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Correlation functions for diffusion-limited annihilation, A+A—0
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The full hierarchy of multiple-point correlation functions for diffusion-limited annihilatidni A—0, is
obtained analytically and explicitly, following the method of intervals. In the long-time asymptotic limit, the
correlation functions of annihilation are identical to those of coalescehtéd— A, despite differences be-
tween the two models in other statistical measures, such as the interparticle distribution function.
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The kinetics of nonequilibrium processes, in particular lim G(x,y;t)=1, (2a)
diffusion-limited reactions, have attracted much recent inter- xTy ory|x

est[1-8|. Because of the lack of a comprehensive approach

for the study of such systems, models that yield to an exacand G must also obey the conditions required from a prob-
analysis are of prime importance. In this respect, none havability density function. If the initial distribution of particles
been studied more than diffusion-limited annihilatioh, is random, therG(x,y;0)= 3+ sexd —2co(y—X)], wherec,
+A—0 [9-28, and coalescence A+A—A [9,13— is their initial density. In this case we have the additional
15,17,21,23,26,28—-33 Known exact results include the boundary condition

time dependence of the particle concentration and the two-

point correlation functionfor finding two particles at two 1

different points, simultaneouslylt has also been shown that lim = Gxy)=5. (2b)

the full hierarchy ofn-point correlation functions for the two X ory—ee

processes is identicf21,23,34,3% but explicit expressions ) ) )

for n>3 are unavailable. From G(x,y;t) one can derive the particle concentration
Here we attack the problem of correlation functions for

annihilation, using the method of parity intervdlsr even/ d

odd interval$ [20,26,27,3% We recover the identity relation p(x;t)=— @G(X’y;my:x- ©)

of the n-point correlation functions for annihilation and coa-

lescence, and we derivexplicit expressions, valid in the Let py(X1.Xo, - . . X,:t) be then-point density correla-

long time asymptotic limit, for alh. tion function for finding particles at each of the locations
Consider the annihilation model, defined on the line . x, ... x, at timet. The particle concentratiom(x,t)

<x<. ParticlesA are represented by points which perform =, (x t), represents merely the first term in the hierarchy
unbiased diffusion with a diffusion constabBt When two {potn=12,... .

particles meet they annihilate instantly. Since the reaction’ The correlation functions may be obtained from a gener-
step is infinitely fast, the system models digusion-limited  gjization of the method of parity intervals in the following

annihilation process+A—0. way. Let Hn(X1,Y1,X2,Y2, - - . Xn,Yn;t) be the joint prob-

An exact treatment of the problem is possible through th%bilit ; ;
o y that the interva[ x;,y;] contains an even number of
method of parity interval$20,26,27,3G The key parameter particles| x,,y,] contains an odd number, etodd intervals

is G(x,y;t)—the probability that the intervdl,y] contains 7o yenoted by an overbaat timet. The intervals are non-

an even number of particles at tirhg37]. Particles near the overlapping, and ordered:x;<y;<---<x,<y Let

edges of an interval may diffuse into or out of the intervaI,F (X1\Y1 xz,yz Xo,Y 't). éenolte the prnobatn)i.lity that
n L) 1 i) L A 1 n:»

affecting the probabilityG. (On the other hand, reactions k . on T
inside the interval cannot affect its parjtyVith this obser- g:/e;r;to?flwlumber of particles contained W_y[x;.yi] is

vation in mind, one derives a rate equation for the probability
G(x,y;t) [26]:

F1(X1,y1;, 1) =H1(X1,y1;0) =G(X1,y1:1), (4a)

2 52 Fa(X1,Y1,X2,Y2:1) =Ha(Xq1,Y1,X2,Y2;1)

d
—G(x,y;t)=D R
Jt +Hp(Xy,Y1,X0,Y2it),  (4b)

G(x,y;t). oY)

—_ + —_
ax? gy

and, in generak, is expressible as a sum of 2t H,, func-
The annihilation reaction imposes the boundary condition tions, corresponding to the different combinations of interval
parities that contribute to a total number of particles that is
even. Then, in view of Eq3), the n-point correlation func-
*Email address: benavraham@clarkson.edu tion is given by
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PAM(Xq, . Xnst) J N _

(-y"

T o1 gy, --ay, with the boundary conditions
XEa(X1Y1s - Xn Y iDly,oxg, oy ) lim  E(xy;t)=1, (9a)
xTy ory|x

The H,, satisfy a 21-dimensional diffusion equation, analo- .
gous to Eq(1), and for similar reasons. However, the bound- lim  E(xy;t)=0. (9b)
ary conditions of this equation are complicated by the fol- X e ory—e

lowing fact. Fory;—x;;, a particle moving from théth
interval to the (+ 1)th interval, or vice versa, would flip the
parity of the two adjacent intervals. On the other haRgl,
satisfies the same diffusion equationtas,

Note the difference between the boundary conditi¢2ig
and(9b). Likewise, E,, satisfies the same equation as Hj,

J
EEn(leyl’ s aniyn;t)

14
EFH(Xl!ylv <Xy vynit) (92 (92 a2 2
=D| —+—+---+—+—|Eq, (10
2 32 PP oxi  dyi g ayal "
=D| —S+—=+ -+ —+—|Fn, (6)
Xy dyy IXp Yy with boundary conditions analogous to E¢jga) and(7b),
but the boundary conditions are simplE; contains also the im  En(Xy,Y1, -« XnoYnit)

case where the parity of the intervaland (+1) is flipped,  x1y; ory;|x;
so it is not affected by a particle hopping between the two
intervals. If intervali is shrunk to zero, Eq(2a) yields the =B, (X0, Y1y e K Y e X Ynit), (118
boundary condition
lim En(X1,Y1s -+ - XnyYnit)

lim Fn(xlvyli <+ Xn,Yn ;t) YiTXjy1 O Xi411Y;
XjTyj ory;ilx;

=E,_1(X{,Y1, ... Yi Xit1, oo Xn,Ynit), 11b
E (X Yas e K Xy, (78 n-1(X1,Y1 Yi Xit1 n'Ynit) (11b

but
where we use the notation that crossed out argumengs,
%;) have been removed. If the endpoints of two adjacent lim E(X1,V1 XY =0 (110
intervals are brought together, the intervals merge, resulting X1 —% OF Yo

in the boundary condition
instead of Eq(7c). Then-point correlation function for coa-
lim Frn(X1,Y1s - X Ynit) lescence is
YilXi+1 Or Xi1lYi

pﬁoal(xll < Xp ,t)
:Fn—l(xliyll s !Yi vki+l! s ,Xnayn;t)- (7b) "
=(-1)"—m
Finally, for a random initial distribution of particles, we have =1 Y1- - dYn
XEn(Xluyll <+ XnyYn ;t)lyl:x1 ..... Yn=Xp" (12)

1
li F . t)=—. 7
L R R R LI (79 Equations(1), (2), (6), (7), and (8)—(11) imply that the

solutions forF,, andE,, are simply related,

TheF, are tied together in a hierarchical fashion through the
boundary conditiong7a) and (7b): one must knowF,,_; in 1 1
order to computé,, . At the root of the hierarchyf; =G is ~ Fn(X1:Y1, - XnYni D=5+ 5En(X1,Y1, -+ Xn,Ynib),
obtained from Eqs(1) and(2). (13

The problem posed by Eqfl), (2), (6), (7) is similar to
that of diffusion-limited coalescencA+A—A [32]. Inthat  provided that the same relation holds also for the
case one defineB,(Xy,Y1, - . . X,,Yn:t) as the joint prob- initial conditions. Suppose that the initial distribution
ability of finding the intervalgdx;,y;],i=1,2,...n, empty of particles is random, with initial concentration
at timet. E;(x,y;t)=E(x,y;t) satisfies the same equation ascy"" for annihilation and ¢ for coalescence.
Eq. (1), Then En(Xq, - .. Yn;0)=exgd —c®¥(y,— X+ - - - +y,
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—Xp)], while Fr(xq, ... yq;0)=3+3exd—2c5"(y; —x,
o YaFa(Xa, . Yni0) =312 + 312 exd— 265" (ys E(xy;t)=erfo
—Xq+ - +y,—Xn)]. Thus, the relation13) is satisfied if

anni__ 1 ~coal

Y ) (19
\8Dt /"

Co =32Cp - Then, the long-time asymptotie-point correlation function
Moreover, Eqs(5) and(12) imply that in this case is
| " Pa(X1Y1, -+ X Ynit)
pﬁnnl(xli - !Xn;t): E pgoal(xl! - ,Xn;t) (14) " l, 11 T n
(2n—1)!!
_ n .
for all n. In other wordsthe npoint correlation functions for t:;( p) ,;1 7pC(21p.Z2p1)

annihilation and coalescence are identicak already found

by others[21,23,34,3% XC(Z3p,24p:t) - C(Zon-1p.Zonp:t), (208
We now produce explicit expressions for thgpoint cor-

relation functions in the long-time asymptotic limit. Recall where

first the solution forE,,. Forn=2 the solution i§38|

1/J87Dt annihilation

Ea(X1,Y1.X2,Y2:t) =E(X1, Y1 ) E(Xp,Y25t) P=pD=) ) 5Bt coalescence, 200
—E(xy,X2;)E(y1,Y2;t)
+E(Y2 DE(Y; Xit), (19 (b (20,2,)= 04 %)
erfo( i), (21,22) = (X, X))
whereE(x,y;t) is the solution of Eqs(8) and(9). Generally, 2 _
for n=2 [32], C(21,25:1) =1 _ez fik, (21,25) = (X. Y1)
e~ bik, (21,22) = (Y, X))
(2n— 1)1 ,
En(X1.Y1, - XnYni)= 2 0pE(Z1p.22p;1) ( —Vméwe i, (21,22)=(Vioy),
p=1 (200
XE(Z3p,2ap;t)- - and we used the notatiafi = (x;— X,)//8Dt. For example,

XE(Zn-1p:Zanpit),  (16) for n=2,3, we get the long-time asymptotic expressions:

wherez, ,,2;,, . . . Zon,p IS @anorderedpermutatiorp of the p2(Xq,Xo;t) iy )
variablesx;,y1, . .. Xn,Yn, such that 7 =1-e 2t néye 2erfd &),
(21a
21 p<Zpp,23p<Zap; - - - Zon-1p<Zon,p>
pa(Xy,Xz,X3;t) o2 92 o2
DR Per?o | e 25— g 25 g— 2
and Zl,p<23,p< Zsp - <Z2nfl,p- (17) p3 l1-e “f21—e R2—e “f31
There are exactly (2—1)!!=1X3X..-X(2n—1) such 26t
permutationso, is + 1 for even permutationgpermutations ) ,
that require an even number of exchanges between pairs of +\méy(e f—e G Snerfo &,y
variable$, or — 1 for odd permutations. Alternatively, thg, ) y
may be obtained through the recursion relation: + \/;ggz(e*fsz— e~ 2 “an)erfo( &3y)
2 2 2
n +\még(e - e @ Serf ay).
En(X1,Y1, - -+ Xn Ynil)= +j§=31 E(X1,Yj i 0En 1 (21
XKy, Y1y - XYy oo XnsYnit) In summary, we have confirmed the fact that the infinite

hierarchies ofn-point correlation functions for coalescence

. and annihilation are identical, using the method of parity

_]Zz E(x1,X B2 intervals. The simplicity of our approach allowed us to ob-
tain explicit expressions for the long-time asymptotic limit,
X (X1, Y1s - XYy o XnuYnst), (18  given in Egs.(20). We note that our results are not restricted

to long times. Indeed, for the case of a random distribution of

thenp, may be computed through the relatid®) or (5) and  particles, such that the initial concentration for annihilation is

(13). half that of coalescence, the identity holds at all times. In this
Consider the long-time asymptotic limit, where case, explicit expressions for the correlation functioradid
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at all timeg can be obtained by using the full solution of Eqs.  Remarkably, the particle distributions in coalescence and

(8) and(9), annihilation differ, despite the correspondence ofrifmoint
correlation functions. The probability density functipix)
y—X 1 2 for the distancex between two neighboring particles illus-
E(x,y;t)=erfg — - e?P%t o 2
J8Dt/ 2 trates this difference. For large,p(x)~e for coales-
cence, whilgp(x) ~e™* for annihilation. Evidently, the com-
y—x+4Dcyt plete hierarchy ofn-point correlation functions is not
x[ecO(y—X) 1_erf(W 1 sufficient to determine an infinite-particle system uniquely,
andp(x) cannot be computed from a knowledge of ihe
o y—x—4Dcot H A'study_ of p(x) and{p,} in finite systems might illuminate
—e U 1+erfl ——— this curious phenomenon.
V8Dt
(22) . : .
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