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Cavity approach to noisy learning in nonlinear perceptrons
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We analyze the learning of noisy teacher-generated examples by nonlinear and differentiable student per-
ceptrons using the cavity method. The generic activation of an example is a function of the cavity activation of
the example, which is its activation in the perceptron that learns without the example. Mean-field equations for
the macroscopic parameters and the stability condition yield results consistent with the replica method. When
a single value of the cavity activation maps to multiple values of the generic activation, there is a competition
in learning strategy between preferentially learning an example and sacrificing it in favor of the background
adjustment. We find parameter regimes in which examples are learned preferentially or sacrificially, leading to
a gap in the activation distribution. Full phase diagrams of this complex system are presented, and the theory
predicts the existence of a phase transition from poor to good generalization states in the system. Simulation
results confirm the theoretical predictions.
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[. INTRODUCTION present paper, we will see these effects in nonlinear percep-
trons learning noisy examples. Here the competition between
Since Hopfield’s pioneer work on neural networkly, the locally stable states comes from the different learning
statistical mechanics has been proved to be a powerful todtrategies used to attain the systemwide energy minimum.
in the study of information processing. Mean-field theories The cavity method is a suitable tool to study information
such as the replica methd@—4] and the cavity method competition effects in rule extraction from noisy examples.
[2,5-7] are successfully developed to study these problemd.arge scale neural networks with many nodes can be consid-
In particular, it provides valuable insights to the learning ofered as mean-field systems since, as far as the learning of one
examples in neural networks by considering it as an energgxample is concerned, the influence of other examples can be
minimization process. Early work used the replica method taegarded as a background satisfying some average properties.
study the learning problem in various situatid@®s-11]. It ~ The success of the mean-field approach is illustrated by the
has the advantage of a readily-used mathematical formalisrrapability of the replica method in describing the macro-
applicable to general cases, and has been applied to lineacopic properties of neural network learnifd]. However,
networks[12—15 and networks with binary outpuf&1,16— the replica method provides much less interpretation on the
21], dealing with learning tasks that are either realizable oprocessing of individual examples since its starting point is
unrealizable, random or teacher-generated data, and cleantbe quenched average of the free energy over the example
noise corrupted data. These studies mainly focused on thdistribution. The cavity method is an alternative version of
global properties of the learning system, with less emphasimean-field theory. It is a generalization of the Thouless-
on the microscopic description of the examples and the\nderson-Palmer approach to spin glasses and starts from a
weights in the system. Furthermore, most of these modelmicroscopic description of the system elemef28,2]. In
were still remote from the differentiable nonlinear perceptronthis method, mean-field equations are derived from self-
that is most commonly used today. Other work used theconsistent considerations. The method was subsequently
Green’s function approach that is particularly convenient forgeneralized to learning problems, 6,29 and yields macro-
linear networks[22], but these systems may not have thescopic properties identical to the replica method while at the
competitive effects among examples in nonlinear networkssame time provides physical insights to the learning of indi-
which will be investigated in this paper. The annealed apvidual examples. Recently, the cavity method was also ap-
proximation is suitable for analyzing high-temperature learnplied to a number of problems in information processing
ing [3], but the results cannot be directly extended to the30].
more common case of low temperature. In this paper, we study the learning of noisy examples in
A common phenomenon observed in the studies of learnronlinear perceptrons using the cavity method. Nonlinear
ing from examples is the existence of phase transitions witlnetworks have the following advantagés: compared with
abrupt improvement in the generalization ability of the net-networks with binary output, gradient descent learning is
works once the training examples are sufficiently numerouspossible,(ii) nonlinearity is representative of more complex
or the global parametefg.g., the weight decayare suitably  networks,(iii) they have more resemblance with biological
tuned [23-27. These transitions are often discontinuous.neurong31]. Compared with previous studies, we will focus
They arise when metastable states are present in the systeom the effects of information competition in the system, and
leading to discontinuous jumps in the network states, hystertheir consequences on the energy landscape, the appearance
eses, and the disappearance of metastability at spinodaf band gaps in the activation distribution, the choice be-
points. Multilayer perceptrons will exhibit a transition from tween preferential and even-handed learning strategies as
permutation symmetric to specialized stated. In the  well as their possible relationship with phase transitions in
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this complex system. We analyze the parameter regimes wittwhere\ is the weight decay strength. Minimizing the above
band gaps in the activation distribution, as well as the stabilenergy function by gradient descent, one obtains the equilib-
ity condition of the perturbative cavity approach. Simulationrium state of the student perceptron given by

results show that the assumption of a smooth energy land-

scape usually works well when no gaps are present, but tends 1 ,

to fail when gaps appear. The phase diagram of this complex Jj :m % (Ou—ff L&, &)
system is shown and the occurrence of phase transitions is

investigated and compared with simulations. where the prime inf/, represents the derivative 6{(x,,).
The rest of this Paper 1S organilzed as fOIIOV,VS' After de-tiere we are interested in the dependence of the generaliza-
scribing the model in the next section, we describe in Sec. Il errore of the student perceptron in its equilibrium state

the cavity approach and introduce the cavity activation,g) 5 the macroscopic parameters, such as the weight decay
which is the core microscopic variable in the cavity method. trength\, the noise temperatuf® and the size of training
Three self-consistent equations are derived when a smoo ta=p/N. As in perceptrons with linear or discrete activa-

energy landscape is assumed. In Sec. IV, we discuss the cag

. T AR 5n functions, the generalization error is essentially deter-
when band gaps appear in the activation distribution. Phasﬁwined by the overlap of the student weight vector with the

transitions in nonlinear perceptrons and phas_e diagrams are- cher weight vectoR and the magnitude of the student
the themes of Sec. V. In Sec. VI we summarize the re5”|t§veight vectorg, which are defined as

and their implications. Mathmetical details are appended at
the end of the paper. q:(Jj2>j and R=(J;B));, (4)

Il. THE MODEL where( ); represents averaging over tNeweights.

Consider a student perceptron with weights J; ,j IIl. THE CAVITY METHOD
=1, ... N, connecting theN input nodes and the output
node. It is trained to extract the rule of a teacher perceptron The cavity method developed in Ref&,29 is used to
with the same architecture with weightsB;,j=1,... N, tackle the current problem in order to get more microscopic
where(B;)=0 and(B]?):l. A training set ofp examples understanding of the mechanism in the Iea_rning (_)f neural
generated by the teacher and corrupted by noise is what tHeetworks. After the student perceptron is trained vytlx-
student can explore. Each example, labeledwith x ~ amples, it reaches its energy ground sthaggven by Eq.(3).
=1,...p, consists of the input vectog* and the noisy Suppose a new example with input vectris fed to the
output O, of the teacher. The input componeng§ are student perceptron. The activation of example 0 is now given
Gaussian random variables, with¢#)=0 and (&/&y) by
= 6jkd,, - The activation function§(x) of both perceptrons

are differentiable and nonlinear, such as %)gé(1 tozi & (5)
—tanhx)/2, i.e., the teacher and student outputs are, respec- \/NJ
tively,

which is called the cavity activation. Since the stud&iias
O =f(V ) )=f(v +T and f =f(x,), (1 no information about an example it has never learned, the
p=HY)=,+ T, p=106), (@) cavity activationt, is a Gaussian variable for random inputs

0 < )
wherey,=B- &/\N is the teacher activatior,, is Gauss- & whenN>1. It has a mear{(ty))=0 and covariances

ian noise with 7,)=0 and(»%)=1,T is the noise tempera- (t5)=9q and ({teye)) =R, where (()) denotes the en-
ture, andx,,=J- &N is the student activation. semble average. Hence the distribution of the cavity field is

During the training procedure, one adapts the student net- 2
work to minimize an energy function that measures the dif- exp| — (to—Ryo)
ference between student outptits and teacher output®,, 2(q—R?)
for all training examples. A natural energy function is the P(tolyo) = Zra’D (6)
total quadratic error of examples in training 5E§=1(OM ™

—fM)ZEpstz, where we calle, training error. However, the Trained with all the p+1 examples {(£, ,oﬂ)m

final target of learning is to get a student perceptron that car-Q 1, . . . p}, the student perceptron reaches its equilibrium
generalize well to novel examples, i.e., to minimize the genstateJ°, with

eralization errore,=([O(&—f(&]*)"2 where() is the

average performed over the distribution of all inputs and the 1 1

noise. We add a weight decay term to penalize excessivelyd)=——=(0o—f)(f0) &+ ——= > (0,—fO)(f0) &
long weight vectors and speed up learning, and use the en- WN AN

ergy function (@)

Here and below, variables with superscript O refer to those
E= 1 z (0,—f,)2+ E 2 72 ) associated with the perceptrdf, which includes example 0
24 T 25 ' in its training set. We see that the generic student activation
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of example 0,x,=J° &N, is not a Gaussian variable. R

/ R? ~
(Although the correct notation ofy should bexg, here we WIH q- 1_i__I_ZUZI(X,y)-

omit the superscript since it is sufficiently distinct from its
The mean-field equation fdR can be obtained by multi-

cavity counterpart,.) However, it is reasonable to assume
. 0 . . . .

that the difference betweehandJ” is small; the validity of plying both sides of Eq(3) with B; and summing ovej,

yielding

this assumption will be discussed later. Following the pertur
bative analysis in Ref.6], we show in Appendix A that, for

a given corrupted teacher outpyy, there is a well defined
relation betweer, andXy,to=t(Xo,Yo), Where

(15

R= [ dypty) [ dPGly) [ ax

t(x,y) =x— [ F(¥)— F(x)]F' (). ) X P(X[y. Y)[f(y) = ()1 (x)y. (16)

Here the parametey is the local susceptibility and satisfies USing Eas(10—(12), (14) and(15) and after elaborate inte-
grating by part, we arrive at

X
1-yr=a{1-—F£) | 9 - X
7 “< atﬂ>ﬂ ® R=a'yf Duf Dot (V' ()~ (17)
wherex,, is a single-valued function df,, and( ), repre-

sents averaging over thlppexamples. In this section we will

focus on the case that E) presents a one-to-one mapping

betweenx, andt, for a given}M. As we shall see, this
corresponds to a continuous activation distribution with no
band gaps. In the next section we will discuss the case when
t, has a one-to-many relation wik), , which will lead to the The three macroscopic parametgtsR, andg can now be
emergence of band gaps. obtained by solving the three mean-field equatid, (17),
Combining Egs.(6) and (8), we can derive the student and(18) numerically for given values ok, \, andT. There-
activation distributionP(xy,y), fore, we can directly obtain the training errey and gener-
alization errore 4, which depend on the generic activation

Similarly, multiplying both sides of Eq(3) with J;, and
summing ovelj, we have another mean-field equation dpr

a-Re=ay’ [ Du [ DUL@) - (0T (0T (19

5 - atxy) and cavity activationt, respectively,
P(x]y,y)=POuy)ly)— — (10
SEIJ DUI Du[f(y)—f(x)]%, (19
In turn, the distribution?(ﬂy) andP(y) are given by
YIV)= =X} ——(—— |
27T? 212
4 The validity of the perturbative calculation can be
1 2 checked by considering the stability condition of the equilib-
P(y)= exd — —|. (12) rium state. As derived in Appendix B, when the new example
V2w 2 0 is added, the magnitude of the change in the student weight

vector is given by
Equation(9) for y can now be transformed to an integral

expression wheil is very large, (Xo—to)?

_ 0 _
AJ:? (9= 9)= << X
1-«a

(21
1— —*
at,

2> :

M
HenceA diverges when the denominator approaches 0. This
yields the stability condition

o~ _ X
1—7>\=af dyP(y)fdyP(yly)fde(XIy,y)(l—a—(tl)?:)

where axlot= A+ y{[f () 12=[F(y)— )T ()L
from Eq. (8). Equation(13) can be simplified into an equa-

tion involving only double integrals, (22)

1_7)\26,] Duf Dv(l—ﬁ), (14) It is identical to the stability condition of the replica-
dt symmetric (RS) ansatz in the replica approag¢hi,6], the
so-called Almeida-ThoulesS®T) condition[32].
where  Du=duexp(-u%/2)/\27 and  Dov=dv In the region where the stability conditi@B2) is violated,

X exp(—v¥2)/\27 are Gaussian measureg= 1+ T?u,
andx andt depend oru andv via

the perturbative version of cavity method breaks down. It
becomes possible that when a new example is added to the
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system, the ground state relocates to another metastabl
state. This corresponds to the picture of a rough energy land
scape with many metastable states and the perturbative ca
ity method has to be modifig®9]. In the formalism of the
replica method, it was shown by Parisi that breaking of the
replica symmetry is the thermodynamical transcription of the
existence of many pure thermodynamic stdi@3]. Hence t
the RS and replica symmetry-breakiiBSB) approxima-
tions in the replica method describe the situations of smoott
and rough energy landscapes, respectively.

IV. ACTIVATION DISTRIBUTIONS WITH BAND GAPS

When the activation functiof(x) is nonlinear, the behav-
ior of the system may be very complex. This can be seen by X
considering Eq(8) for a sufficiently largey, when the ge-
neric activationx may become a multivalued function of the FIG. 1. The Maxwell's construction to determine the position of
cavity activationt. band gagy . In the figure, the areas of the two shaded regions equal
To compare the energy of the possible states, we consid& €ach other. BetweeRZ andPZ, the left state competes with a
the energy difference between the perceptron stftesidJ. metastable right state betwe®iP and PY , but the left state re-

According to Eq.(3) mains the ground state. Similar competitions exist betwérand
o Pe.

AEEEO—Ezi(OO—fO)ZwLEE [(0,—f%)2 x> (tg)

2 o 24 meom f t(X)dx=tg[ X (tg) =X (tg)], (25)
X<(tg)

A
_ _ 214 — 0y2_ 327, o . . .
(=1, 2 ; [P 9j] 23 which is the Maxwell's construction as shown in Fig. 1. As

the result of energy minimization, one of the two solutions of
x is preferred on the left neighborhoodtgf, while the other
is preferred on the right. Henceis a function oft with a
discontinuity att,. Consequently, a band gap appears in the
student activation distribution for a given teacher output,

Expanding the first summation to the second ordm?t (
—XM)2 and substituting Eq(3) and Eq.(7) to the second
summation, we can simplify the above equation to

AE:%(OO_fg)ZJF%/(XO_tO)Z, (24) P(x|y)=0  when xe[Xo(ty),X=(ty)].  (26)

Extra terms should then be added to the mean-field equa-

using the relation between the cavity activatignand ge- .. : . ;
neric activationxy in Eq. (8). The first term is the primary 'g:onnsalrici}sl;M) and(17) for y andR, as derived in Appendix

change due to the newly added example, and the second termi
results from the adjustment of the background examples. In
the multivalued region, when the energy minimum favgys B X i
to take a value closer tt, (therefore, favorable to small 1_y)‘_aJ DUZ JR_DU(l_ E) _O‘J Du}j: Glty)
background adjustmentthe example issacrificed Other- _ L

wise, when the output] is closer to the teacher’s outpO¥ X[x= (ty) —x<(ty)], (27)
(therefore favorable to small primary cpsthe example is

preferentiallylearned. The competition between the two pos- ox

sible responses to a new example leads to a discontinuity in R:ayf DUE f Dof’(y)f’(x) —

the range of the generic activatioy when the cavity acti- i IR at

vation ty varies, accompanied by the appearance of gaps in

the activation distribution for a given teacher outay. +a),f Du>, G(tg)f’(y)[f(x>(tig))— f(x<(t£))],
To study this competition, we suppose that E8). has i
multiple solutions ofx in a range oft for a giveny. We are (28

interested in the pointg(fl) where two solutions yield the

same energy changeE. That is, there are two distinct val- \where each term in the summations oizeprresponds to an
ues ofx,x. andx., such thatty=t(x- Y)=t(x-,y) and integration over a regiom; separated from each other by
AE(x.)=AE(x-). Then using Eq(24), we arrive at the band gaps, and each term in the summations p\anre-
condition sponds to a band gap. The Gaussian faG(il’g) is given by
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FIG. 2. The functiorW of y defined by Eq(D2). Student Output f(x)

FIG. 3. The occurrence of band gap and preferential learning
when y=20.55. The picture is symmetric with respect to the point
(1/2,1/2. For intermediate teacher output 0.¥3§y)<0.864, no
band gaps exist. For related discussions in Figs. 4, 5, and Table |
when a=3 and\=0.002, the present value aof corresponds to
T=2.5, and the choice of=— 1+ T? corresponds to the line of
f(y)=0.063, which cuts the boundaries of the shaded region at
(29 =1.18 andx=2.78, indicating a band gap &(x|y) at[1.18,2.78.

2

_ R
(t‘g— u
1 V14 T2

G(t) =
N 2 <) o g &
BT 1477

We note that the extra terms due to gaps are consistent with>0, the activation distribution is three banded for 1/2
adding _the delta function componemt_(—x.)d(t—ty) to +W(y)<f(y)<1/2—W(y), beyond which the activation
gx/ot in Eq. (14 and [f(x>)—f(x<)]é(t—tg) 1O  gistribution remains two banded.
f'(x)ox/ot in Eq. (17). Case 2 is illustrated in Fig. 3, where a band gap exists in
For the sigmoid functiorf (x)=(1+e*)"*, the neces- the regions that are shaded or enclosed by the transition lines
sary and sufficient .cond|.t|on for Maxwell’s construction, as Ltsr and Lg (subscriptss and p represent sacrificed and pre-
derived on Appendix D, is ferred states, respectivéljNear the sacrificed band edge, the
line LS indicates the onset of competition. Between the lines
LS andLY (or the region close right to the shaded priae
sacrificed state is competing with a metastable preferred
state, which appears between the spinodal Ijﬁ% and the
line Lg, but the sacrificed state remain the ground state.

Between lineL! and the spinodal liné3P, the sacrificed

where the functionW(+) is monotonic, as shown in Fig. 2. State becomes metastable and disappears:at Similar
The behavior of the activation distribution depends on thdin€s existin the neighborhood of the preferred band édge
value of y in the following three cases. the region close left to the shaded ane

Case 1: y<(117+165/33)/64~16.64. AsW(y)>1/2 Figure 3 shows that preferential learning occurs at ex-
and 0<f(y)=1, the condition30) cannot be satisfied for all t'€me values off (y)>f(y") or f(y)<f(y). The energy

~ . : ... advantage of this learning strategy can be easily understood.
g?:‘t(;ilirﬁgﬁtpu“y)' Hence there is no gap in the activation In nonlinear perceptrons, changes in the student activation

Case 2:16.64< y<48. Here 6<W(y)<1/2. The activa- around these extreme valuesfd¥) do not result in signifi-

tion distribution starts to develop a band gap that extend§2nt changes in the training error of an example due to the
from £(3) =1 to £(3) = 1/2+W(7) in the regiorx<0. Simi- saturation in this region, and |f thg cavity activation is very
y y Y ereg ~ different from the teacher’s activation, it is more economical
larly, another band gap extends fraify) =0 to f(y)=1/2 {0 keep the student activation close to the cavity activation,
—W(y) in the regionx>0. The two band gaps are symmet- o that the background adjustment remains small. In contrast,
ric with respect to the pointf(x),f(y))=(1/2,1/2). For in-  for intermediate values of(y), the competitive effects are
termediate teacher output between:k&(y), the distribu-  |ess, and no band gaps develop.
tion remains continuous. The width of the band gap can be narrowed when the
Case 3:y>48. HereW(y)<0. The band gap in the re- existence of metastable states is taken into account. As
gion x<0 now extends fronf(y)=1 to f(y)=1/2+W(vy) shown in Fig. 3, metastable states exist inside the band gap
<1/2. Together with its symmetric counterpart in the regionas far as the spinodal linés” andL ;. Hence in finite-time

~ 1
f(y)—§>W(y) for x<O0,

%—f(§)>W(y) for x>0, (30)
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41 (a) T=0.1

Ungapped regime 5
(stable state)

<
0.02 - Gapped regime 04|
(unstable state)
..... 02}
0.00 L , 5
0 1 2 3 4 5 —
> 0.0
o é 1

. . . . . . D- i
FIG. 4. Regimes of the existence of gapped activation distribu- 04 L

tion and regimes of unstable states for different noise temperatures. '
Below the solid lines, the perturbative cavity solutions are unstable, -
and below the dotted line, band gaps will appear in the activation 02}

distribution. The point ¢=3\=0.002) is denoted by a star. The

shaded regions indicate the existence of discontinuous phase tran-

sitions to be discussed in Sec. (¥or T=0.1, the shaded region is 0.0
too small to be showip. 0.4

simulations, the system may be trapped in metastable states.
Conventionally, the narrowing of band gaps in simulations is 0.2
interpreted by RSB effects in the replica methid®,20.
Here the narrowing can be explained by metastability in the
perturbative cavity method, even without invoking the for- 00 T
malism of RSB. -15 -10 -5 0 5 10
This kind of preferential learning is clearly not present in
linear perceptrons, even when perfect learning is impossible,
since the activatiorx is a linear function of the cavity acti- FIG. 5. Theoretical and simulation results of student activation
vationt, by virtue of Eq.(8). Hence preferential learning is a distributions, indicated by solid and dashed lines, respectively,
unique consequence of the nonlinearity of the perceptron agvhena=3 and\ =0.002[denoted by a star in Fig4)]. We choose
tivation. y=—J1+T? for different noise temperatures, so th¥y) are the
Figure 4 shows the parametric regimes for the existencgame. The arrow i) shows the position of a pseudo gap and the
of gapped activation distributions as well as the unstableyrows in(c) show the band gapL.18, 2.78 from the theoretical
regimes of the perturbative cavity meth(@tle boundary line  prediction in Fig. 3.
being equivalent to the AT line in the replica methddr
different noise temperatures. Since the development of a gagistribution in this case has a single band and is a sharp peak
is already sufficient to cause an uncontrollable change in Ecat x=Yy. When noise temperatufk increases to 2 wherg
(21), the gapped regions lie inside the unstable regions. Fur=14.9, the location of the pointa(= 3\ =0.002) in Fig. 4 is
thermore, provided that andT are not too large, the bound- slightly above the boundary between gapped and continuous
aries of the gapped and unstable regions are very close tegimes. Correspondingly, there is a pseudogap developing
each other. The region of small weight decay and large noisi the activation distribution, as shown in Figh% Compar-
will be discussed in the next section, where the phase lineing with simulation results, we see that the assumption of a
are modified when discontinuous transitions take place.  smooth energy landscape used in the present work is valid in
Trends for the existence of band gaps in the activationthis regime. As shown in Taell , the theoretical and simu-
distribution can be observed from Fig. 4. Gaps exist onlylation results of macroscopic properties also agree well.
when the sizex of training set is small, leaving ambiguities In Fig. 5(c), T=2.5 and the stability condition is violated.
about the underlying rule. Furthermore, increasing the datahere is now a gap in both the theory and simulation. How-
noise broadens the gapped region, since it introduces comver, at a highel in Fig. 5(d), the theoretical prediction of
flicting information to be learned by the student. Finally, the band gap is broader and has sharper edges than the simu-
since weight decay restricts the flexibility in the weight lation one. At the same time, there are prominent differences
space, and hence reduces the tendency for multiple minimaf the corresponding; ,R, and, especiallyy in Table I. Two
gaps are found for smaN. arguments are relevant. First, the narrowing of the band gap
We check the appearance of band gaps predicted in owan be explained by the presence of metastable states in the
theory with simulations in Fig. 5. In Fig.(8), y=11.1 and band gap as discussed in Fig. 3. These metastable states
the stability condition(22) is fulfilled. The student activation probably prevent the learning process to converge to the
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TABLE I. The comparison of macroscopic parameters and errors obtained from tfreamar) and

simulation(italics in bracketsfor different T whena=3 and\ =0.002.

T b% R q € €

0.1 11.1 0.9630.961) 0.933(0.932 0.018(0.01% 0.027(0.02%
2.0 14.9 0.7960.795 2.211(2.196 0.236(0.236 0.376(0.3795
25 20.6 0.8370.822 3.816(3.579 0.260(0.260 0.437(0.43)
5.0 80.1 0.9200.848 23.05(16.39 0.275(0.30)) 0.577(0.570
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ground state, which, therefore, yields a valueqdifferent  only when both the noise and the size of training set are
from the theory. Second, due to the violation of the stabilitylarge, as one may expect intuitively.

condition (22) when the band gap develops, a rough energy
landscape as discussed previoy&9] must be introduced to
improve the agreement.

V. PHASE TRANSITIONS

. . I T Another consequence of nonlinearity is the existence of

In Fig. 6, the variation of the activation distributions for bl luti R d h field

different & at a givenT and\ shows another trend of band two stable solutions OR, g, andy to the mean-field equa-
tions (27), (28), and (18) for a given set of parameters.

gap evolution. One finds that while Fig. 4 shows that insuf-Studying the behaviors of the curves Jofversusy such as
ficient examples cause the appearance of band gaps, here itt|s

possible that the fraction of examples located in the sacri—hoi_e |fn Fig. .7’ we f!nd two cnhcaflép_iganlﬁterg(T) and
ficed band decreases with the size of the example set. Thergﬂ( ) for a given noise temperatu € three accompa-

fore, the competitive effects of learning strategies are serioudYN9 cases of Ehase behavior are illustrated in Fig. 8.
Case L:ia<af (T). N\ is a monotonic decreasing function

of v. Hence for any weight decay strength, there is a unique
local susceptibility. Numerical results in this region show

| (@ o=1 that the magnitude of student weight vectpincreases with
1 decreasing weight decay. As shown in Fig. 8, there is no
| phase transition.
0 Case 2:af (T)<a<ay(T). At a=a (T), multiple solu-
10 T T L R L tions of v for a given\ start to appear near the inflection
e (b) =15 point of the curve. The solution with the smallegtcorre-
05 sponds to thgyood generalizatiorsolution with smallg and
’ £4. The solution with the largesy corresponds to thpoor
0.0 generalizationsolution with largeq andeg. In between the
0.6 - T T T T T T T two solutions, there is a third, unstable, solution, which can
= be considered as the barrier separating the two stable solu-
= 047 (c) o=3 tions in the energy landscape. Whenincreases beyond

02 ag (T), the intermediate range af where multiple solutions
exist becomes increasingly wide.

0.0 — —
' ) ' ) ' I ' ) ' I ' I ' I T
0.4 10° T T T T T T T T
(d) o=5 poor generalization
0.2 4 4
107 4
0.0
i T T T T T T T 10%
0.4 + -
(&) o=5 good generalization .
0.2 - ] 0=1.57
] 10% 44,
00 r T r T r T . 1 0=1.73
-20 -10 0 10 20 A
10° -
X 1 ™e=1907

FIG. 6. The theoretical prediction of the student activation dis- ° 1% 20 %0 00 %0 o0
tributions atT=5 andA=0.001 for different sizes of the training !
seta, wherey=0. Whena=5, the system has two states. Respec- FIG. 7. The dependence of local susceptibilityon the weight
tively, (d) and (e) are the distributions when the system is in the decay strengti\ for different & at T=1, with a (1)=1.65 and

poor and good generalization states. ao(1)=1.74. All curves approach=0 wheny goes to infinity.
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0.5 oota] 0=190 ] @
10"
(b)
021, — —_ : P . 10° 10? 10"
10° 10" 10° 10° 10" 10° 3.0 S— —
Iy 2.5 (c)
2.0 1
FIG. 8. The dependence of generalization egrpon the weight o 13:
decay strength for values ofa belonging to three different kinds 0'5 |
of phase behavior when the noise temperalurel . Inset illustrates 0:0 '
the three branches of energy curve o+ 1.90. 10° 1('),2 10"
At very large\, the good generalization state is the only 40 ] -
stable solution. When decreases, a metastable state with 30 (d)
poor generalization appears at teginodal point\ ,(a,T). 1
When\ decreases further, the globally stable state switches o 20'_
from the good generalization state to the poox diw, T). As 10 -
shown in the inset of Fig. 8, the energy curve has two stable
branches that cross &f(«,T), where a first-order transition 0 B o y
occurs, with possible hysteretic effects. On further decreas: 10 10 10
ing of \, the metastable state of good generalization disap- A
pears at anothespinodal point\4(«,T). Henceag (T) is a o o )
critical point where discontinuous transition first appears. FIG. 9. Variations ofeq,&,R, andq of a sample in simulation

Case 3:a>ag(T). At a=ao(T), the spinodal pointh when the V\(eight decay strengthchanges ?‘725 anda=4. The
of the good generalization state vanishes. Hence both podimPer of input nodesl=>50. The arrows ir(@ denote the routes
generalization and good generalization solutions coexist fof Nangingh.
A below A, down to zero, as shown in Fig. 8. Here the
example set is large enough to provide information about then increasinga, showing a bump at intermediate. For
teacher such that the good generalization solution exists evesmaller weight decay, there is a discontinuous transition from
in the absence of weight decay, although it may be metaa good to a poor generalization state at a critical example
stable. size a(\,T). Discontinuous transitions on changiagand
The existence of the discontinuous transition when M\ are also observed in the high temperature limit in
changes, accompanied by the hysteretic effects, is verified byultilayer networks learning clean examplgzb]. For in-
the simulation of a sample in Fig. 9. It is interesting to ob-creasing\, the bump smoothes out and the positionaof
serve a third state with intermediageands . The existence with maximume 4 shift towards 1. The position of the maxi-
of such intermediate states is not uncommon in simulationgnum also depends on the noise temperafliré-or small
although transitions between the poor and good generalizaralues ofT, the maximum stays near=1. For larger noise,
tion are mostly direct, as predicted by the theory. Considerthe maximum could move to higher values ®f which im-
ing the stability condition(22) for the parameters used in plies that more examples are required for the student to really
Fig. 9, we find that the perturbative cavity solution is stablelearn some essence of the teacher’s rule when the noise is
in the good generalization phase, but unstable in the poatronger. Similar overtraining behavior is also found in linear
one. This strongly implies that multiple metastable states exaetworks learning unrealizable tasks3,14], but no phase
ist in the poor generalization phase, contributing to the castransition is found there.
cading transition observed in Fig. 9. At the parameters used in Fig. (&1, sample averaged
Similarly, discontinuous transitions occur when in-  simulations show that theory and simulation agree satisfac-
creases for a givei. In the learning curves in Fig. 10, we torily on both sides of the bump. However, theory predicts a
see that the student may even learn worse for more trainingglatively abrupt change ef; for @ around 1.6, which is not
examples if they are not sufficient. Only after sufficient ex-observed in the simulation. This discrepancy may be partly
amples are fed to the student wil} decrease asymptotically due to the finite size effects, but we cannot preclude that
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0.45 < (@)
0.40
0.35
w” > ]
0.30 - :
0.25 +HW -
R - Theory
E = Simulation (along with error bar)
0.20 T T T T T T T
0.0 0.5 1.0 1.5 2.0
o o
0.60 -
0.55 +
o
0.50
1 Theory
0.45 ~ 0.40 + ------ simulation (change o upward)
1 ---v--- simulation {(change o downward)
T T T T T r T i 0.35 T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

o

FIG. 10. The learning curves for different weight decay

FIG. 11. Simulation versus theoretical results for the generali-
strengths(a) T=1; (b) T=5. imulation versu i u g i

zation erroreg4 on changinge. For T=1 and\=0.0001(a), the

simulation result is the average over 14 samples.TFe5 and\

effects of rough energy landscaff®SB) also contribute. =0.001(b), the simulation result is the average over 20 samples on
This discrepancy between theory and sample averagedkcreasing and increasing In all simulations, the number of input

simulations is also observed at the parameters used in FiggodesN=150.

11(b) when discontinuous transitions exist. Hysteretic effects

are shown by the different values of the transition points in

the upward and downward directions of changiaggiven 12 T e
by ag(\,T)=4.84 and ag()\,T)=4.29, respectively. The
theoretical prediction of(\,T) is obtained in Fig. 12 from 1.0+

the intersection of the two branches of the energy curve. 1
However, this prediction o’ (N, T)=5.95is higher than the 0.8+
position of hysteresis. Again, we attribute the discrepancy to
finite size and the rough energy landscape. 0.6
We can interpret the effects of a rough energy Iandscape“J
from the comparison between theoretical and simulation re- 044
sults. For smalle, Fig. 6 shows that although a band gap ]
exists in the activation distribution, the statistical weight of 0.2+
the outlying bands is only very small, thus the correction due ]
to a rough energy landscape is minor, as can be seen in Fi¢ 40
11(b). When the size of the training set increases, the increas 0
ing weight of the outlying bands implies stronger effects of o
rough energy landscapes, which may account for the lower- G 12 The energy per nod&N (solid line) and the magni-
ing of the criticala of the discontinuous transition in simu- tyde of student vectoy (dotted ling versus the sizex of training
lations when compared with the prediction of a smooth enset, whereT=5 and\ =0.001. The phase transition point is deter-
ergy landscape. It is found that the smooth ansatz is stabl@ined from the crossover of the two stable branches of the energy
for the branch of good generalization state in Fig. 12, buturve,a.=5.95, and the spinodal point of the good generalization
unstable for the poor one. Hence the introduction of thestate is atr’=4.36.

40
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] ' ' ' ' ' ' generalization as shown in Fig. J12vhich use a more even-
107 handed strategy with no band gaps separating the activations.
b Stable state Around the phase transition lirge the globally minimal state
1 switches on increasing, from one with sacrificial strategy
10 to a more even-handed one. This discontinuous change in
] P . learning strategies is illustrated from Figgag-(d) to 6(e),
< 1 Unstable state 5%/ / I where the phase transition lirgeis crossed over on increas-
-5 1O . .
10°] X ing « for a given\.
i "’gg% Outside the region with multiple states, the magnitade
N : .$§§:§§:§§§%é of the student weight vector decreases above tirisince
g 0K . .
10 SIS weight decay becomes strongr to the left of the lined
i LRI (since examples are not enodghence the weight vector is
T * T T . . .
0 1 o, 0 2 3 4 not flexible enough to allow for multiple strategies. In gen-
« eral, the fraction of sacrificed examples is smaller in this

region. This reduces the difference between the strategies of
Sacrificing and not sacrificing the examples. As a result, all
states to the left of lind learn with a single sacrificial strat-
egy and to the right of it with a single even-handed strategy.

FIG. 13. The phase diagram for nonlinear perceptrons learnin
noisy examples whe=1. P is the critical point witha=«a}
=1.65. Lined terminates atr= ag=1.74 when\ approaches zero.

roughening effects will modify the energy curve of the poor
generalization state, while that of the good one remains un-
changed, thus shifting the position of the crossing point. The
lowering of thea value in simulations implies that the en-  We have studied the supervised learning of noisy ex-
ergy of the poor generalization state is higher when weamples in nonlinear and differentiable perceptrons using the
change from a smooth picture to a rough one. This is conecavity method, yielding predictions identical to the replica
sistent with previous results that RSB increases the energy @fethod, yet providing a more physical interpretation. The
similar perceptrons with discrete outp(itsd,21]. mean-field equations enable us to study the macroscopic be-

The full phase diagram is drawn in Fig. 13 for a given havior of the system. An example is the optimal weight de-
noise temperatur@. Above and below thehermodynamic cay \,,, that minimizes the generalization error, as illus-
transitionline, line a, the perceptron is in the good and poor trated in Fig. 8, analogous to previous studies in the linear
generalization phase respectively. Lia@nds at the critical perceptrong15]. However, the emphasis of this paper is on
point P, where a= o (T). The values ofg and g4 Change phenomena attributable to the conflicting information inher-
discontinuously when the global parameters move across linent in noisy data, and the nonlinearity of the student percep-
a, but continuously when they move around pdmtvithout  tron. We have demonstrated the existence of band gaps in the
crossing linea. Line b denotes the stability line separating activation distribution, separating preferred and sacrificed
the regimes of smooth and rough energy landscapes. Thexamples. It is an indication of the extent of information
rough regime covers the entire region left of the stability linecompetition and the roughness of the energy landscape, cor-
as well as the entire poor generalization phase belowdine responding to the effect of RSB in the replica approach. The
Here the position of linea is estimated assuming smooth more prominent the band gaps, the more significant the ef-
energy landscape. Simulations such as those in Fi@) 11 fects of rough energy landscapes. When tuning up the weight
indicate that the effects of rough energy landscapes may shifiecay or increasing the size of the training set, a phase tran-
its position leftwards. Line is thespinodalline of the poor  sition occurs in the student perceptron from a poor generali-
generalization phase, whexe=\ («,T). The poor generali-  zation state with a long weight vector to a good generaliza-
zation phase is metastable in the shaded region bounded lign state with a short weight vector. The phase transition is
the linesc anda. Similarly, lined is thespinodalline of the  accompanied by a change in the learning strategy from sac-
good generalization phase, wheke=\4(«a,T), with the rificial to even handed. We present the phase diagram of this
good generalization phase being metastable betweendinessystem, together with the boundaries of the gapped regime
anda. When\ approaches zero, the abscissa of lthap-  and of the metastable region. The relation between band gaps
proachesay(T). Both linesc and d are computed in the and the picture of a rough energy landscape was discussed in
smooth ansatz only, with roughening effects neglected. a previous study29]. Here we further show where this con-

It is interesting to consider the change of learning strategyideration is most necessary.
in different regions of Fig. 13. In the region bounded by lines We remark that the preferential or sacrificial effects are
c and d, more than one learning strategies are competingommon in many other learning systems, such as multilayer
against each other, corresponding to different local minimaperceptrong29] and weight pruning networkg34]. They
in energy. To the left of lindo, all states adopt learning strat- create metastable states that cause the hysteretic behavior as
egies that sacrifice a fraction of examples, but those witlshown in our simulationgsee Figs. 9 and 11The presence
large q (poor generalization as shown in Fig.)Isacrifice a  of metastable states prevent the convergence of dynamical
significantly large fraction. To the right of ling the compe- learning process to the ground state. Hence it is an important
tition takes places between states with laggevhich sacri-  issue in the practical implementation of learning dynamics.
fice a fraction of examples, and those with snl{good We have illustrated that the cavity method can be used to

VI. CONCLUSION AND REMARKS
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analyze systems laden with conflicting information. It can be 1
applied to other systems such as support vector machines Xo—to= )\(Oo
(SVM) when examples are noisy and insuffici€®b]. SVM
learning of clean examples has recently been studied using
the replica theory36]. However, since the functional form

of the energy is different, band gaps may not be present.
Nevertheless, a cavity analysis of SVMs could offer new
valuable insights.

1
o)(fo) +)\N

(f)?+(0,—f )f"]—(Xo—to)

X2 [-
“
(A3)
Defining the local susceptibility by
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Council of Hong Kong(HKUST6157/999. 'We arrive at Eq(8). Applying the same cavity argument to

exampleu,t, andx, should also be related by E(). This
simplifies Eq.(A4) to
APPENDIX A: THE CAVITY ACTIVATION AND LOCAL

SUSCEPTIBILITY (A5)

From Eqgs.(3) and(7) and the definitions of, andx,, we

obtain from which Eq.(9) follows.
1 On <0 1 050 s APPENDIX B: THE STABILITY CONDITION
Xo—to=-(00=fO)(f0) +55 2 [(0,—fR)(fR) N B .
K] In obtaining Eq.(A2), the validity of the perturbative ex-

pansion in Eq(Al) is subject to the condition that the fluc-
tuationA ;= =;(J7—J;)? is finite. Subtracting Eq(7) by Eq.
(3), muIt|pIy|ng both sides by]J —J; and summing ovey,

—(0,—f,)f1&1&). (A1)

Expanding the last term to first order, and assuming xhat we obtain
is a well defined function of,,, we arrive at
1 X,
L L A, }\y(xo 2( at )&t (t, =t
Xo—to=—(0g— () +—— (B1)
o~ to )\( o~ fo)(fo) NN

where Eq.(8) is adopted, anc,, is assumed to be a well

dx 2
X2 [ (f)24(0,—f ) f" ]2 &gl defined function ot , . The factor( —t,)“in Eq.(B1) can
] a S P be expanded a§,Jk(J°\" J\“)(JO\“ J\“)gf‘g /N and is
1 only related with (% dx, /ﬁt w(9x,1dt,) in the order
1
> JONE_ Ny gy ()2 O(N™"). Therefore, the average over of the former and
k(E;&:j) (k & N\/ﬁ P (=) latter’s product can be replaced by the product of their aver-

ages. Since J*'*—J;#)(Jp"#—Jy*) are uncorrelated with
examplesg®, only terms withj =k contribute to the average
over u. ThenEM(t?L—t#)2 becomes\ ;. Assuming that the
change inA ; due to the removal of exampje is small, this

whereJ?'* andJ}* denote the student weights trained with further reduces ta and render¢B1) to
training sets without example, and, respectively, with and
without example 0. Note thak ;) (Jp #— J*) &1 N~t
—t,~O(N""?) and is uncorrelated witl! . Neglecting the
dependence of — (f )2+ (0 —fﬂ)f”](ax lat,) on &gl
that is of ordeN ™, we conclude that the second term on the
right-hand side of Eq(A2) is of orderN~? and hence neg-
ligible. In the last term, §“)2 is uncorrelated with 10\“
J\“) §J , and hence can be replaced by its average value of
1. For the remaining summation over,s;(Jj"* When there is a gap in the distributid(x|y), x,, is no

—J;")EIVN reduces toxg“—ty*. Assuming that the longer a differentiable function df,, the mean-field equa-
change in the activation differenge-t of examples 0 due to tions (14), (17), and(18) are subject to modification.

+(0,~ 1 >f”] (JOW I (EPE, (A2)

1 1 X, \ dX
(w1t )2 B By
A 7\'}’(XO to) AyN 7 (1 at,u) at,u

Using Eq.(8), this can be further reduced to EQ1).

APPENDIX C: THE EFFECTS OF A GAP ON MEAN- FIELD
EQUATIONS

the removal of examplg is small,xy*—ty* further reduces
to Xo—to. Thus

In Eqg. (A1), the summation oves now includes different
situations depending on the value of the cavity fig)d For
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those examples with, andt® located on the same side of

7

the gap, the analysis is similar to that in Appendix A. How-

ever, ift,, is close to the gap positiay, then when the new

example 0 is included in the training set, the change of cavity

activationAt,,= k(JO\” JuM €¢1\/N may give rise to large
value of O, —f )(f )’ —(0,—f,)f, as the generic activa-
tion x,, changes fr0m<<(tﬂ) to x>(t ) or from x_(t,) to

x<(t°) We distinguish the foIIowmg cases to calculate the

summauon in Eq(Al).

The first case corresponds tg—At,<t,<ty. Among
the p examples, this happens with probability(t,
—tg(yﬂ))_AtMG(AtM). Its contribution to the summation in
Eq. (A1) is

>

{Case J.

Z 8(t,—

X{[f(yﬂ)—f(X;)]f'(XZ)—[f(V,L)
—fOG) I ()18

(CD

Similarly, the second case correspondggat, <tq—At,,
with the contribution

>

(o —tg(¥,))(—At,) 6(—At,)

_ 1! > st
=N 2

X[ (y,) = ) 1E (x3) —[f(y,,)

— ()1 ()€ (C2)

Combining them together, we have the total contribution

from the gap

>

{Gag

- Ltx0-t0) [ dypty) [ d7PGlY)

X f dtP(t]y) 8t —ty(yI[F(Y) — f(x=(t,))]

X (X (6,Y) = [F(Y) — F(x=(t,y))]

X! (X< (t,y))} (C3

Simplifying the integrals, we have
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o Xo_to fDu
{Gag A R2
27| q—
1+T?
R 2
ty— u
V1+T?
xXexp| —
RZ
2| q— 5
1+T

o Y)—LF(Y)
(C4)

XALF(Y) = F(X= (g, Y] (x= (1
— F(x<(tg YD (X< (tg,Y))},

with y=\1+T?u. Therefore, we obtain the self-consistent
equation(27) for y and reproduce the functiat{x) in Eq.
(8), wherex is related tou andv by Eq.(15). The positions
of band gapty,x- andx.. are determined using the Max-
well’s construction discussed in Sec. IV. Following E@Y),
(8), and(15), we get the equation d® with extra termg28)
and equation ofg without extra term(18), after elaborate
work on integrating by parts.

APPENDIX D: CONDITION FOR MAXWELLS
CONSTRUCTION

For a given teacher outptity), x is a multivalued func-
tion of t whent’(x)<0 at the inflection point”(x)=0. For
the sigmoid functiorf (x)=[1+e %]~ %, this implies

1 <f2(1—f)2(1—3f+3f2)

2y 1—6f+6f2
()= f(4—15f+12f?) (oD
Y 1-6f+6f2

wheref represent$(x) at the inflection point. Thus, we ob-
tain the condition of Maxwell's constructio(80) if we de-
fine W as the parametric function of via

(2§—1)(1—12f+12§?)
T 2(1-6+6P)
- 1—6f+ 62 . 02
2f(1-§)*(1—3f+3§%)
The function ofW(y) for y>0 is plotted in Fig. 2.
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