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Comment on “Magnetoviscosity and relaxation in ferrofluids”
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It is shown and discussed how the conventional system of hydrodynamic equations for ferrofluids was
derived. The set consists of the equation of fluid motion, the Maxwell equations, and the magnetization
equation. The latter was recently revised by FeldefRtiys. Rev. E62, 3848(2000]. His phenomenological
magnetization equation looks rather like our corresponding equation, but leads to wrong consequences for the
dependence of ferrofluid viscosity and magnetization relaxation time on magnetic field.
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. INTRODUCTION: EQUATION OF FLUID MOTION Si=enS,  Qu=(av, /% — v, 19x)12= €,

In a recent pap€rl], Felderhof made an attempt to revise and¢;,, stands for antisymmetric unit tensor. Apart from the
the conventional hydrodynamic equations for ferrofluids. Heviscosity 5, Eq. (1) contains once more kinetic coefficient:
proposed some modification in the equation of ferrofluidthe spin relaxation timer,=1/69¢=pd?/60yn. For d
magnetization. A complete set of ferrohydrodynamic equa=10 nm andy=10"2 P this formula gives¢~10 !s(!).
tions was presented in our padé] 30 years ago. In this Thus, the differences,— € instantly decays whereupon the
Comment, we will consider the object of Felderhof’s criti- hydrodynamic description is reduced to the common set of
cism, analyze his proposition, and explain why we feel it ishydrodynamic equations. Ferrofluids, however, give us an
wrong. opportunity to maintain this difference by an extraneous

The main peculiarity of ferrofluids is a specific relation magnetic torque that acts directly upon the particle rotation
between the magnetic and rotational degrees of freedom of

suspended magnetic grains of which the fluids are composed. 67d(wp—Q)=MXH. (2)
Therefore the concept dhternal rotation first applied to

ferrofluids in[2] has proved to be very fruitful. The model HereH is the magnetic field within the fluid ansl is the
[2] takes into account that the volume density of the angulaferrofluid magnetization. At thequilibrium in a stationary
momentum of ferrofluids consists of both the visilgter- field, M is described well by the Langevin formula
bital”) and the interna(“spin” ) parts. The former.=p (r

X V), is associated with the translational motion of magnetic H mH

grains and molecules of the solvent. The lat&ris caused Mo=nmL(&) . &= L(§)=cothé—¢71, (3)
by the rotation of the grains themselves and should be treated B

as an independent variable along with the fluid veloeity \\herem is the magnetic moment of a single particle and
densityp, and pressur@. However, an appropriate thermo- e number density of the particles. Eliminating the last term
dynamic coordinate is the differenc—I€Q, where Q i, £q (1) with the aid of the torque balance equati@ and

—_— l 1 1 1 . . . . .
=zcurlv is the local angular velocity of the fluid and  jnciuding in o, the Maxwell tensor of magnetic field, one
means the volume density of the particles moment of mertlagets[z 4]

For a suspension of spherical particlesps¢d?/10 where¢
is the volume fraction of the dispersed phasethe particles

dvj Jdv 1
material density, andl the mean particle diameter. In this o= Pkt LNy =(M;H,—MH;)
o . - . (9Xk (9Xi 2
case it is convenient to s&=1w, where w, is the macro-
scopic(i.e., averaged over physically small volupsngular 1,
velocity of the particles. Any deviation ab, from Q gives + 7| HiBe= 5 H%i ). (4)

rise to dissipation processes due to redistribution of angular
momentum betweeh andS forms. (The angular momentum substitutiorB, =
conservation law refers, to the total angular momentum
+S.) These processes contribute the stress teagar For

an ordinary(nonmagnetig suspension, the tensor has been
derived by the methods of irreversible thermodynamics in dv; oy d

Jd
3l 1 — = _—1+(y.V
3] L T: ax, ' dt  at (v-¥),

H+4m7M, in this tensor, we are con-
vinced of itssymmetryEquation(4) and the momentum con-
servation law

dv;  duy 1 : : : ;
o= —pdt 7 i ‘) + (Sk—=10:0, (D determine the equation of ferrofluid motion
07Xk O7XI 27’5
v
= 2 . 1
where Par Vp+7yVv+(M-V)H+5curMXxXH). (5
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In the calculation of the divergence of the stress tensor we

have used the equations

divv=0, curlH=0, divB=0, (6)
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dM

gr ~ XM= yu(H—H)

Here y, is a positive phenomenological constant and, “
=MC(M) is expressed in terms of the local magnetization”

i.e., the ferrofluid is considered to be incompressible ang1] that requires an introduction of a very inconvenient no-

nonconducting.
The system of equatior{§)—(6) is still not complete since

tation C(M)=(kgT/mM)L }(M/nm), where L (x)
means the function inverse to Langevin functi@. On the

it does not determine the ferrofluid magnetization. The latteface of it, Eq.(10) is only much less convenient than E@)
influences the fluid motiofisee Eq.(5)] and depends itself gjnce the left- and right-hand sides of HG0) containdif-
on the motion as well. There are two basic ways to derive thggrentrelaxing valuesM andH,(M). Felderhof claims, how-
missing magnetization equation. Both the ways have beegyer, that his “relaxation equation wesrivedfrom irrevers-

proposed by the author with co-workdi5] and discussed
in reviews[4,6,7).

Il. PHENOMENOLOGICAL MAGNETIZATION
EQUATION

Originally the magnetization equation was derived phe
nomenologically[2] as a modification of the Debye relax-
ation equation[8]. To get the generalized equation, one
should introduce a local reference fra@é, in which the

suspended particles are quiescentthe averagei.e., wé

ible thermodynamicgIT), and differs from thajpostulated

by Shliomis. The two relaxation equations lead to a different
dependence of viscosity on magnetic field.” Let us consider
both these statements.

From the point of view of IT, the relaxation terigM,
—M)/7in Eq. (9) is neither more nor less “postulated” than
the termyy(H—H,) in Eq. (10). It is worth to remind, there
are two methods of IT, and both were proposed by Landau.
The first of two,L1, based on conservation laws and the
condition of positive entropy production, was applied for the
first time to the building of hydrodynamics of heliufg],

=0. Itis natural to assume that the magnetization relaxatiogyen—nydrodynamics of fluids with internal rotatifsi, lig-
is described in the system by the simplest Debyelike equay;q paramagnet§10], and some other liquids. Relaxation

tion

1
~~(M—My), @

with My from Eq. (3). In other words, it assumes that any
deviation (either in direction or magnitudeof M from its
equilibrium valueMy decays according to the simple expo-
nential law M — M) ~exp(—t/7). Herer=37V/kgT stands
for the Brownian time of rotational particle diffusionv(

equation(10) has been also derived by that method. One has
to be skillful enough to use this cumbrous method because it
does not lead to the one and only form of sought equations.
In this sense the second metha®, is much more definite,
simple, and direct than methad. . It was first applied just to
the description of relaxation of the order parameter in a non-
equilibrium systenf11]. An equilibrium value of the param-
eter My in our case corresponds to the minimum of an
appropriate thermodynamic potentil(usually the Gibbs or
Helmholtz free energydepending on the magnetizatidh

=d%/6) since the particles are assumed to be rigid magand other thermodynamic variables. Thus, at the equilibrium
netic dipoles whose reorientation is possible only with rota-d®/dM=0. Out of equilibrium this condition is not satis-

tion of the particles themselves. The frame of referekic¢e
rotates with respect to the fixedlaboratory”) system3,
with the angular velocityw,. The rates of change of any
vector A in systems>, and’ are related by the kinematic
expression

dA

dt

d’A

dt ®

prA+

Substituting heréd =M, w, from Eq.(2), andd’M/dt from
Eq. (7), we obtain the equation sought

dM =QXM
6n¢

i M X (M X H)

1
~(M=Mo)~ ©

(Shliomis [2]). The last(relaxation term in this equation
describes a process of approach of the vebtaio its equi-
librium orientation without change of the length of this vec-
tor. Equationg5), (6), and(9) constitute the complete set of
conventional ferrohydrodynamic equations.

Let us compare Eq9) with the Felderhof’s equatiofil]

fied, so the relaxation process occuks: changes in time
approachingM . For small deviations from equilibrium, the
derivative9®/dM and the relaxation ratéM/dt are small.
The relation between the two derivatives in the Landau
theory is reduced to simple proportionality

dMm Z000) 11
ETRET @y
with a constant coefficieny>0. Hence we have
do 9P dM b\ 2 0 1
at ~om dat - \am) =° 12

as it should be: when a system moves to equilibrium, its free
energy decreases. In the case of a weakly nonequilibrium
state of the system, one can substitute in Efj$. and(12)

the expansion

FR)

IM?

P

acb( )+
M/,

M (M=Mg)+---,

0
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where subscript 0 marks the point of equilibrium. As the firstjar velocity e, equal toQ, so thatz,(0)=0. Conversely,
derivative in this point is equal to zero and the second one is7r(g) attains its limiting value
positive, Eq. (11) turns into Eq. (7) with 71
=v(9*°®/IM?), and Eq.(12) takes the form () =372 (18)
2
@: _ M_ (13) (the saturationwhen rolling of the particle is replaced by
dt y7? slipping the field of sufficiently large intensity guarantees
constancy of the particle’s orientation, not allowing it to
Thus, Eq.(7) and hence Eq(9) are well corroborated by the twist with the fluid. Note that the resuit8) doesnot depend
method of IT. Equatior{10) does also not conflict with IT.  on a concrete form of the magnetization equation but follows
Nevertheless, in my opinion it is wrong. As we show below, directly from the equation of fluid motiofB). Actually, in
it leads to anomalous result for ferrofluid viscosity and mag-the limit under consideratiom, =0, so that Eq(2) takes the
netization relaxation time. The pitfall of IT is discussed in form M X H= —67¢€Q. Substituting this torque in Eq5),
Sec. IV. we immediately arrive at Eq18). Indeed, this value was
The Einstein formula for viscosity of suspensiom  obtained by Hall and Busenbef$2] as early as 196@ith-
= 1o(1+2.5¢) was obtained without taking into account the out the usef any magnetization equation. In any case, how-
rotational motion of suspended particles relative to carrieever, such an equation must not contradict the saturation
liquid. If, however, the particles angular velociéy, does not  value (18). Our formula (17) does satisfy the limit(18),
coincide with the angular velocity of the flu, there arise  whereas Felderhof's equatigh0) leads to a quite different
frictional forces that manifest themselves in an additionalesult. His final formula in Refl1] gives the value
(so-calledrotational) viscosity n,. As the differencew,

— is maintained by the magnetic torgleee Eq.2)], ro- . 3 (nm)?
tational viscosity turns out to be a function of the dimension- 7 (*)=5 7I¢6 5 (19
less field strengtl. In a stationary field, the steady solution n¢yut(nm)

of Eq. (9) yields in the linear order i) 7, S )
which isevidently lesshan the correct valugl8). According

27 to Ref.[1], y4= x/ 7, wherey=nm?/3kgT is the initial mag-
T (D) (14 netic susceptibility. Substituting the, and ¢=nV in Eq.
(19) we find 67¢y,=2(nm)?%/3, afterwards Eq(19) yields
wherer, is the relaxation time of the transver@e the field ~ 7r (%) =97¢/10. Thus the ratio of the Felderhof's limiting
component of the magnetization. For the Poiseuille flow ovalue of viscosity to the correct valu@8) is equal to 0.6. In

the planar Couette flow under the field directed along thedther words, in the limig = Felderhof's equatioil0) pre-
flow (i.e., HL Q), we find dicts w,=0.4Q) instead ofw,=0 as it should be.

M—=Mg=71, (2XMy),

MXH=—7,MoHQ, (15 Ill. MAGNETIZATION EQUATION DERIVED

. . . . L. . MICROSCOPICALLY
while for arbitrary orientation of magnetic field the right-

hand side of the expression should be multiplied by sin Both the above-mentioned phenomenological methods al-
wherea is the angle between vectorsand Q. Let us sub-  low to obtainlinear relaxation terms in hydrodynamic equa-
stitute the magnetic torqué5) in Eq. (5). When the fieldH  tions [such as ¥y,—M)/7 in Eq. (9)] and corresponding

is homogeneous, the magnetic fordd (V)H in the right- quadratic terms for the rate of the entropy growth or the free
hand side of Eq(5) vanishes, while two other terms of the energy diminution(such as that in Eq13)). It is clear that

equation may be grouped such terms are valid only for small departures from equilib-
rium. Indeed, Eq(9) describes well the rotational viscosity
pV2v+ 3 cur(MXH)=(n+ 37, MgH)V?v. for arbitrary intensity of a stationary magnetic field but small

values of Q)7 (see, e.g., a good agreement between
The quantity added here to the ordinary viscosity should bécTague’s experimerjtL3] and our theory2]), or for small

regarded as rotational viscosity dimensionless amplitudg or frequencyw 7 of an alternating
) magnetic fieldsee, e.g., experiments on thegative viscos-
7 =37 MoH. (16) ity and their explanation in Refl4]). Meanwhile, to de-

scribe successfully the negative ferrofluid viscosity at finite
Substituting herévl, from Eq.(3) and 7, from Eq.(14), we  values of the parameters, we did need to use in Ref516]
derive the formuld 2] a more precise magnetization equation. Suchagroscopic
equation should be derived from the kinetic Fokker-Planck
_3 §L(§ 3 é—tanhd equation that provides thmicroscopicdescription of part
(&)= 27’¢2+§L(§) ~ 27 e tanhe A7 icle diffusion in colloids. The program was realized by
Martsenyuk, Raikher, and Shliomj§] soon after the phe-
In the absence of magnetic field an individual particlenomenological magnetization equatié®) was derived in
“rolls” freely along corresponding shear surface with angu- Ref.[2].

063501-3



COMMENTS PHYSICAL REVIEW E 64 063501

The Fokker-Planck equation for a ferrofluid moving in a which differs from the Gibbs distributio22) by replace-

field H has the forn{7] ment of the true field by the effective one. Carrying out the
averaging in Eq.(21) with the function(25), we find the
owW . i
27— =R:(R-270-ex W, (20  Soughtequatiopd]
d & &| L&)
. . . . — —|=0QX =|- -
where e=m/m is a unit vector along a particle magnetic dt[L(g‘E)gJ @ L(§E)§e Te (&4
moment, £&=mH/kgT, and R=eX d/de is the infinitesimal
rotation operator. Equatiof20) determines the orientational _ fe_SL(ge)g X (&X &). (26)
distribution functionW(e,t) of particles magnetic moments. 2752 e e

The macroscopic magnetization is determined by the relation
M (t)=nm(e) where angular brackets denote statistical aver-This equation defines the dependence of the effective §ield
aging with the distribution function. Multiplying Eq20) by ~ upon time, true field, and the fluid vorticity€2. Its solution
e and integrating over the angles, we arrive at the equationée being substituted into Eq24) determines the magnetiza-
tion of a moving fluid. In the case of small departures from
d{e) equilibrium, the effective field might be represented as a sum
21— =27x(e)-2(e)—(ex(ex§)), (2D of the true field and some small correlatig= £+ ». Then
from Eqgs.(23) and(24) in the linear approximation im we
which, however, is not closed. Indeed, along with the firstget
moment of the distribution functione), Eqg. (21) contains ,
the second momertthe last term inrﬁhzz equatipnit is easy M=Mo=nmL"(§)v)+L(Hw.], 27)
to make sure that the equation for the St_acond_m.oment ir,\ivhere the components
cludes the third one, and so on, thus there is the infinite chain
of cross-linked equations. Ide.aIIy, however, one would like v||=§(v~§)/§2, v, = EX(vX )/ E,
to have only one equation since only the first moment— ) ] )
magnetization—has a clear physical meaning. An originaf'® pargllel and perpendmular to the true field, respectively.
scheme of closure of the firstmoment equati@d), tited ~ Employing the relatior(27), one can reduce Eq26) to the
the effective field methodas been proposed in RE]. Let  linear magnetization equation
us explain the fruitful physical idea.

In equilibrium (2=0) under a constant magnetic field the d_M -Q _ H[H-(M—Mo)] _ HX(MxH)
stationary solution of Eq(20) is the Gibbs distribution dt 7H? T H2
(28)
Wy(e) = mexrl(f- e. (220 where relaxation times of the components of magnetization
are
An averaging of the vectawith function(22) gives expres- dinL(&) 2L(&)
sion (3) for the equilibrium magnetization T”:dl—ngT’ TL=§_ Lo T. (29
Mo=nmL(£)4/¢. (23 Substitutingr, from Eq. (29) in Eq. (16), we obtain[5]
Only in true equilibrium the magnetization is one or another 3 EL2(&)
function of the field. In a nonequilibrium state therenis (€)= Emﬁm. (30

connectionbetweenM and H: any arbitrary magnetization

may be created, in principle, even in the absence of the fieldn the same approximation our phenomenological equation
Nevertheless, one may consider any valueMfas an (9) also takes the forni28) but with other relaxation times:
equilibrium magnetization in a certain—specially pre- 7)=7and 7, is defined in Eq(14).
pared —magnetic field. Thisffective fieldH, is related to Figure 1 shows that though at first sight functiaids)
the nonequilibriummagnetization by thequilibriumrelation and(30) do not appear alike, they agree fairly closely in the
entire range of their argument. Both are in a good agreement
M=nmL(&)&/&. (24 with experimental data of many authors and with computa-
) . ) ) ) tional results provided by direct numerical integration of the
Dunng thg equilibrium settling process, the-d|men5|onless,:0kker_P|aan equation in linear approximationQn- [17].
effective fieldé,=mH,/kgT tends to the true field, so the  ite recently, FelderhdfL8] solved this linearized equation
magnetization(24) relaxes to its equilibrium valu&23).  p yhe Galerkin method using a large number of trial func-
Comparing Eqs(23) and (24), we see that the latter is 0b- yjons (the associated Legendre functisn€omparing his
tained by averaging of with the distribution function “exact result” for the rotational viscosity with Eq$30) and
(17), he wrote that “the result of Martsenyuk, Raikher, and
W,(e)= %exqge- o), (25)  Shliomis[5] is quite a good app,)’roximation, but the result of
m sinh§e Shliomis[2] deviates up to 1%'’. We note that Felderhof
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FIG. 1. Reduced rotational viscosityy2(£)/3n¢ as a function
of £ given by the effective field methdd] [Eq. (30), solid curvd,
by the phenomenological approddi [Eq. (17), dotted curvé and
by Felderhof's approximatiofil] [Eq. (32), dash-dotted cunje

“forgot” to mention in Ref.[18] his own predictiof1] —
see the lower curve in Fig. 1— which deviates up to 40%.

IV. DISCUSSION

It is easy to see that Felderhof’'s “local fieldH, in Eq.
(10) is the same as our effective fieldl, determined by Eq.
(24). Hence one can use the relationsltgY) for a linear

analysis of Eq. (10). Substituting in (27) v=§&—§
=(m/kgT)(Hs—H), we find
iy =M= Mo), _ &y
(He=H)y= WU (Hoi =315 G

Let us substitute these relations in Felderhof's equatidh
and put therey,, = x/ = with such a choice his equation co-
incides with Eq.(9) in the limit é<1 as it should be. Then
for arbitrary ¢ we obtain from Eq(10), making use of Egs.
(31) and(16),

L%(¢)

f o 6L(OT c 9
2+3L2%¢)

= =— 2
"t e T2 (32

Both the relaxation time and viscosity, in my opinion, are

wrong. Indeed, in a strong fielg>1 they take the magni-
tudes 77 =67/5¢ and 7 =97¢/10, while it should ber,
=27/£€=67V/mH and 7, = 37¢/2. The dependence! (£)
shown in Fig. 1 strongly differs from two other curves.

Let us give consideration to the question, why doe
Felderhof's equation lead to the anomalous results. We ha
shown above how the Debye equati@h originates from the

potential®(M). One can choose, however, as an indepen
dent variable the effective field and introduce the potential

(5(He). Then instead of Eq11) we obtain in similar fashion

dHe  ~ oD
dt  YoH,

v>0.

Acting further by theL2 method, we arrive at the equation
[cf. Eq. (7)]

PHYSICAL REVIEW E 64 063501

1
~ Z(HeH), 33

where we sety 1= (92®/aH?) 7. With this choice, Eq(33)
turns into Eq.(7) in the low field limit.

Equations(7) and (33) satisfy the principal propositions
of the theory oflinear responseccording to which the time
ratex of change of a valug at each a moment is determined

by the valuex at the same momenk=x(x). Then, if x
weakly deviates from its equilibrium value,, one can ex-

pandx(x) over x and confine oneself to the linear term:
—N(X—Xg), where\ is a positive constant. Thus; in
Egs. (7) and (33) should be considered ascanstant This
inference seems important because the methbdof irre-
versible thermodynamics does not allaw,principle, to de-
termine the field dependence of kinetic coefficients such as
vy in Eqg. (10). In the rotating reference fran®’ the equa-
tion reads

d’'M
dt

Yr(He—H).

In contrast to Egs(7) and (33), this equation relates one
value H,) with time rate of change of another on#y.
Therefore, under the nonlinear magnetization I&4), the
coefficientyy wittingly cannot be constant but represents an
unknown functiorof &.

Equation(33) has been written out in a coordinate system
3. Reverting to the immobile syste® by the general for-
mula (8) and eliminatingw, with the aid of Eq.(2), we
obtain[19]

dH,

1H H
dt (e_ )

T

—OXH— Grd

HeX (M XH).

(34)
This equation determines together with E24) the magne-
tization M in an implicit form, effective fieldH, being the
parameter. In the case of small departures from equilibrium,

Eq. (34) can be linearized with respect td,—H and M
—My. Using relationship$31) and

dM  dM dH,
dt dH, dt

d(He)|
dt

L(§) d(He),
¢ dt

we turn to Eq.(28) with 7= and 7, from Eq. (14). Thus,

=3x|L'(§)

é'n linear approximation Eqg9) and(34) coincidewith each
\;%ther. As a result, both the equations yidteé sameelation-

ship (17) for the rotational viscosity of ferrofluids.
_ Perhaps if Felderhof had useét] as an independent vari-
gblecorrectly, he would have arrived at E¢34).

V. CONCLUSION

Thus, our theory consists of hydrodynamic and Maxwell
equations(5)—(6) plus a magnetization equation. There are
three kinds of the latter: Eq$9), (26), and (34). It is well
established that Eq(26) derived by the effective field
method from the Fokker-Planck equation yields quite accu-
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rate results for real ferrofluids. Indeed, a direct numericals free from such a shortcoming: it is valid even far from
simulation of the magnetic moment Brownian dynamics perequilibrium. Therefore, taking into account that Eg4) is
formed by Ceberg20,21] in the mid-1980s has indicated nevertheless simpler than E@6), one should use Eq34)
that Eq.(26) describes perfectly the fluid magnetization in afor a wide range of applications.

wide range of parameteis and (7. The same conclusion  As for the Felderhof’s equatiofl0), it does not stand up
has been made in Re6] by comparing the solution of Eq. to comparison with our phenomenological equati&h nor
(26) with the results of numerical integration of the non- the microscopically derived E¢26). We have shown that an
stationary Fokker-Planck equatid@0). At the same time, jncorrectly derived Eq(10) leads to anomalous results9)

the calculationg20,6] have shown that the phenomenologi- and(32) (see also Fig. )1 which is why we feel it should be
cal equation(9) is valid for any field magnitudes but only  rgjected.

small enough fluid vorticitiest) 7<1. Hence Eq(9) can be

recommended for the description of weakly nonequilibrium

situations, as the equation is far simpler for analysis tha}n Eq. ACKNOWLEDGMENTS
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