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Coupling of thermal and mass diffusion in regular binary thermal lattice gases
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We have constructed a regular binary thermal lattice gas model in which the thermal diffusion and mass
diffusion are coupled and form two nonpropagating diffusive modes. The power spectrum is shown to be
similar in structure as for the one in real fluids, in which the central peak becomes a combination of coupled
entropy and concentration contributions. Our theoretical findings for the power spectra are confirmed by
computer simulations performed on this model.
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The power spectrum of light scattered by a binary solu{10]. In other models the particles live on different lattices
tion is more complicated than that of a single componenf11,12. However, these models are athermal and do not
fluid. The central peak contains combined effects of entropyghow the coupling phenomena we are interested in. A two
and concentration fluctuatior{4,2]. The cross effects are species thermal model by using a passive label, is also not
well known in nonequilibrium thermodynamics as the Du-Suitable, because mass and heat transport would completely
four effect and the Soret effect, and are caused by the cowecouple[13].
pling between heat flow and diffusion. For example, heat Here we introduce a thermal binary lattice gas model ca-
may be transported by conduction but also by diffusion ofpable of capturing the essence of a real mixture with respect
the two components. In the simplified two-dimensionalto coupling of entropy and concentration fluctuations. This
model presented here this coupling phenomena can be angodel allows us to calculate the coupling quantitatively and
lyzed in detail. separate the different contributions, which in the continuous

Lattice gas automatd GA) are plagued by many defects. case in general is only possible in the low-density limit. The
Although some of these defects can be removed, the modelg/0 species of particles live on separate two-dimensional
are, in general, not suitable for modeling realistic fluids be-hexagonal lattices and are labeled red and blue. Indepen-
cause they do not exhibit a fully realistic thermodynamicaldently they would behave as normal GBL models, but we
behavior. They are, however, useful tools for understandingllow the particles to interact during the collision phase, i.e.,
more fundamental problems in thermodynamics related ténomentum and/or energy can be transferred from one to the
discretization and testing concepts in statistical mechanicgther lattice. The number of red and blue particles, however,
[3]. In LGA, the positions and velocities of pointlike par- iS constant in every collision.
ticles are discretized onto a lattif¢]. The dynamics consist ~ The state of a node can be specified by a set of Boolean
of a cyclic process of propagating particles according to theieccupation numbers;,,, denoting the presence or absence
velocity to a neighboring node followed by local collisions of a particle of typgu={r,b} in velocity channet;, where
that typically conserve mass and momentum. i is a label running over all 19 velocities. Due to the Boolean

In order to recover the macroscopically isotropic Navier-nature of LGA, the ensemble average of the occupation num-
Stokes equations the lattice in two-dimensions is usuallyersf;, in equilibrium, is described by a Fermi-Dirac distri-
chosen to be hexagonal. Apart from problems related to thidyution
early LGA were also plagued by unwanted spurious invari-

ants[5-7]. A satisfactory extension to include thermal prop- 1
erties in LGA was made by Grosfils, Boon, and Lallemand fi ,=(ni)= 5 , 1)
(GBL), who introduced a multiple speed model, defined on a 1+exfd —a,+Bc/2—y-c]

two-dimensional hexagonal latti¢8]. The model uses a ve-
locity set consisting of a single rest particle and three ringswheree, , ay,, 8, andy are Lagrange multipliers. Herg, is
each containing six directions, with velocities of magnitudethe inverse temperature, and a4, fulfill a chemical poten-
1, 3, and 2. tial role, andy is a parameter conjugate to the flow velocity.
Generalizations of LGA to mixtures have been used toFor simplicity, we will work in the overall zero momentum
study interfaces and phase transitidi®d. Some of these case by settingy=0.
models use a passive label to distinguish the different species A collision outcome is chosen with equal probability
amongst all members of aguivalence class.e., a group of
states having the same red mass, blue mass, total momentum,
*Electronic address: rblaak@pa.uc3m.es and total energy. In a@egular binary mixtureat most two
"Electronic address: dubbeldam@its.chem.uva.nl particles, each of different type, can be in the same velocity
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state[14]. This differs from thecolor mixturewhere the par- 2.0
ticles of the original single specie model are given a color to
distinguish between them and was analyzed in the case of the
GBL color mixture (CGBL) [13]. In that case the collision
operator could be egnarray into two separated steps: a GBL
collision and an independent redistribution of the colors,
which made the simulations a relative simple extension of
normal GBL simulations, even though the number of differ-
ent states in the CGBL model was®3 Here we have a
“true” 38-bit model leading to 28 states on which the col-
lision operator has to act. Clearly a naive lookup-table strat-
egy in order to simulate this system is only feasible if the
table is constructed partially and stored temporarily during 0.05— 3 10 15 0
the simulations, due to the excessive memory requirements P

for storing the complete table.

Regular binary mixtureS, however, do allow for a conve- FIG. 1. The diffusive transport values as a function of the den-
nient solution, which is less efficient than storing the com-Sity at reduced temperatur¢=0.1 and fraction of red particles
plete collision table, but has still a relative good performancé’rzo-g-

(about a factor 2—5 slower than CGBIRather than storing

a collision table based on the states, we make one based #tesek-dependent eigenvectors and eigenvalues by making a
the different classes. This allows us to generate a set of outtdylor expansion irk. The resulting eigenvalues to second
going classes for the two species and via a GBL-like procesgrder ink are given by

an outgoing state. If this is combined with the 48 symmetry
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operationgsix rotations, two reflections, red/blue symmetry, 2. (k)= 1ck—Tk?, )
and particle/hole symmetrywe get a working algorithm that 2, (K) = — vk? )
can be used on a computer with 256 MB of mem[i§]. + Ve

The theoretical framework for thermal lattice gases is well 7, (K)=—s2 k2 ®)

established16], and is here extended to binary mixtures. It +

is possible to solve the many-body dynamics of LGA byIt is with these modes that the binary-mixture responds to
using the Boltzmann molecular chaos assumption. Althoug eviations from thermal equilibrium. The first two eigen-
one would expect deviations for higher densities, it turns ou odes describe sound propagatiﬁg. opposite directions
that these deviations are very small, in fact for many pur-

oses even within a few percent accuracy. Therefore, pr parallel tok) with I' the sound damping coefficient ad
P . Tew p Y. » Pl8he adiabatic sound speed. The third eigenvalue describes a
vided the fluctuations in the average occupation numbers ar

small. a Tavlor expansion of the collision term in the nei h_sqwear mode withv the shear viscosity coefficient. The last
borhood of the cquilibrium distribution is justified. yielding a MO eigenvalues represent purely difiusive, nonpropagating
X : - €9 nisJ » yielding processes, but are in general not directly related to a familiar
linearized collision operataf). Then, in first approximation

) . ._transport coefficient. Rather they always appear in combina-
the be*‘a"_'of of 'ghe system can be obtained by analyzmgon with each other and can be expressed in other transport
these deviations in terms of eigenmodes.

In the analysis of the behavior of fluctuations in LGA properties by
mixtures it is convenient to introduce the colored scalar in-

1 1
product[13,17] S§=§(X+D)i§V4Q2+(X—D)2, (7)

wherey is the generalized thermal diffusivit§? a property
related to the mass diffusion, ari@ can be considered as a
measure of the correlation between the two. Another inter-
esting relation can be obtained by introducing the ratio of the
specific heatsy

(A|B)=2 A(Ci,)B(C )i, )
s

wherex;,=f;,(1—f;,) is the variance in the average occu-
pation number. For reasons of symmeteyis included in
definition of the right vectors, i.4B);,= «;,B(G ). 1

Following the method of Rabois and Leenef18] we F=-[v+(y—1)x]. (8
need to find thé&k-dependent eigenfunctions and eigenvalues 2

of the single-time step Boltzmann propagator In Fig. 1 the diffusive transport properties are shown at

ke o fixed reduced temperatuse= exp(—3/3). The modes?. con-
€ (1+Q)|g(k)) =€ [y(K)). ©) verge for low densities to the thermal diffusivity and mass
diffusion, due to the decoupling of the fluctuations in entropy
Within this formulation the hydrodynamic modes are charac-and energy. This behavior resembles the situation for binary
terized by the fact that the eigenvalugsshould go to zero  solutions where a formula similar to E() exists[2], with
in the limit of small wave vectors. Therefore, we can derivethe same decoupling in the very dilute limit. In our model
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this means that the ratiQ/(x— D) vanishes. The value of ' ' ' ' " T

Q, however, will in general remain small but finite due to the 300_ N\ |-__ E;’;ﬂf;‘flaggczek ]
divergencies of the transport coefficients in the low-density 250l S0\ N RO s contributions ||
limit of LGA. i B O Il L

The decoupling is also observed in the limit of a single 2200 i\l Simulation
specie, i.e., the fraction of blue particlBg goes to zero. In 21
this limit the model reduces to a normal GBL model, albeit 215
that the diffusion related propert® will remain finite. For "’100'
reasons of symmetrg% also converge to¢ and D in the I
limit of equal red and blue density. In fact this special limit 50
can be analyzed completely in a similar way as done for of
CGBL [13]. Finally decoupling appears in two other cases N T — e — B pas 5010
due to the duality of the model under interchanging particles ®
and holes, these are the high-density limit and the limit in .
which one of the sublattices is almost completely filled. FIG. 2. The central part of the spectrum in the Boltzmann ap-

The decoupling arises from an effective equipartition inproximation, the Landau-Placzek approximation, fiecontribu-
the model making the ratio of the average occupation numt-logz age_sgg‘g’”k Sfaa”;te%l;h:_hsyswm paragete(ﬁaml, P
bersf;, /f,, the same constant for each velocity charingls ~ — 6> Pr=0.05,k=4x2m/512. The wave vectdc and frequency
can be seen in Fig. 1 there seem to be also intermediaf &€ given in reciprocal lattice and time units, respectively.

values at which decoupling appears. Although indeedsthe Figure 2 illustrates the composition of the central peak.

converge toy andD this is not due to decoupling via equi- e gimylation results overlap perfectly with the Boltzmann
partition b.Ut due to the ce_mcellauon Of. terms. This Property,ng |andau-Placzek approximations. The contributions of
could obylously be usgd in the {malyys, but the location otq yiffsive modes to the central peak are indicated sepa-
these points depends in a nontrivial way on the chosen SY$ately and for comparison a least square fit based or{®q.

tem parameters. to the whole spectrum, including the Brillouin peaks outside

The Boltzmapn approximation enables us to C?'C“'ate th‘ﬁwe interval shown, is made based on approximating the cen-
modes up to fairly large wave vectors, even within the geNg,q) peak by a single Lorentz

eralized hydrodynamic regime. In the hydrodynamical re- As can be seen from the Landau-Placzek expres@pn

grggyg;;?gll vr;%:jee;/eg:gr%v:??(Ia;;ergl::élcflreo&r; ttf;]ee hlgi-neti one of these contributions will vanish in the limits whefe
modes that, due to their exponential decay, can be neglecte((:fm/erge toy andD and the central peak reduces to

In combination with a Taylor expansion, this allows one to SOk, ) _7_1 2k

derive a Landau-Placzek approximation of the spectral den- = , (10)
sity S(k,w), S(k) Y w?+(xk?)?
oL2 even though the other transport coefficient remains finite. As
Stk,w) =3 y—1 1+ x—D s.k mentioned before, this occurs at a limited set of locations,
S(k) T Y 789 —5° | w?+(s2k?)? such as the low/high-density limit, single specie limits, and
the limit of equal red and blue density. In addition to these
1 I'k? 1 general limits it is also found in the low/high-temperature
+ Z Y (o k)2t (FK)2 + ;[FJF(Y— 1)x] regions close to densities where all rings of particles with the
N @=bs same absolute velocity are completely filled or em[i$].
K c.k+ o This reduction of the central peak to a single Lorentz in the
X— > > , (90  low-density limit is also found in the very dilute limit of
Cs T (wrck)®+(I'k?)? binary solutions. But contrary to what is found here, it is
usually the thermal diffusivity that disappeds2].
whereS(K) is the static structure factor. If s are sufficiently different, one can separate the two

The spectrum contains an unshifted central peak and isontributions in the spectrum outside the limits mentioned
formed by two Lorentzians due to the nonpropagating proabove(Fig. 2). This does not automatically imply that one
cesses characterized BY . The shear mode does not con- could obtain the transport values of interest from the experi-
tribute to the spectrum and the two propagating modes leathental spectrum only, because they can still differ signifi-
to the presence of the two frequency-shifted Brillouin lines.cantly from y andD.

The last two terms in Eq9) have a contribution orders of In the low-density limit we can identifyD with the mass
magnitude smaller than the amplitude of the Lorentzians andiffusion of the GBL model. In the limit of a single specie
induce a slight pulling of the peaks towards the central pealhis is no longer true if one goes to higher densities, even
[2]. The symmetry of the different contributions is such thatthough all other properties converge to their GBL values.
the ratio of the integrated contributions of the central peakThe origin of this problem is found in the possibility to have
and the Brillouin components is constant and given bymore than one particle with the same velocity in this model.
y—1. Continuous theory suggests thHatis not the correct gener-
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80 - | - - | But in the thermal case this signal suffers from the same
— Eq.(13) problem. In both cases one could, in principle, extract the
------- Eq. (12) propagating part, but it is more natural to reformulate the
601 —-—= Eq. (A2¥%] + density of interest to
==
%Q |diﬁ>:|L>_|i>, (13
341 . (pIR)  (pIB)
=
g with p=c?/2 being the energy per particle. This problem
“ 0k i originates from the lack of equipartition, but in general the
differences between the various choices will remain small
[15].
Py , , el In conclusion, we presented a thermal binary mixture,
-04 02 0 0.2 0.4 which exhibits spontaneous thermal and concentration fluc-

o tuations. The regular mixture model is much more involved
FIG. 3. A diffusive spectrum based on the different possiblethan the color mixture, but it is closer to the dynamics of real

choices for the density difference. The curve labeled by an asterisQinary mixtures, as it is able to capture the coupling phenom-

is corrected by subtracting the propagating part. The system paran & observed in binary Sqlutions. The COUP"”Q be_tween en-
eters are6=0.05, p=10.0, p, /p=0.15, k,=20x 2m/512. The ©r9Y transport and diffusion results in two diffusive non-
. ) Yy r . ) X .

wave vectork and frequencyw are given in reciprocal lattice and propagating modes and in a more complicated struc'aure f?f
time units, respectively. the power spectrum. In general, however, these two “true

transport coefficients do not seem to correspond with a con-
ventional transport coefficient, but always appear in combi-
nation with each other.

The LGA spectrum is similar in structure as the one for
the continuous case. In general, it is impossible to separate
the entropy and concentration contributions, and the central
f)eak can not be described by a single Lorentzian. However,
in several limits, namely, the low/high-density limit, the
single specie limit, and the equal red/blue limit, the true
modess’. converge to generalized thermal diffusivigyand
a mass diffusion likéD. In other cases the different transport
coefficients can be determined by using the theoretical
framework, that provides an accurate description as is dem-
pnstrated by the comparison of the Landau-Placzek expres-

alization of the diffusior{2]. This is consistent with the way
in which this quantity arises in the present mofEs)|.

The proper generalization of the diffusion is not com-
pletely trivial. There is some ambiguity in the choice one
needs to make. In a continuous fluid one would consider th
decay of a signal of the type

R) |B
|diff)=|P—r>—|P—z,

(11)
where|R), ,= &, and|B); ,= &, . A spectrum based on this
normalized density difference, however, leads to Brillouin
peaks as is shown in Fig. 3. This was already indicated ea

lier in an athermal binary mixturgl4], where it was pro-
posed to use

R} [B)

sion with simulation results.
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