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Thermodynamics of the asymmetric double sinh-Gordon theory in #1 dimensions
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Classical thermodynamics of the {11)-dimensional asymmetric double sinh-Gordon system is investi-
gated. The pseudo-Schiinger equation resulting from the transfer integral method is solved numerically and
within the semiclassical approximation; the exact results are also given at several temperatures. It is found that
the specific heat exhibits a characteristic hump resembling a similar one observed in the systems with a
symmetric potential; in some structures, extremely narrow and extremely high peak is developed. The inter-
pretation for this behavior is given.
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A lot of effort has been made to study the statistical me- The classical partition functiod, of a one-dimensional
chanics of nonlinear coherent structures in low dimensionsone-component system described by the Hamiltonian
These studies, focused on the phenomena related to the kink
dynamics and nucleation, have found a wide range of appli-
cations, e.g., in conducting polymer physidd and DNA HZEn" Al
[2,3]. Most of theoretical approaches were based on the
structures with a locasymmetricdouble well potential; re- wherel — lattice constantc, — speed of soundA — a
cently it was shown that some progress may be made whegertain constant, in the continuum limit takes the form
the locale* potential is replaced by its quasiexactly solvable
(QES counterpart[4], the double sinh-Gordon potential, 7
also called the double Morg®M) potential. The main rea- “™| Bhey
sons to study the properties of structures withaagmmetric
potential are the following: First, a local asymmetric doubleE,, are the eigenvalues of the Sctiagerlike equation
well potential is an inherent feature not only in hydrogen
bonded chains but, as it has been explained, it is a common
one for the wide class of systems exhibiting the so-called
photoinduced phase transitiofs—9]. Second, while in the
systems with a symmetric potential the coexistence of ex- m* = B2A2c2 w2
tended excitations, phonons and localized excitations, kinks, oo
is well understood and described in terms of the WKB ap- et us consider the asymmetric version of the local DM
proximation, in the case of systems with an asymmetric popotential[10]
tential neither phenomenology of phonons and bell shapes
(localized excitationsnor semiclassical description has been V(¢)=(Bcoshg—n)?+2BCsinhe, B<n, (4
proposed. In this paper we report on the essential progress = ] )
made in the description and understanding of the thermody&hich is composed of two mirror copies of the Morse poten-
namic properties of the classical, one dimensional, nonlinedi@! shifted against each other. This potential belongs to the
systems with a locahsymmetricdouble well potential. We QES class and the exact results for the free enptghl, 13
apply a modified WKB approximation to the QES model May bg given at several temperatures. There are two types of
with the asymmetric DM potential and thus we are able to€Xcitations in such a system:
obtain a consistent description of its thermodynamic proper- (2 extended, phonons, with spectruif~ w§+c5q%;
ties. Thermodynamics is studied in the usual way by using (b) localized bell-shaped excitationshereafter bell
the transfer integral method and solving the Sdingerlike ~ shapey the form and the energy of a resting bell shape are
equation—its ground state eigenvalue and eigenfunction cogiven, respectively, by the equations
respond to the free energy and probability distribution func-
tion (PDP (see Ref[4]), respectively. We find that the spe- E 2 __

e . . . ¢ Bs V(e) Vo, (5
cific heat reveals a characteristic hump; the shape of this 2
hump, its magnitude, and its width depend on the interplay
of the model parameters. Another interesting phenomenon is R B ey
the nearly singular character of the specific heat in some EBS_ZLO 2(V=Vo)de. 6)
systems that appears to be associated with the “avoided level
crossing.” The main difference between the kinks, appearing in the sys-
tems with a symmetric double well potential, and the bell
shapes is that the former are stable excitations whereas the
*Email address: radosza@if.pwr.wroc.pl latter are not: the bell shapes in the systéinare obviously
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FIG. 1. The asymmetric double-Morse potential. FIG. 3. Specific heat foB=0.1, C=—0.07: numerical results

(solid line) and RTCT approximatiofdashed ling
unstable(see[13,14]). Despite that, the bell shapes should
affect the thermodynamic properties of the system and this At low temperatures, where the effective massis large
problem may be discussed within the semiclassical approacnough, the ground state eigenvalue lies below the bottom of
The standard WKB approximation cannot be applied in thathe higher well(see Fig. 1
case, but the alternative semiclassical approximation, called
real trajectories in complex timéRTCT), [15] proved itself
to be a reliable approach in a wide range of potenfiaig.
Energy levelgsee Eq(3)], being the poles of the appropriate
Green's function, are determined as the solutions of therhe corresponding wave function, whose normalized module

1
E0~ E(BACOCUO) 7l$ VO .

equation(see Ref[11]) equals to PDF, is expected to be localized in the lower po-
1 tential well.

cog W, )cog W,) — = I"2sin(W, ) sin(W,) =0, 7) At high temperatures, where the effective mass is small

4 enough, the ground state eigenvalue lies well above the po-

. tential barrier,
where(see Fig. ],

1
" de2mF[E-V(g)], (8) Wi(Eg)=5m,  Eo>Vi.

Wi(E):J
. The PDF is expected to be localized at the center of the local
. ) . . . .
— _ L2m* V(o) —E]|. potential. In the intermediate temperature regime various
I ex;{ Ll devam*[Vie)—E] © types of behavior are revealed, depending on the interplay of
such model parameters as depth and width of the two wells.
In Figs. 2 and 3 we show the plot of the free energy and (1) Small asymmetry. Two Morse potentials, left and
the specific heat for some chosen model parameters. Thight, are slightly shifted up against each otH&}<B. The
RTCT results are compared with the exact numerical resultgvo lowest solutions of Eq(7) are expressed via the left well
and with the analytical ones at the discrete set of tempera(-Eg) and right well CEE) ground states,
tures where they are available. The agreement between the
exact and RTCT plots of the specific heat, a function sensi- E§= E§+AEgEE'6_ 5EO+AE§,
tive to the smallest inaccuraciésf. Ref.[4]), shown in Fig.
3, confirms the reliability of the latter method. In order to 1
investigate the origin of the hump in the specific heat let us AE§=§[(5EO)t V(8E)?+T2(Eg) v1v,],
identify the following temperature regimes.
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In some small temperature range, when the lowest energy
levels are close to the top of the potential barrier
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270 this asymmetric system may resemble a symmetric one, with
o 2 4 6 8 10 the characteristic, kinklike energy levels syikee Fig. 4
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FIG. 2. Free energy as a function of temperatufer B=0.1, AEZ~ Z[(SE)+T(E) \prvs
C=—-0.07: RTCT resul{solid line) and analytical result&ots. 02 [(6B0) =T (Eo) V¥yv2].
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FIG. 4. Specific heat foB=0.1, C=—-0.01 — exact results

(solid line) and RTCT approximatiofdashed ling C=0 (symmet-
ric DM) — dashed-dotted line.

FIG. 6. The avoided level crossing — the ground and first ex-
cited level for large asymmetry.

The numerical analysis confirms this prediction: during the EE—VO< E(L)—Vo,

temperature evolution the POFig. 5), originally localized )

in the deeper right well, gradually leaks to the left well, the true ground level is

achieving the two peak structure characteristic for the sym- E ~ER4AE

metric double well potential. 0 =0 0
(2) Large asymmetry. Growing asymmetry between th

left and right wells can lead to the level crossing phenomena.

In the case of a symmetric potential, the energy levels in 1

separated welld; =0, are degenerated; this degeneration is AEy=— ZFZ(EO)tar[\Nz(EO)]Vl- (10

removed when they are getting clos€r>0. In the WKB

interpretation this is referred to as an effect of tunnelling; therpis split is exponentially small, with the energy of the bell

RTCT method extends this interpretation on the case of aghape in the exponefisee Eq.(6)]; therefore, this regime

asymmetric potentigl11]. may be called a “bell-shape regime.” As the temperature

For the double well potential composed of tadferent ncreases, the left and right ground levels approach
Morse potentials where the lower, right well is much nar-

rower than the upper, left well, the levels in the wells evolve SEq<E§—Vo,
in a different manner. The ground level in the right well
moves up with temperatur@nverse effective maggjuicker ~ which corresponds to the nearly singular behavior of the
than the ground level in the left well. As a result they would split. In fact, the ground level split in the level crossing re-
cross before the true ground level of the system would reacion, SEq<I'(E,), takes the form
the top of potential barriefsee Fig. 8. In the thermody- L
namic context the interchange in the stability of oscillations x_ ——
in the narrow and in the wide well takes place: at low rem- ABo ~ 5[(9B0) =T'(Bo) V¥aral,
peratures oscillations in the lower well correspond to the
lower value of the free energy; when the temperature in@nd this regime may be referred to as a “kink regime.” At
creases then, due to their larger entropy, oscillations in th8igher temperatures, when the left ground level gets lower
shallower but wider well are getting more stable. The transithan the right ground level, the ground state wave function is
tion between these two regimes corresponds to the “avoidetpcalized in the left well; further temperature increase gives
level crossing.” This interpretation is qualitatively confirmed rise to the scenario when the wave function gradually devel-
within the RTCT: when the right ground level is still well ops the central peak. The peculiar character of that sort of
below the left ground level, behavior is reflected in the temperature dependence of the
specific heat(see Fig. J. This function should exhibit an
extremely sharp maximum for wide and/or high, nontrans-
parent barriers. In fact, the systems with a large barrier ap-
pear to consist of two nearly independent phases: the low-
temperature one, corresponding to the deeper and narrower
right well, and the high-temperature one, corresponding to
the shallower well. Transition between these two phases
takes place within the temperature interval where the relation
O0Ey~T'(Ey) holds that might be extremely narrow for
nearly nontransparent barrigigmall values ofl").
¢ (arb. units) In conclusion, let us make a few important remarks. The
thermodynamic properties of the systems with an asymmet-
FIG. 5. PDF forB=0.1, C=—-0.01: t=4.02 @), 6.7 (), ric potential appear to be quite rich and nontrivial. The com-
9.5 (c), 15.0 ). mon feature for all of these systems is a local maximum in
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1.2 cides with our interpretation. The above analysis leads to the
conclusion that the appearance of the sharp maximum in the
specific heat is a manifestation of a “level crossing,” or
phase transformation from the stable to the metastable phase
driven by entropy increase. Hence, this phenomenon should
be the indicative factor for such a phase change in a large
class of photoinduced systems. The thermodynamic scenario
of spin crossover compound46] and other photoinduced
0 2 4 6 8 10 12 14 systems is much wider and richer. In fact, t&ih et al. ob-

¢ (in units of Alw,’/ky) served two peaks in the specific heat that might be inter-
preted as a result of antiferromagnetic interactions. A thor-
ough discussion of that and related estions, a detailed
analysis and identification of different contributions to the
thermodynamic functions in continuous and discrgtd]
the specific heat function, similar to its counterpart in kink- systems will be the subject of our subsequent papers.
bearing systems. In systems with large, particular asymme- In fact, Gulich et al. [16] observed two peaks in the spe-
try, such that the lower well is narrower than the upper, widercific heat that might be naively interpreted as a result of two
well, the specific heat may develop another, extremely higlsubsequent changes in two subsystems. A thorough discus-
and narrow peak. Two regimes, the “bell shape” and “kink” sion of this and related questions, the phenomenological in-
regime, are identified in that case. Let us notice that a similaterpretation, and identification of different contributions to
behavior of the specific heat was observed in photoinducethe thermodynamic functions in continuous atiscrete[14]
phase transitiongl6] and was attributed to the entropy dif- systems with an asymmetric double well will be the subject
ference between the low and high spin phases, which coiref a separate paper.
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FIG. 7. Specific heat for large asymmetry: exact res(dtsid
line) and RTCT approximatiofdashed ling
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