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Thermodynamics of the asymmetric double sinh-Gordon theory in 1¿1 dimensions
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Classical thermodynamics of the (111)-dimensional asymmetric double sinh-Gordon system is investi-
gated. The pseudo-Schro¨dinger equation resulting from the transfer integral method is solved numerically and
within the semiclassical approximation; the exact results are also given at several temperatures. It is found that
the specific heat exhibits a characteristic hump resembling a similar one observed in the systems with a
symmetric potential; in some structures, extremely narrow and extremely high peak is developed. The inter-
pretation for this behavior is given.
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A lot of effort has been made to study the statistical m
chanics of nonlinear coherent structures in low dimensio
These studies, focused on the phenomena related to the
dynamics and nucleation, have found a wide range of ap
cations, e.g., in conducting polymer physics@1# and DNA
@2,3#. Most of theoretical approaches were based on
structures with a localsymmetricdouble well potential; re-
cently it was shown that some progress may be made w
the localw4 potential is replaced by its quasiexactly solvab
~QES! counterpart@4#, the double sinh-Gordon potentia
also called the double Morse~DM! potential. The main rea
sons to study the properties of structures with anasymmetric
potential are the following: First, a local asymmetric doub
well potential is an inherent feature not only in hydrog
bonded chains but, as it has been explained, it is a com
one for the wide class of systems exhibiting the so-ca
photoinduced phase transitions@5–9#. Second, while in the
systems with a symmetric potential the coexistence of
tended excitations, phonons and localized excitations, kin
is well understood and described in terms of the WKB a
proximation, in the case of systems with an asymmetric
tential neither phenomenology of phonons and bell sha
~localized excitations! nor semiclassical description has be
proposed. In this paper we report on the essential prog
made in the description and understanding of the thermo
namic properties of the classical, one dimensional, nonlin
systems with a localasymmetricdouble well potential. We
apply a modified WKB approximation to the QES mod
with the asymmetric DM potential and thus we are able
obtain a consistent description of its thermodynamic prop
ties. Thermodynamics is studied in the usual way by us
the transfer integral method and solving the Schro¨dingerlike
equation–its ground state eigenvalue and eigenfunction
respond to the free energy and probability distribution fu
tion ~PDF! ~see Ref.@4#!, respectively. We find that the spe
cific heat reveals a characteristic hump; the shape of
hump, its magnitude, and its width depend on the interp
of the model parameters. Another interesting phenomeno
the nearly singular character of the specific heat in so
systems that appears to be associated with the ‘‘avoided l
crossing.’’
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The classical partition functionZcl of a one-dimensiona
one-component system described by the Hamiltonian

H5(
n

AlF1

2
ẇn

21
1

2

c0
2

l 2
~wn112wn!21v0

2V~wn!G , ~1!

where l — lattice constant,c0 — speed of sound,A — a
certain constant, in the continuum limit takes the form

Zcl5F 2p l

bhc0
GN

(
n

exp@2bNlAv0
2En#. ~2!

En are the eigenvalues of the Schro¨dingerlike equation

F2
1

2

1

m*

]2

]w2
1V~w!GCn~w!5EnCn~w!, ~3!

m* 5b2A2c0
2v0

2 .

Let us consider the asymmetric version of the local D
potential@10#

V~w!5~Bcoshw2n!212BC sinhw, B,n, ~4!

which is composed of two mirror copies of the Morse pote
tial shifted against each other. This potential belongs to
QES class and the exact results for the free energy@4,11,12#
may be given at several temperatures. There are two type
excitations in such a system:

~a! extended, phonons, with spectrumVq
2'v0

21c0
2q2;

~b! localized bell-shaped excitations~hereafter bell
shapes!, the form and the energy of a resting bell shape
given, respectively, by the equations

1

2
w8BS

2 2V~w!52V0 , ~5!

EBS52E
w0

w1A2~V2V0!dw. ~6!

The main difference between the kinks, appearing in the s
tems with a symmetric double well potential, and the b
shapes is that the former are stable excitations whereas
latter are not: the bell shapes in the system~1! are obviously
©2001 The American Physical Society03-1
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unstable~see@13,14#!. Despite that, the bell shapes shou
affect the thermodynamic properties of the system and
problem may be discussed within the semiclassical appro
The standard WKB approximation cannot be applied in t
case, but the alternative semiclassical approximation, ca
real trajectories in complex time~RTCT!, @15# proved itself
to be a reliable approach in a wide range of potentials@11#.
Energy levels@see Eq.~3!#, being the poles of the appropria
Green’s function, are determined as the solutions of
equation~see Ref.@11#!

cos~W1!cos~W2!2
1

4
G2sin~W1!sin~W2!50, ~7!

where~see Fig. 1!,

Wi~E!5E
bi 21

ai
dwA2m* @E2V~w!#, ~8!

G~E!5expF2E
a1

b1
dwA2m* @V~w!2E#G . ~9!

In Figs. 2 and 3 we show the plot of the free energy a
the specific heat for some chosen model parameters.
RTCT results are compared with the exact numerical res
and with the analytical ones at the discrete set of temp
tures where they are available. The agreement between
exact and RTCT plots of the specific heat, a function se
tive to the smallest inaccuracies~cf. Ref. @4#!, shown in Fig.
3, confirms the reliability of the latter method. In order
investigate the origin of the hump in the specific heat let
identify the following temperature regimes.

FIG. 1. The asymmetric double-Morse potential.

FIG. 2. Free energy as a function of temperaturet for B50.1,
C520.07: RTCT result~solid line! and analytical results~dots!.
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At low temperatures, where the effective massm* is large
enough, the ground state eigenvalue lies below the bottom
the higher well~see Fig. 1!

E0'
1

2
~bAc0v0!21<V0 .

The corresponding wave function, whose normalized mod
equals to PDF, is expected to be localized in the lower
tential well.

At high temperatures, where the effective mass is sm
enough, the ground state eigenvalue lies well above the
tential barrier,

W1~E0!5
1

2
p, E0.V1 .

The PDF is expected to be localized at the center of the lo
potential. In the intermediate temperature regime vario
types of behavior are revealed, depending on the interpla
such model parameters as depth and width of the two we

~1! Small asymmetry. Two Morse potentials, left an
right, are slightly shifted up against each other,uCu!B. The
two lowest solutions of Eq.~7! are expressed via the left we
(E0

L) and right well (E0
R) ground states,

E0
65E0

R1DE0
6[E0

L2dE01DE0
6 ,

DE0
65

1

2
@~dE0!6A~dE0!21G2~E0!n1n2#,

n1(2)5F ]

]E
W1(2)~E0

L(R)!G21

.

In some small temperature range, when the lowest ene
levels are close to the top of the potential barrier

dE05E0
L2E0

R!G~E0!,

this asymmetric system may resemble a symmetric one, w
the characteristic, kinklike energy levels split~see Fig. 4!

DE0
6'

1

2
@~dE0!6G~E0!An1n2#.

FIG. 3. Specific heat forB50.1, C520.07: numerical results
~solid line! and RTCT approximation~dashed line!.
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The numerical analysis confirms this prediction: during
temperature evolution the PDF~Fig. 5!, originally localized
in the deeper right well, gradually leaks to the left we
achieving the two peak structure characteristic for the sy
metric double well potential.

~2! Large asymmetry. Growing asymmetry between
left and right wells can lead to the level crossing phenome
In the case of a symmetric potential, the energy levels
separated wells,G50, are degenerated; this degeneration
removed when they are getting closer,G.0. In the WKB
interpretation this is referred to as an effect of tunnelling;
RTCT method extends this interpretation on the case o
asymmetric potential@11#.

For the double well potential composed of twodifferent
Morse potentials where the lower, right well is much n
rower than the upper, left well, the levels in the wells evo
in a different manner. The ground level in the right we
moves up with temperature~inverse effective mass! quicker
than the ground level in the left well. As a result they wou
cross before the true ground level of the system would re
the top of potential barrier~see Fig. 6!. In the thermody-
namic context the interchange in the stability of oscillatio
in the narrow and in the wide well takes place: at low re
peratures oscillations in the lower well correspond to
lower value of the free energy; when the temperature
creases then, due to their larger entropy, oscillations in
shallower but wider well are getting more stable. The tran
tion between these two regimes corresponds to the ‘‘avoi
level crossing.’’ This interpretation is qualitatively confirme
within the RTCT: when the right ground level is still we
below the left ground level,

FIG. 4. Specific heat forB50.1, C520.01 — exact results
~solid line! and RTCT approximation~dashed line!; C50 ~symmet-
ric DM! — dashed-dotted line.

FIG. 5. PDF for B50.1, C520.01: t54.02 (a), 6.7 (b),
9.5 (c), 15.0 (d).
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E0
R2V0!E0

L2V0 ,

the true ground level is

E0'E0
R1DE0 ,

where

DE052
1

4
G2~E0!tan@W2~E0!#n1 . ~10!

This split is exponentially small, with the energy of the be
shape in the exponent@see Eq.~6!#; therefore, this regime
may be called a ‘‘bell-shape regime.’’ As the temperatu
increases, the left and right ground levels approach

dE0!E0
L2V0 ,

which corresponds to the nearly singular behavior of
split. In fact, the ground level split in the level crossing r
gion, dE0!G(E0), takes the form

DE0
6'

1

2
@~dE0!6G~E0!An1n2#,

and this regime may be referred to as a ‘‘kink regime.’’ A
higher temperatures, when the left ground level gets low
than the right ground level, the ground state wave function
localized in the left well; further temperature increase giv
rise to the scenario when the wave function gradually dev
ops the central peak. The peculiar character of that sor
behavior is reflected in the temperature dependence of
specific heat~see Fig. 7!. This function should exhibit an
extremely sharp maximum for wide and/or high, nontran
parent barriers. In fact, the systems with a large barrier
pear to consist of two nearly independent phases: the l
temperature one, corresponding to the deeper and narro
right well, and the high-temperature one, corresponding
the shallower well. Transition between these two pha
takes place within the temperature interval where the rela
dE0'G(E0) holds that might be extremely narrow fo
nearly nontransparent barriers~small values ofG).

In conclusion, let us make a few important remarks. T
thermodynamic properties of the systems with an asymm
ric potential appear to be quite rich and nontrivial. The co
mon feature for all of these systems is a local maximum

FIG. 6. The avoided level crossing — the ground and first
cited level for large asymmetry.
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the specific heat function, similar to its counterpart in kin
bearing systems. In systems with large, particular asym
try, such that the lower well is narrower than the upper, wi
well, the specific heat may develop another, extremely h
and narrow peak. Two regimes, the ‘‘bell shape’’ and ‘‘kink
regime, are identified in that case. Let us notice that a sim
behavior of the specific heat was observed in photoindu
phase transitions@16# and was attributed to the entropy di
ference between the low and high spin phases, which c

FIG. 7. Specific heat for large asymmetry: exact results~solid
line! and RTCT approximation~dashed line!.
, J

n
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cides with our interpretation. The above analysis leads to
conclusion that the appearance of the sharp maximum in
specific heat is a manifestation of a ‘‘level crossing,’’
phase transformation from the stable to the metastable p
driven by entropy increase. Hence, this phenomenon sh
be the indicative factor for such a phase change in a la
class of photoinduced systems. The thermodynamic scen
of spin crossover compounds@16# and other photoinduced
systems is much wider and richer. In fact, Gu¨tlich et al. ob-
served two peaks in the specific heat that might be in
preted as a result of antiferromagnetic interactions. A th
ough discussion of that and related estions, a deta
analysis and identification of different contributions to t
thermodynamic functions in continuous and discrete@14#
systems will be the subject of our subsequent papers.

In fact, Gütlich et al. @16# observed two peaks in the spe
cific heat that might be naively interpreted as a result of t
subsequent changes in two subsystems. A thorough dis
sion of this and related questions, the phenomenologica
terpretation, and identification of different contributions
the thermodynamic functions in continuous anddiscrete@14#
systems with an asymmetric double well will be the subj
of a separate paper.
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