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Comment on ‘‘Magnetoviscosity and relaxation in ferrofluids’’

Mark I. Shliomis
Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel

~Received 25 October 2000; published 21 November 2001!

It is shown and discussed how the conventional system of hydrodynamic equations for ferrofluids was
derived. The set consists of the equation of fluid motion, the Maxwell equations, and the magnetization
equation. The latter was recently revised by Felderhof@Phys. Rev. E62, 3848~2000!#. His phenomenological
magnetization equation looks rather like our corresponding equation, but leads to wrong consequences for the
dependence of ferrofluid viscosity and magnetization relaxation time on magnetic field.
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I. INTRODUCTION: EQUATION OF FLUID MOTION

In a recent paper@1#, Felderhof made an attempt to revis
the conventional hydrodynamic equations for ferrofluids.
proposed some modification in the equation of ferroflu
magnetization. A complete set of ferrohydrodynamic eq
tions was presented in our paper@2# 30 years ago. In this
Comment, we will consider the object of Felderhof’s cri
cism, analyze his proposition, and explain why we feel it
wrong.

The main peculiarity of ferrofluids is a specific relatio
between the magnetic and rotational degrees of freedom
suspended magnetic grains of which the fluids are compo
Therefore the concept ofinternal rotation first applied to
ferrofluids in @2# has proved to be very fruitful. The mode
@2# takes into account that the volume density of the angu
momentum of ferrofluids consists of both the visible~‘‘or-
bital’’ ! and the internal~‘‘spin’’ ! parts. The former,L5r (r
3v), is associated with the translational motion of magne
grains and molecules of the solvent. The latter,S, is caused
by the rotation of the grains themselves and should be tre
as an independent variable along with the fluid velocityv,
densityr, and pressurep. However, an appropriate thermo
dynamic coordinate is the differenceS2I V, where V
5 1

2 curlv is the local angular velocity of the fluid andI
means the volume density of the particles moment of iner
For a suspension of spherical particlesI 5rsfd2/10 wheref
is the volume fraction of the dispersed phase,rs the particles
material density, andd the mean particle diameter. In th
case it is convenient to setS5I vp wherevp is the macro-
scopic~i.e., averaged over physically small volume! angular
velocity of the particles. Any deviation ofvp from V gives
rise to dissipation processes due to redistribution of ang
momentum betweenL andS forms.~The angular momentum
conservation law refers, to the total angular momentumL
1S.) These processes contribute the stress tensors ik . For
an ordinary~nonmagnetic! suspension, the tensor has be
derived by the methods of irreversible thermodynamics
@3#:

s ik52pd ik1hS ]v i

]xk
1

]vk

]xi
D1

1

2ts
~Sik2IV ik!, ~1!

where
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Sik5e iklSl , V ik5~]vk /]xi2]v i /]xk!/25e iklV l ,

ande ikl stands for antisymmetric unit tensor. Apart from th
viscosity h, Eq. ~1! contains once more kinetic coefficien
the spin relaxation timets5I /6hf5rsd

2/60h. For d
510 nm andh51022 P this formula givests;10211s(!).
Thus, the differencevp2V instantly decays whereupon th
hydrodynamic description is reduced to the common se
hydrodynamic equations. Ferrofluids, however, give us
opportunity to maintain this difference by an extraneo
magnetic torque that acts directly upon the particle rotati

6hf~vp2V!5M3H. ~2!

Here H is the magnetic field within the fluid andM is the
ferrofluid magnetization. At theequilibrium in a stationary
field, M is described well by the Langevin formula

M05nmL~j!
H

H
, j5

mH

kBT
, L~j!5cothj2j21, ~3!

wherem is the magnetic moment of a single particle andn
the number density of the particles. Eliminating the last te
in Eq. ~1! with the aid of the torque balance equation~2! and
including in s ik the Maxwell tensor of magnetic field, on
gets@2,4#

s ik52pd ik1hS ]v i

]xk
1

]vk

]xi
D1

1

2
~MiHk2MkHi !

1
1

4p S HiBk2
1

2
H2d ikD . ~4!

On substitutionBk5Hk14pMk in this tensor, we are con
vinced of itssymmetry. Equation~4! and the momentum con
servation law

r
dv i

dt
5

]s ik

]xk
,

d

dt
5

]

]t
1~v•“ !,

determine the equation of ferrofluid motion

r
dv

dt
52“p1h“2v1~M•“ !H1 1

2 curl~M3H!. ~5!
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COMMENTS PHYSICAL REVIEW E 64 063501
In the calculation of the divergence of the stress tensor
have used the equations

div v50, curlH50, divB50, ~6!

i.e., the ferrofluid is considered to be incompressible a
nonconducting.

The system of equations~5!–~6! is still not complete since
it does not determine the ferrofluid magnetization. The la
influences the fluid motion@see Eq.~5!# and depends itsel
on the motion as well. There are two basic ways to derive
missing magnetization equation. Both the ways have b
proposed by the author with co-workers@2,5# and discussed
in reviews@4,6,7#.

II. PHENOMENOLOGICAL MAGNETIZATION
EQUATION

Originally the magnetization equation was derived ph
nomenologically@2# as a modification of the Debye relax
ation equation@8#. To get the generalized equation, o
should introduce a local reference frameS8, in which the
suspended particles are quiescenton the average, i.e., vp8
50. It is natural to assume that the magnetization relaxa
is described in the system by the simplest Debyelike eq
tion

d8M

dt
52

1

t
~M2M0!, ~7!

with M0 from Eq. ~3!. In other words, it assumes that an
deviation ~either in direction or magnitude! of M from its
equilibrium valueM0 decays according to the simple exp
nential law (M2M0);exp(2t/t). Heret53hV/kBT stands
for the Brownian time of rotational particle diffusion (V
5pd3/6) since the particles are assumed to be rigid m
netic dipoles whose reorientation is possible only with ro
tion of the particles themselves. The frame of referenceS8
rotates with respect to the fixed~‘‘laboratory’’ ! systemS
with the angular velocityvp . The rates of change of an
vectorA in systemsS andS8 are related by the kinemati
expression

dA

dt
5vp3A1

d8A

dt
. ~8!

Substituting hereA5M , vp from Eq.~2!, andd8M /dt from
Eq. ~7!, we obtain the equation sought

dM

dt
5V3M2

1

t
~M2M0!2

1

6hf
M3~M3H! ~9!

~Shliomis @2#!. The last ~relaxation! term in this equation
describes a process of approach of the vectorM to its equi-
librium orientation without change of the length of this ve
tor. Equations~5!, ~6!, and~9! constitute the complete set o
conventional ferrohydrodynamic equations.

Let us compare Eq.~9! with the Felderhof’s equation@1#
06350
e

d

r

e
n

-

n
a-

-
-

dM

dt
5V3M2gH~H l2H!2

1

6hf
M3~M3H!. ~10!

Here gH is a positive phenomenological constant and ‘‘H l
5MC(M ) is expressed in terms of the local magnetizatio
@1#, that requires an introduction of a very inconvenient n
tation C(M )5(kBT/mM)L21(M /nm), where L21(x)
means the function inverse to Langevin function~3!. On the
face of it, Eq.~10! is only much less convenient than Eq.~9!
since the left- and right-hand sides of Eq.~10! containdif-
ferentrelaxing values:M andH l(M …. Felderhof claims, how-
ever, that his ‘‘relaxation equation wasderivedfrom irrevers-
ible thermodynamics~IT!, and differs from thatpostulated
by Shliomis. The two relaxation equations lead to a differe
dependence of viscosity on magnetic field.’’ Let us consid
both these statements.

From the point of view of IT, the relaxation term„M0
2M )/t in Eq. ~9! is neither more nor less ‘‘postulated’’ tha
the termgH(H2H l) in Eq. ~10!. It is worth to remind, there
are two methods of IT, and both were proposed by Land
The first of two, L1, based on conservation laws and t
condition of positive entropy production, was applied for t
first time to the building of hydrodynamics of helium@9#,
then—hydrodynamics of fluids with internal rotation@3#, liq-
uid paramagnets@10#, and some other liquids. Relaxatio
equation~10! has been also derived by that method. One
to be skillful enough to use this cumbrous method becaus
does not lead to the one and only form of sought equatio
In this sense the second method,L2, is much more definite
simple, and direct than methodL1. It was first applied just to
the description of relaxation of the order parameter in a n
equilibrium system@11#. An equilibrium value of the param
eter (M0 in our case! corresponds to the minimum of a
appropriate thermodynamic potentialF ~usually the Gibbs or
Helmholtz free energy! depending on the magnetizationM
and other thermodynamic variables. Thus, at the equilibri
]F/]M50. Out of equilibrium this condition is not satis
fied, so the relaxation process occurs:M changes in time
approachingM0. For small deviations from equilibrium, th
derivative]F/]M and the relaxation ratedM /dt are small.
The relation between the two derivatives in the Land
theory is reduced to simple proportionality

dM

dt
52g

]F

]M
, ~11!

with a constant coefficientg.0. Hence we have

dF

dt
5

]F

]M

dM

dt
52gS ]F

]M D 2

,0, ~12!

as it should be: when a system moves to equilibrium, its f
energy decreases. In the case of a weakly nonequilibr
state of the system, one can substitute in Eqs.~11! and ~12!
the expansion

]F

]M
5S ]F

]M D
0

1S ]2F

]M2D
0

~M2M0!1•••,
1-2
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COMMENTS PHYSICAL REVIEW E 64 063501
where subscript 0 marks the point of equilibrium. As the fi
derivative in this point is equal to zero and the second on
positive, Eq. ~11! turns into Eq. ~7! with t21

5g(]2F/]M2)0 and Eq.~12! takes the form

dF

dt
52

~M2M0!2

gt2
. ~13!

Thus, Eq.~7! and hence Eq.~9! are well corroborated by the
method of IT. Equation~10! does also not conflict with IT.
Nevertheless, in my opinion it is wrong. As we show belo
it leads to anomalous result for ferrofluid viscosity and ma
netization relaxation time. The pitfall of IT is discussed
Sec. IV.

The Einstein formula for viscosity of suspensionh
5h0(112.5f) was obtained without taking into account th
rotational motion of suspended particles relative to car
liquid. If, however, the particles angular velocityvp does not
coincide with the angular velocity of the fluidV, there arise
frictional forces that manifest themselves in an additio
~so-called rotational! viscosity h r . As the differencevp
2V is maintained by the magnetic torque@see Eq.~2!#, ro-
tational viscosity turns out to be a function of the dimensio
less field strengthj. In a stationary field, the steady solutio
of Eq. ~9! yields in the linear order inVt,

M2M05t'~V3M0!, t'5
2t

21jL~j!
, ~14!

wheret' is the relaxation time of the transverse~to the field!
component of the magnetization. For the Poiseuille flow
the planar Couette flow under the field directed along
flow ~i.e., H'V), we find

M3H52t'M0HV, ~15!

while for arbitrary orientation of magnetic field the righ
hand side of the expression should be multiplied by sin2 a
wherea is the angle between vectorsH andV. Let us sub-
stitute the magnetic torque~15! in Eq. ~5!. When the fieldH
is homogeneous, the magnetic force (M•“)H in the right-
hand side of Eq.~5! vanishes, while two other terms of th
equation may be grouped

h¹2v1 1
2 curl~M3H!5~h1 1

4 t'M0H !¹2v.

The quantity added here to the ordinary viscosity should
regarded as rotational viscosity

h r5
1
4 t'M0H. ~16!

Substituting hereM0 from Eq. ~3! andt' from Eq. ~14!, we
derive the formula@2#

h r~j!5
3

2
hf

jL~j!

21jL~j!
5

3

2
hf

j2tanhj

j1tanhj
. ~17!

In the absence of magnetic field an individual partic
‘‘rolls’’ freely along corresponding shear surface with ang
06350
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lar velocity vp equal toV, so thath r(0)50. Conversely,
h r(j) attains its limiting value

h r~`!53hf/2 ~18!

~the saturation! when rolling of the particle is replaced by
slipping: the field of sufficiently large intensity guarantee
constancy of the particle’s orientation, not allowing it
twist with the fluid. Note that the result~18! doesnot depend
on a concrete form of the magnetization equation but follo
directly from the equation of fluid motion~5!. Actually, in
the limit under considerationvp50, so that Eq.~2! takes the
form M3H526hfV. Substituting this torque in Eq.~5!,
we immediately arrive at Eq.~18!. Indeed, this value was
obtained by Hall and Busenberg@12# as early as 1969with-
out the useof any magnetization equation. In any case, ho
ever, such an equation must not contradict the satura
value ~18!. Our formula ~17! does satisfy the limit~18!,
whereas Felderhof’s equation~10! leads to a quite differen
result. His final formula in Ref.@1# gives the value

h r
F~`!5

3

2
hf

~nm!2

6hfgH1~nm!2
, ~19!

which isevidently lessthan the correct value~18!. According
to Ref.@1#, gH5x/t, wherex5nm2/3kBT is the initial mag-
netic susceptibility. Substituting thegH and f5nV in Eq.
~19! we find 6hfgH52(nm)2/3, afterwards Eq.~19! yields
h r

F(`)59hf/10. Thus the ratio of the Felderhof’s limiting
value of viscosity to the correct value~18! is equal to 0.6. In
other words, in the limitj5` Felderhof’s equation~10! pre-
dicts vp50.4V instead ofvp50 as it should be.

III. MAGNETIZATION EQUATION DERIVED
MICROSCOPICALLY

Both the above-mentioned phenomenological methods
low to obtainlinear relaxation terms in hydrodynamic equa
tions @such as (M02M )/t in Eq. ~9!# and corresponding
quadratic terms for the rate of the entropy growth or the f
energy diminution~such as that in Eq.~13!!. It is clear that
such terms are valid only for small departures from equil
rium. Indeed, Eq.~9! describes well the rotational viscosit
for arbitrary intensity of a stationary magnetic field but sm
values of Vt ~see, e.g., a good agreement betwe
McTague’s experiment@13# and our theory@2#!, or for small
dimensionless amplitudej or frequencyvt of an alternating
magnetic field~see, e.g., experiments on thenegative viscos-
ity and their explanation in Ref.@14#!. Meanwhile, to de-
scribe successfully the negative ferrofluid viscosity at fin
values of the parameters, we did need to use in Refs.@15,16#
a more precise magnetization equation. Such amacroscopic
equation should be derived from the kinetic Fokker-Plan
equation that provides themicroscopicdescription of part
icle diffusion in colloids. The program was realized b
Martsenyuk, Raikher, and Shliomis@5# soon after the phe-
nomenological magnetization equation~9! was derived in
Ref. @2#.
1-3
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COMMENTS PHYSICAL REVIEW E 64 063501
The Fokker-Planck equation for a ferrofluid moving in
field H has the form@7#

2t
]W

]t
5R"̂~R̂22t V2e3j!W, ~20!

where e5m/m is a unit vector along a particle magnet
moment,j5mH/kBT, and R̂5e3]/]e is the infinitesimal
rotation operator. Equation~20! determines the orientationa
distribution functionW(e,t) of particles magnetic moments
The macroscopic magnetization is determined by the rela
M (t)5nm^e& where angular brackets denote statistical av
aging with the distribution function. Multiplying Eq.~20! by
e and integrating over the angles, we arrive at the equat

2t
d^e&
dt

52tV3^e&22^e&2^e3~e3j!&, ~21!

which, however, is not closed. Indeed, along with the fi
moment of the distribution function,̂e&, Eq. ~21! contains
the second moment~the last term in the equation!. It is easy
to make sure that the equation for the second moment
cludes the third one, and so on, thus there is the infinite ch
of cross-linked equations. Ideally, however, one would l
to have only one equation since only the first momen
magnetization—has a clear physical meaning. An origi
scheme of closure of the first-moment equation~21!, titled
theeffective field method,has been proposed in Ref.@5#. Let
us explain the fruitful physical idea.

In equilibrium (V50) under a constant magnetic field th
stationary solution of Eq.~20! is the Gibbs distribution

W0~e!5
j

4p sinhj
exp~j•e!. ~22!

An averaging of the vectore with function~22! gives expres-
sion ~3! for the equilibrium magnetization

M05nmL~j!j/j. ~23!

Only in true equilibrium the magnetization is one or anoth
function of the field. In a nonequilibrium state there isno
connectionbetweenM and H: any arbitrary magnetization
may be created, in principle, even in the absence of the fi
Nevertheless, one may consider any value ofM as an
equilibrium magnetization in a certain—specially pr
pared —magnetic field. Thiseffective fieldHe is related to
thenonequilibriummagnetization by theequilibriumrelation

M5nmL~je!je /je . ~24!

During the equilibrium settling process, the dimensionle
effective fieldje5mHe /kBT tends to the true fieldj, so the
magnetization~24! relaxes to its equilibrium value~23!.
Comparing Eqs.~23! and ~24!, we see that the latter is ob
tained by averaging ofe with the distribution function

We~e!5
je

4p sinhje
exp~je•e!, ~25!
06350
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which differs from the Gibbs distribution~22! by replace-
ment of the true field by the effective one. Carrying out t
averaging in Eq.~21! with the function ~25!, we find the
sought equation@5#

d

dt FL~je!
je

je
G5V3FL~je!

je

je
G2

L~je!

tje
~je2j!

2
je23L~je!

2tje
3

je3~je3j!. ~26!

This equation defines the dependence of the effective fielje
upon time, true fieldj, and the fluid vorticityV. Its solution
je being substituted into Eq.~24! determines the magnetiza
tion of a moving fluid. In the case of small departures fro
equilibrium, the effective field might be represented as a s
of the true field and some small correlation:je5j1n. Then
from Eqs.~23! and~24! in the linear approximation inn we
get

M2M05nm@L8~j!n i1L~j!n'#, ~27!

where the components

n i5j~n"j!/j2, n'5j3~n3j!/j3,

are parallel and perpendicular to the true field, respectiv
Employing the relation~27!, one can reduce Eq.~26! to the
linear magnetization equation

dM

dt
5V3M2

H @H" ~M2M0!#

t iH
2

2
H3~M3H!

t'H2
,

~28!

where relaxation times of the components of magnetiza
are

t i5
d ln L~j!

d ln j
t, t'5

2L~j!

j2L~j!
t. ~29!

Substitutingt' from Eq. ~29! in Eq. ~16!, we obtain@5#

h r~j!5
3

2
hf

jL2~j!

j2L~j!
. ~30!

In the same approximation our phenomenological equa
~9! also takes the form~28! but with other relaxation times
t i5t andt' is defined in Eq.~14!.

Figure 1 shows that though at first sight functions~17!
and~30! do not appear alike, they agree fairly closely in t
entire range of their argument. Both are in a good agreem
with experimental data of many authors and with compu
tional results provided by direct numerical integration of t
Fokker-Planck equation in linear approximation inVt @17#.
Quite recently, Felderhof@18# solved this linearized equatio
by the Galerkin method using a large number of trial fun
tions ~the associated Legendre functions!. Comparing his
‘‘exact result’’ for the rotational viscosity with Eqs.~30! and
~17!, he wrote that ‘‘the result of Martsenyuk, Raikher, an
Shliomis@5# is quite a good approximation, but the result
Shliomis @2# deviates up to 17%’’. We note that Felderhof
1-4
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COMMENTS PHYSICAL REVIEW E 64 063501
‘‘forgot’’ to mention in Ref. @18# his own prediction@1# —
see the lower curve in Fig. 1— which deviates up to 40%

IV. DISCUSSION

It is easy to see that Felderhof’s ‘‘local field’’H l in Eq.
~10! is the same as our effective fieldHe determined by Eq.
~24!. Hence one can use the relationship~27! for a linear
analysis of Eq. ~10!. Substituting in ~27! n5je2j
5(m/kBT)(He2H), we find

~He2H! i5
~M2M0! i

3xL8~j!
, ~He!'5

jM'

3xL~j!
. ~31!

Let us substitute these relations in Felderhof’s equation~10!
and put theregH5x/t: with such a choice his equation co
incides with Eq.~9! in the limit j!1 as it should be. Then
for arbitraryj we obtain from Eq.~10!, making use of Eqs
~31! and ~16!,

t'
F5

6L~j!t

j@213L2~j!#
, h r

F5
9

2
hf

L2~j!

213L2~j!
. ~32!

Both the relaxation time and viscosity, in my opinion, a
wrong. Indeed, in a strong fieldj@1 they take the magni
tudest'

F56t/5j and h r
F59hf/10, while it should bet'

52t/j56hV/mH andh r53hf/2. The dependenceh r
F(j)

shown in Fig. 1 strongly differs from two other curves.
Let us give consideration to the question, why do

Felderhof’s equation lead to the anomalous results. We h
shown above how the Debye equation~7! originates from the
potentialF(M ). One can choose, however, as an indep
dent variable the effective field and introduce the poten

F̃(He). Then instead of Eq.~11! we obtain in similar fashion

dHe

dt
52g̃

]F̃

]He
, g̃.0.

Acting further by theL2 method, we arrive at the equatio
@cf. Eq. ~7!#

FIG. 1. Reduced rotational viscosity 2h r(j)/3hf as a function
of j given by the effective field method@5# @Eq. ~30!, solid curve#,
by the phenomenological approach@2# @Eq. ~17!, dotted curve#, and
by Felderhof’s approximation@1# @Eq. ~32!, dash-dotted curve#.
06350
s
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l

d8He

dt
52

1

t
~He2H!, ~33!

where we setg̃215(]2F̃/]He
2)t. With this choice, Eq.~33!

turns into Eq.~7! in the low field limit.
Equations~7! and ~33! satisfy the principal propositions

of the theory oflinear responseaccording to which the time
rateẋ of change of a valuex at each a moment is determine
by the valuex at the same moment:ẋ5 ẋ(x). Then, if x
weakly deviates from its equilibrium valuex0, one can ex-
pand ẋ(x) over x and confine oneself to the linear term:ẋ
52l(x2x0), where l is a positive constant. Thus,t in
Eqs. ~7! and ~33! should be considered as aconstant. This
inference seems important because the methodL1 of irre-
versible thermodynamics does not allow,in principle, to de-
termine the field dependence of kinetic coefficients such
gH in Eq. ~10!. In the rotating reference frameS8 the equa-
tion reads

d8M

dt
52gH~He2H!.

In contrast to Eqs.~7! and ~33!, this equation relates on
value (He) with time rate of change of another one (M ).
Therefore, under the nonlinear magnetization law~24!, the
coefficientgH wittingly cannot be constant but represents
unknown functionof j.

Equation~33! has been written out in a coordinate syste
S8. Reverting to the immobile systemS by the general for-
mula ~8! and eliminatingvp with the aid of Eq.~2!, we
obtain @19#

dHe

dt
5V3He2

1

t
~He2H!2

1

6hf
He3~M3H!.

~34!

This equation determines together with Eq.~24! the magne-
tization M in an implicit form, effective fieldHe being the
parameter. In the case of small departures from equilibriu
Eq. ~34! can be linearized with respect toHe2H and M
2M0. Using relationships~31! and

dM

dt
5

dM

dHe

dHe

dt
53xFL8~j!

d~He! i

dt
1

L~j!

j

d~He!'
dt G

we turn to Eq.~28! with t i5t andt' from Eq. ~14!. Thus,
in linear approximation Eqs.~9! and~34! coincidewith each
other. As a result, both the equations yieldthe samerelation-
ship ~17! for the rotational viscosity of ferrofluids.

Perhaps if Felderhof had usedHe as an independent vari
ablecorrectly, he would have arrived at Eq.~34!.

V. CONCLUSION

Thus, our theory consists of hydrodynamic and Maxw
equations~5!–~6! plus a magnetization equation. There a
three kinds of the latter: Eqs.~9!, ~26!, and ~34!. It is well
established that Eq.~26! derived by the effective field
method from the Fokker-Planck equation yields quite ac
1-5
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COMMENTS PHYSICAL REVIEW E 64 063501
rate results for real ferrofluids. Indeed, a direct numeri
simulation of the magnetic moment Brownian dynamics p
formed by Cebers@20,21# in the mid-1980s has indicate
that Eq.~26! describes perfectly the fluid magnetization in
wide range of parametersj and Vt. The same conclusion
has been made in Ref.@6# by comparing the solution of Eq
~26! with the results of numerical integration of the no
stationary Fokker-Planck equation~20!. At the same time,
the calculations@20,6# have shown that the phenomenolog
cal equation~9! is valid for any field magnitudesj but only
small enough fluid vorticities:Vt<1. Hence Eq.~9! can be
recommended for the description of weakly nonequilibriu
situations, as the equation is far simpler for analysis than
~26!. The latter, however, guarantees the correct quantita
description of magnetization processes even if deviati
from the state of equilibrium are large,Vt@1, that is, when
Eq. ~9! leads to erroneous results. Interestingly, our calcu
tions have shown that the equation for the effective field~34!
p.

.

R

06350
l
r-

q.
e
s

-

is free from such a shortcoming: it is valid even far fro
equilibrium. Therefore, taking into account that Eq.~34! is
nevertheless simpler than Eq.~26!, one should use Eq.~34!
for a wide range of applications.

As for the Felderhof’s equation~10!, it does not stand up
to comparison with our phenomenological equation~9! nor
the microscopically derived Eq.~26!. We have shown that an
incorrectly derived Eq.~10! leads to anomalous results~19!
and~32! ~see also Fig. 1!, which is why we feel it should be
rejected.
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