissioin
distributions. Two main reasons were used to justify the ex-  FIG. 1. Sketch of the used microwave resondiorscals.
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h=7.8 mm. The transmission amplitud&g, were mea- 1.0 ' ' ' ' ' e
sured for all possible combinations of entrance and exit wave _
guides at frequencies ranging from 11 to 18 GHz. Within this &
frequency window the wave guides support just one mode, ¢ A
and the resonator is quasi-two-dimensional, i.e., there is a £ [&*" "
one-to-one correspondence between quantum mechanics anc
electrodynamicq14]. One of the resonator walls can be o ; ’ ; : ’ ’ o
moved, as indicated by an arrow in Fig. 1. This allowed usto
measure the transmission spectrum as a function of the §
lengthb. (To avoid the influence of “bouncing ball orbits” &+ 05
in the spectral fluctuations a wedgelike structure was moved ;:
together with the wal.In this way we obtained 100 spectra,
which were superposed to generate the transmission distribu- 0.0 - . - . . .
tions shown in the sequel. Such an averaging is necessary to 1.6 120 130 140 150 180 170 180
eliminate nongeneric structures in the transmission patterns Frequency in GHz

and_ has the e_ffeCt of an experlm_ental ensemble averaging. pig 2. (a) Reflection amplitudéS,,| (solid line) and transmis-
Similar Strategles were employed in the analysis of quanturgjyn amplitudd S,,| (dashed ling of the ferrite used in the experi-
dot experiment$9,10]. . ment, for an applied magnetic fieB=0.475 T. The oscillations
To break time-reversal symmetry, two hollow ferrite cyl- gpserved for frequencies below 14 GHz are an artifact of the mea-
inders ¢ =10mm,d=1 mm) were placed inside the resona- surement.(b) Plot of |S;;|2+|S;J2. The deep minimum at 15.4
tor. An external magnetic field was applied to vary their GHz, reflecting strong absorption, is caused by the ferromagnetic
magnetization. The phase-breaking mechanism of the ferriteessonance.
can be qualitatively understood as follows: By switching the
magnetic field, a chirality is introduced due to the precessior,g
of the electronic spins in the ferrites. Hence, microwave
reflected from the ferrite surface experience a phase shift" . S Y
whose sign depends on the direction of propagatmrle- region[1]. It was shown _that under certain I!mlts both ap-
tailed explanation can be found in REL5]). This effect has Proaches are strictly equivalet9). For technical reasons,
been already used independently by&al.[16] and Stof- analytlc_:al predlptlons for h|gher moments put tBenatrix _
fregenet al. [17] to study time-reversal symmetry breaking two-point function are generically very difficult to obtain
in closed microwave billiards. from the Ham”tonian approach. Th|S iS not the case f0r the
Unfortunately there is a drawback in this approach wherinformation-theoretical method. On the other hand, the
addressing the statistical properties of the transmission spetlamiltonian approach, in distinction to the information one,
trum. This is illustrated by the following experiment: We Is indicated to comput&matrix energy and parametric au-
measured the moduli of the reflecti®); and transmission tocorrelation functions.
Sy, amplitudes by placing a ferrite sheet between two wave [N a recent paper Kogaet al.[20] put forward an exten-
guides facing each Othe{no CaVit)b. The ferrite is of the sion of the information-theoretical approach to Study the
same type and thicknesd£1 mm) as the one used in the transmission distribution in the presence of absorption. Their
cavity experiment. The results for an applied magnetic fieldnethod works in the strong absorption limit. Here we adapt
B=0.475 T are shown in Fig. 2. At this induction the fer- the results developed by Brouwer and Beenak&i for
romagnetic resonance is centered at about 15.5 GHz as se@4antum dots to give a full solution for this problem. Our
in Fig. 2(b), where |S;4/2+|S,|2 is plotted. We observe gna_llytl_cal results are contrasted with numerlc_al simulations
three regimes(i) which are below 13 GHz reflection and indicating a very good agreement over the entire range span-
transmission do not depend on the frequency. Here the ofling from small to large absorptions. In the strong absorption
served oscillations are due to standing waves caused by rit we recover the Rayleigh regime as obtained in Ref.
flections from the ferrite surfacéij) from 13 to 14 GHz the [20]. ) _ o
influence of the ferromagnetic resonance on reflection and We model absorption by attachinly,, nontransmitting
transmission becomes manifest, but the overall absorption ghannels to the cavity. These channels account for the flux
still moderate, andiii) above 14 GHz there is a strong ab- deficit, which will by associated to a single parameter. For
sorption caused by the excitation of the ferromagnetic resothe moment, let us takid; andN, as the number of propa-
nance. These observations indicate a severe restriction in tig&ting modes at the entrance and exit wave guides, respec-
frequency window where time-reversal symmetry breakingfively. The resulting scattering process is described by the
can be investigated. Despite this observation, the statistic&lock structureds matrix
study is still possible due to our averaging proced(de-
scribed aboveover 100 different spectra.
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heoretical approach4,18] and the statisticaB matrix ob-
ined from a stochastic Hamiltonian modeling the scattering

Before presenting our experimental findings, let us de- S11 S12 Si4 S S14
scribe the statlstlcal theory employed in the paper. Therg are S=| Sy S; Sag|= Sos | 2
two main quantitative theoretical methods to describe univer-
sal transmission fluctuations: th&matrix information- S¢1 Sg2 Sge S41S¢2  S¢e
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where the set of indicefl}, {2}, and{¢} label theN;, N, N=1 N=2
propagating modes at the wave guides, andNfeabsorp- sop T ' 3 ' ' '
tion channels, respectively. A m~easurement taken at the 45_"\‘.‘. 5-0 1 f 5=0
wave guides can only determine tBesubmatrix. Of central 3‘\‘;\ - r e M T
interest is the transmission coefficiehtdefined in Eq.(1), RIS 1 €|/ i

) . . . ~, . - - L) -
which is now obtained by makin§— S. The absorption at TN . 1 ,.',' AT

. -~ — o, s g \_\\\

eachN, channel can be quantifig@2] by I' ,)=1—|s,,/|*. oo Y ol N

By taking the limitsN,— and I'4,—0, while keeping
N,I' 4=y constant, this model mimics the absorption pro- 5|

cess occurring over the entire surface of the caj2g]. It Y B =0 7

was recently showf21] that this approach is equivalent to € sop* 1 E

adding an imaginary part to the energy in tmatrix, which ‘\\ N

is a more standard way to account for a fifQevalue[12]. ] _ T

Our analytical findings are based on the information- . RN L ~

theoretical approach and closely follow RE21]. The scat- 0 05 1.0 0 05 10 15 20

tering matrixSis distributed according to the Poisson kernel Transmission T Transmission T

[23,24 FIG. 3. P4(T) as a function of",,. For each panel, decreasing
o values of the mean transmissi¢h) correspond to increasing val-

de(1—-SS)BEM+2-p)f2 ues of the absorption in the following ordEf,=0.2, 1.0, 3.0, and
P(S)=C 3 so0.

|de(1_§s‘r)|ﬁm+2—ﬂ ’

whereC is the normalization constant amd stands for the from very distinct distr?butipns.Pﬁzl(T) a.nd.PBZZ(T) rap-
total number of channels, .V =N +N,+ N ;. The distri- idly become exponential distributed Bs; is increased. The

bution of transmission coefficients is obtained fr&{sS) b resylts fc_)rN= 2 are obta_lined by the ensemk?le avera_gin@ of
. W . 18101 2 ! I ) I. ) by defined in Eq.(4). In this case, by comparing the first and
integrating 8(T—=, p|Sap|?) over the invariant measure of

2 . ; .. second moments d?4(T) as a function of",, it is possible
S. Given these basic elements we can obtain the transmissiqp distinguish the orthogonal from the unitary symmetry
distributions analytically for the cagé=1 by following the

: even for significant absorption values.

steps present_ed in Ree1]. . . ) In Fig. 4 the theory is applied to our experimental data.

. An a]ternatwe methpd_ to Obta'ﬁﬁ(T.) is by a numerlpal We restrict the discussion of the transmission fluctuations to
simulation of the statisticab matrix via the Hamiltonian o intermediate frequency regime where the effect due to
approach, namely the ferrite cylinders is strongest. The absorption parameter
I', was adjusted to obtain an optimal correspondence be-
tween experiment and theory. For tBe=0 case one finds a
nearly perfect agreement fdf,=3. For the system with
broken time-reversal symmet®+ 0, the best agreement is
obtained(as expected from our discussjonith a larger ab-
sorption parametdr ,=5.5. As discussed a larger absorption

S(E)=1-2m7WTE—H+i7WW") 1w, (4)

where the system Hamiltonidth is taken as a member of the
Gaussian orthogonalunitary) ensemble forg=1 (8=2)
andW contains the coupling matrix elements between reso
nances and channels. Th&matrix parametrization is en-
tirely equivalent to theK-matrix formulation used in Ref.
[20]. Since theH matrix is statistically invariant under or-
thogonal or unitary transformations, the statistical properties
of Sdepend only on the mean level density givenHbynd

the traces ofVTW. Maximizing the average transmission is
equivalent to put tN\V'W)=A/\/m, where A is the mean
resonance spacing. In this procedure we are not limited, in
principle, to any number of channé¥s The numerical simu-
lation is implemented in a very straightforward manner. For
each realization ofl we invert the propagator and comp&e
for values close to the center of the balkds0, where the
level density is approximately constant. The dimensioh of
was fixed to beM =200, taken as a compromise between
having a reasonable wide energy window to work with and
not slowing too much the computation. For each valu€ pf

N=1 13.55-13.85 GHz N=2 13.55-13.85 GHz
T T T T T 8

0 -~

we obtained reasonable statistics with 50 realizations. 0 o1 02 0.3 000 0.10 020 0.30 040 050 0.60
Figure 3 summarizes our theoretical results. Rer1 the Tronsmission T Transmission T
presented transmission distributioRg(T) as a function of FIG. 4. Comparison of the experimental transition intensity dis-

the absorption parametet’, are obtained from the tributions with the theoretical calculations with absorbing channels
information-theoretical approach. We observe that, startingfor details see text
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leads to more Gaussian-like transmission distributions. It isorption usually cannot be neglected and has to be consid-
striking that even for such large absorption it is still possibleered in the calculations. Fortunately, there is a recent
to observe that the variance of the transmission is very diftheoretical interest directed to this aspg20,25, comple-
ferent for both cases. Here one observes some deviationsiented also by our own analysis, which opens a large new
Unfortunately, we can only speculate on the cause for thigrea for a hopefully fruitful interaction between theory and
discrepancy, such as the influence of the lack of full hyperexperiment.

bolicity, existence of direct processes, etc.

In summary, we can state that microwave techniques are E. R. P. Alves acknowledges financial support by CAPES.
ideally suited, if not the method of choice, to test theoreticalThis work was funded by CNPq and PRONEX-Brazil, as
predictions on channel number dependencies, influence afell as by the Deutsche Forschungsgemeinschaft via an in-
time-reversal symmetry breaking etc., of universal transmisdividual grant. Discussions with C. W. J. Beenakker are
sion fluctuations. We have seen as well, however, that albgratefully acknowledged.
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