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The relation between the macroscopic theory of dense ferrofluids and the microscopic theory of dilute
ferrofluids is discussed. It is shown that the dense and dilute regimes must be carefully distinguished. Shlio-
mis’s approximate theory for dilute ferrofluids does not apply in the dense regime, and has limited validity in
the dilute regime.
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I. DYNAMICS OF FERROFLUIDS II. MACROSCOPIC THEORY

Within the framework of macroscopic theory Kroh and |
In his Commen{1] on my paperf2] Shliomis does not derived an expression for the rate of entropy production con-

recognize that the dynamics of ferrofluids must be describegistent with Maxwell's equations, equilibrium thermodynam-
by different methods in different regimes of density. My pa-ics, and hydrodynamicg3]. With the expression firmly es-
per was concerned with dense ferrofluids. In the dense réablished, it is natural to explore the consequences of the
gime the suspended ferromagnetic particles interact stronglP'responding phenomenological relaxation equation for the
by direct and hydrodynamic interactions. On a slow times-s'mpl?St case of a varlable—lndependgnt relaxation tl_me._"l'he
cale, macroscopic behavior of the suspension may be d&duation had been proposed earlier on more intuitive
scribed by Maxwell's equations of magnetostatics, thermodrounds(4.s. N .
dynamics, and an extension of hydrodynamics. The Ir] the following | |nd_|cate Shliomis’ equationi] py a
thermodynamic equation of state and the transport coeffipr.ef'x S a_nd _the_ equations of my papgd] by a prgﬁx F.

. . e Since Shliomis in Eq(S10 quotes my Eq(F2.15 incor-
cients of hydrodynamics are difficult to calculate, and mustreCtIy | repeat it here:

be obtained from experiment or computer simulation. On the ’ '
other hand, at sufficiently low density interactions between 1
particles can be neglected. The particles perform individual— + V. (v-M)— QXM=y4(H—H,)— — MX(MXH).
Brownian motion of position and orientation. On the slow Jt 4
timescale of diffusion particle inertia can be neglected. Sta- @)
tistically the system is described by a single-particle distri-
bution function. If the spatial distribution in a volume ele-

ment is uniform, it suffices to consider the orientationalOnly for dilute ferrofluids. Third. 1 did not cal . the “local
distribution function. Its time evolution is governed by a o4 » a5 Shiiomis does.in his' Discussion in/Rén.] The
Sm_oluqhowski equation, called Fokker-Planck equation bysubscript/ stands for “local equilibrium.” The name “ef-
Shliomis[1]. _ o fective field” seems rather less appropriate.

Shliomis claims that the relaxation of magnetization of a Constantyy, is the simplest possible behavior, but is not
dense suspension can be described by his(E), derived  required by irreversible thermodynamics. Following Landau
from an effective field approximation to the Smoluchowskiand Khalatnikov[6], Shliomis assumes constapf; below

equation, and that the macroscopic equat@) guarantees gq. (S11). His thermodynamic potentiab(M) reads in my
a correct description of magnetization processes even faiotation, cf. Eq(F2.12,

large deviations from equilibrium. | take issue with both
claims. First, there is no guarantee that an equation derived d(M)=¢(M)—M-H, 2)
as an approximation for the dilute regime has any validity in
the dense regime. Second, in the dilute regime it is necessanereH is the local Maxwell field. At the equilibrium point
to consider the full distribution function, and a relaxation My=M,, corresponding tcH, the derivatived®/dM van-
equation for the magnetization can only be approximate. Ofishes, andH equalsH (M) = (d@/ IM),. From Eq.(F2.11)
occasion, the equation may describe the time dependence ofie finds the derivativédo/dM=MC(M), and Eq.(F2.9
the magnetization fairly well, but it can also be substantiallycan be expressed as
wrong.

The situation is somewhat analogous to the theory of
gases. Flow phenomena of a Knudsen gas must be described H-H,=-
by the full single-particle distribution function. For a dense
fluid one uses thermodynamics and hydrodynamic equations
with phenomenological transport coefficients that are diffi-Note that ¢°®/JM?), is a second-rank tensor that is not
cult to calculate from microscopic theory. proportional to the unit tensor, so Shliomis’ E&11) does

First of all, I did not assum&/ -v=0. Second, | did not
replace the vortex viscosity by 2 ¢, an expression valid

2
«(M=Mg)+0((M=Mg)?). (3
0

IM?
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not turn into Eq.(S7), even for small deviations from equi- ables on the left is essential in the derivation of the equation

librium, and Eq.(S13 is wrong. from statistical foundation$20—-22. Thus Eq.(S34 does
Thus Shliomis’ Eq.(S7) with constantr, as formulated not seem plausible. Its agreement with E§9 for small

originally [8], is not corroborated by irreversible thermody- departures from equilibrium does not make it more so.

namics in an obvious way. On the other hand, sikte Thus | maintain that for dense ferrofluids E§2.15 with
= 9/ aM by definition, his Eq(S11) with constanty turns ~ constantyy is a plausible conjecture, worth exploring. The
into Eq. (1) with constanty,,= y. actual variation of the transport coefficient, and its possible

As noted above, the assumption thaj is a constant extension to a tensor property, must be found from experi-

adopts the simplest possibility, but is not a necessary conscgne(gt or <;othputer|S|mfulat|on. 0 tiqate how th
guence of irreversible thermodynamics. However, Einstein ne of the goals of my paper was 1o Investigate how the

argued the assumption in his second paper on Brownian mé‘[]Odlfled relaxation equation affects the field dependence of

tion [7]. Einstein called the coefficienty, for general mac- magnetoviscosity. Its second goal was to show that the con-

. . . . ventional calculation of magnetoviscosity, as proposed b
roscopic variablex the “mobility of the system in respect to g y prop y

Shliomis[8], is not correct for dense suspensions. It is nec-

a,” and extended the relaxation equation to a diffusion equagggary to take collective interactions into account via Max-

tion. The assumption of constant mobility is often made, andye|1's equations. The grouping of terms carried out by Shlio-
it is part of Landau theorj6,9]. It is also part of the general s [1] following Eg. (S15 is misleading. It suggests that
formulation of irreversible thermodynamics of Onsager antpne is dealing with a modification of the transport coefficient
Machlup[10]. It is the first statement in Becker's treatment viscosity. Moreover, it suggests that the magnetoviscosity
of the subjec{11], and it is commonly made in the theory of derives from an antisymmetric stress ten28]. In planar
dynamical critical phenomenil2]. It has been shown by Couette flow both curl 1< H) and the Kelvin force density
Meixner[13] that it can serve as a basis for the derivation of(M- V)H vanish. In Poiseuille flow with applied field along
various “kinetic” equations for the motion in an “internal the tube both differ from zero. Actually, the contribution to
coordinate space.” Various examples are treated in the bookagnetoviscosity under consideration is only an apparent
of de Groot and Mazuf14]. In particular, it is noteworthy viscosity. It is merely a way of expressing the effect of the
that the Smoluchowski equation for the orientational distri-magnetic forces and torques on the flow of the suspension.
bution function of a dilute dipolar suspension has been deNote that the resulting magnetic force density is the diver-
rived by Prigogine and Mazuld5] in this manner. They also gence of a symmetric stress tensor, the sum o0and T, in
proposed a generalization of the equation to higher densitjRosensweig’s notatiof23]. A second contribution to mag-
For a recent discussion on the relaxation equation with conretoviscosity comes from the influence of the magnetic field
stant mobility see Adelman and Ra\i6], who ascribe the on the average hydrodynamic stress tensor via the micro-
theory to Onsagelr10], rather than Einsteifi7]. structure of the suspension. This contribution is a genuine

Shliomis claims that the relaxation terpy(H—H ) with  local transport coefficient. It vanishes for a dilute suspension
constantyy in Eq. (1) is wrong. However, his claim is based of spherical particles.
on a comparison with results for dilute suspensions. As ar- It remains to discuss the limiting value of magnetoviscos-
gued above, the macroscopic theory is not designed for dity at high field. As shown in EqF7.5), the relaxation equa-
lute suspensions. tion (1) with constantyy leads to a valuey, (=) less thary,

At the beginning of his Sec. Ill, Shliomis states that thewhereas Shliomis’ relaxation equation leads to the value
phenomenological methods allow one to obtain only linear ¢, the value of the vortex viscosity for low volume
relaxation laws. The Einstein theory equation E§11) is fraction. His argument why this must be so on the basis of
clearly nonlinear. Conversely, if the linear relaxation behav-Eq. (S5 is incorrect. As shown in an earlier paper with Kroh
ior is known at each equilibrium point, then the field- [24], one should regard E¢F2.14 as a means of calculating
dependence of the relaxation time can be deduced, and otige average angular velocity of particles from the known
can formulate the nonlinear relaxation equation for large devorticity, magnetization, and magnetic field. In the fast rota-
viations. Shliomis suggests that in nonlinear situations theional relaxation approximation, the mean angular velocity
relaxation equationS26, derived from Brownian motion becomes a dependent variable. Logically one is not allowed
theory for dilute suspensions, should be used. This ignore® fix its value. The limiting value of the magnetoviscosity
again the fact that dense suspensions are qualitatively diffemust be obtained from the equations for M, andH, in-
ent from dilute ones. cluding the relaxation equation. A different relaxation equa-

At the end of his Sec. 4, Shliomis proposes yet anothetion can yield a different value.
relaxation equation, EqS34). His starting point above Eq.

(S33 ignores the tenet of irreversible thermodynamics that

on the left-hand side of a phenomenological rate equation the lll. MICROSCOPIC THEORY

rate of change of an extensive or additive variable should For an explanation of the dynamics of dilute ferrofluids, a

appear[10,17,18. It was argued already by Onsagddi®]  microscopic theory is required. Since interactions can be ne-
that the right-hand side should be expressed in terms of thegjiected, it suffices to consider a single particle. A first theory

modynamic forces. Thus the canonical form g based on hydrodynamics and magnetostatics, but omitting
=Fi({X;}), where{a;} are additive variables, anX;} the  the effect of Brownian motion, was constructed by Hall and

conjugate thermodynamic forces. The use of additive variBusenberd25]. They used an incorrect expression for the
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FIG. 1. Plot of the reduced magnetoviscosityy / 7,(>) of a
dilute ferrofluid, as a function of the variabfe=mH,/kgT as cal-
culated from the exact solution for the orientational distribution
function (solid curve, from Shliomis’ approximation[8] (long
dashey and from the approximation of Martsenyuwt al. [28]
(short dashes

FIG. 2. Ratio of the approximate result of Shliomi& for the
magnetoviscosityA 7, to the exact value as a function gf(long
dashes Similarly the ratio of the approximate result of Martsenyuk
et al.[28] to the exact valuésolid curve.

At the end of his Sec. 3, Shliomis comments on my solu-
entropy production, cf. Eq(F2.16, and their result for the tjon of the Smoluchowski equatid9]. Contrary to his sug-
magnetoviscosity is correct only in the high-field limit, gestion, the method used leads to rapid convergence to the
7:(=) =3 n¢. The reason why the limiting value is correctis gxact result. I did not “forget” to mention the result of Ref.
evident from Eq/(F6.D). . [2]. There is no point in the comparison, since the relaxation

It is preferable to calculate the magnetoviscosity from theequation(l) cannot be used in the dilute regime, as explained
stress tensd2], rather than from the entropy production. For '

Poiseuille or planar Couette flow with applied field paraIIeIat length above.
o the tube or the plates, one can arg@that it suffices to For a dilute suspension the behavior of the magnetization

after a sudden change of field can also be calculated exactly

evaluate the transverse component of the magnetization. T : ;
effect of Brownian motion was studied independently byrtgo’gﬂ' The result can be compared with the approximate

Shliomis [8] and by Brenner and Weissmdg6]. In the _relaxation equati0n$SS_3) and (SZQ: If the f"ﬁa' field van-
theory of Shliomis the effect was included via the relaxation/S1€S: then the decay is exponential for arbitrary value of the

equation Eq(S7). Brenner and Weissman solved the Steady_mitial field, and this is reproduced precisely by both approxi-

state Smoluchowski equation for the orientational distribu-Mate equat_ions. If the initi_al field is su_d(_jgnly_ reversed, then
tion function numerically for a variety of flow situations. A the decay IS more complicated. For |n|t|a_l fiefs-=15 the
similar numerical scheme was proposed by Letal. [27]. mean relaxat|.on time, calculated from the integral of the re-
Martsenyuket al. [28] used the Smoluchowski equation to '@Xation function

derive an approximate magnetic relaxation equation, and

hence found EQ.(S30. Incidentally, the limiting value

7, () =3 n¢ follows straightforwardly from the behavior of Iy(t)= M®/Ms+L(E) (4
the steady-state orientational distribution function at high ! 2L(¢) '
field.

Recently | have shown that for a dilute suspension the
magnetoviscosity can be evaluated exactly from a simplés 7, =0.2309. The approximate Eq(S9 yields =y =,
scheme[29]. Considering the case of Poiseuille flow with and Eq.(S26 yields r,,=0.2406. At t=1.5r, the exact
applied magnetic fieltHy along the axis of the tube we find relaxation function equals 0.186, and the approximate relax-
from Eq.(F5.6 Ay = %QHBeq, whereQ =m,/(2Q), with  ation function found from Eq(S26 equals 0.220, overesti-
m, the component of magnetization transverse to the tubenating the exact value by 18.5%.
axis. This can be calculated to first order in the vorticity from  The above-mentioned results of the microscopic theory
the Smoluchowski equation for the orientational distributionshow that for dilute ferrofluids approximate relaxation equa-
function. For a dilute suspension the equilibrium magnetidions for the magnetization must be used with caution. In any
inductionB4 may be replaced bi,. The value%QHH0 may  case, it is preferable to solve the Smoluchowski equation for
be compared with the expressions fgrgiven by Eqs(S14  the distribution function. How a calculation valid for the di-
and (S30 found from the approximations of Shliom[$] lute regime can be extended into the dense regime remains a
and Martsenyulet al.[28]. In Fig. 1 we plot the exact result, difficult question. It is not clear at which density and at
as well as the two approximate expressions, as a function afhich timescale the microscopic theory can be replaced by
£. In Fig. 2 we plot the ratio of the two approximate expres-the macroscopic one. The calculation of transport coeffi-
sions to the exact result. This shows that the approximateients occurring in the macroscopic equations for dense
result of Martsenyulet al.[28] is quite good, but that Shlio- suspensions from the microscopic foundations remains a
mis’ result[8] deviates up to 17%. challenge.
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