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Entropy and local uncertainty of data from sensory neurons
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We present an empirical comparison between neural interspike interval sequences obtained from two differ-
ent kinds of sensory receptors. Both differ in their internal structure as well as in the strength of correlations
and the degree of predictability found in the respective spike trains. As a further tool in this context, we suggest
the local uncertainty, assigning a well-defined predictability to individual spikes. The local uncertainty is
demonstrated to reveal significant patterns within the interspike interval sequences, even when its overall
structure is~almost! random. Our approach is based on the concept of symbolic dynamics and information
theory.
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I. INTRODUCTION

In recent years, several authors have investigated the
coding of information in neural spike trains using the co
cepts of entropy and information theory@1–7#. Of particular
interest has been the correlation between the ability of
animal to detect weak sensory signals and the existenc
extended memory in the respective spike train@3,8#. Weak
deviations, caused by external stimuli, must be detec
against the ongoing background of the spontaneous acti
Intuitively, this task should be easier when the spontane
activity is rather regular and predictable@3#. On the other
hand, predictability and correlations are known to reduce
tropy, and thus might be expected to degrade informa
transmission. While it is presently not clear what effect c
relations will have on the signal detection performance
different animals, we may safely assume that nature has
veloped a variety of different mechanisms to provide an
fective ~well-adapted! representation of outside stimuli.

Here we present an empirical comparison between
spontaneous activity obtained from two different sensory
ceptors, the paddlefish electroreceptor~ER! and the crayfish
mechanoreceptors. Both are sensory receptors, for perce
of the outside world, still they differ in their internal struc
ture and the complexity of the generated interspike inter
sequences. We will study the entropy and predictability
these sequences based on the concept of symbolic dyna

The paper is organized as follows. First, we will give
brief description of the experimental setup. After that,
will shortly review the concepts of symbolic dynamics a
Shannon entropy@9#. In the last section, we will summariz
the results obtained from the empirical interspike inter

*Email address: steuer@physik.hu-berlin.de
†Email address: ebeling@physik.hu-berlin.de
‡Email address: drussell@admiral.umsl.edu
§Email address: bahar@neurodyn.umsl.edu
i Email address: neiman@neurodyn.umsl.edu
¶Email address: mossf@umsl.edu
1063-651X/2001/64~6!/061911~6!/$20.00 64 0619
n-
-

n
of

d
ty.
us

n-
n
-
f
e-

f-

e
-

ion

l
f
ics.

l

sequences and discuss the biological implications of the fi
ings.

II. PADDLEFISH AND CRAYFISH

Our first experimental object is the paddlefishPolyodon
spathula, an ancient freshwater species native to the Miss
sippi River drainage, having evolved 65 million years a
@10#. The paddlefish is characterized by a unique, rostral
tension in front of the head, covered with tens of thousa
of electrosensory receptors, morphologically similar to t
ampullae of Lorenzini of sharks and rays@11–13#. The elec-
trosense is passive, and is used to detect weak electrica
nals from planktonic prey@14#.

Significant for this study, each electroreceptor is a rat
complex system, consisting of a cluster of 1235 skin pores,
each leading into a short canal, which ends in a sens
epithelium containing approximately 400 hair cells. The h
cells of each pore, which are considered electrosensit
synaptically excite the terminals of a primary afferent ax
projecting to the brain@11,14#. The synapse from each ha
cell, together with the spiking properties of the primary a
ferent endings, convert the analog signal from the hair c
into spike trains, coding the electrosensory information a
time series~the intervals between spikes!.

We recorded single-unit spikes of electroreceptor aff
ents,in vivo, using tungsten microelectrodes. For a detai
description of the apparatus and methods see@14–16#. Each
recording contains 10 000 to 50 000 interpike intervals.
sets of interspike intervals had coefficients of variationCV
<0.3, defined asCVªst /^t& with ^t& being the mean in-
terspike interval andst5A^t2&2^t&2. The interspike inter-
val histogram~ISIH! of all files resembled a log-normal dis
tribution and showed a well-expressed unimodal peak.

It was recently discovered that each electroreceptor c
tains two coupled oscillators@17#: one oscillator resides in
the population of hair cells and the other oscillator is asso
ated with the afferent neuron. Stochastic biperiodic osci
tions of the electroreceptor system are reflected in an a
©2001 The American Physical Society11-1
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correlation function of interspike intervals that displa
alternations~anticorrelations! extending to up to 20 to 40
interspike intervals.

The spike trains obtained from the paddlefish electro
ceptor will be set against those obtained from mechanore
tor afferents in the sensory nerve roots of the crayfish. Co
pared to the paddlefish, the crayfish has a much lon
evolutionary history, having ancestors that arose more t
600 million years ago@18#. The mechanoreceptor system
thought to be primarily a predator avoidance system, se
tive to hydrodynamic motions. Details of the apparatus a
methods used for the crayfish experiments are given in@19–
21#. Each mechanoreceptor may be viewed as having
elements: a stiff hair, which compresses a stretch-sens
region of the sensory neuron and the neuron itself. There
no synapses. The extracellular recordings were made w
suction electrode attached to the afferent sensory neuron
this, the crayfish tailfan and part of the abdominal nerve c
were excised intact and immersed in an appropriate sa
solution. Each recording yielded 10 000 to 220 000 intersp
intervals under relatively constant experimental condition

The firing sequences of mechanoreceptors are chara
ized by high variability:CV’s are in the range from 0.7 to
1.2. The ISIH’s of mechanoreceptors do not possess any
pressed maxima and can be well approximated by an e
nential distribution. This indicates the lack of oscillation
The autocorrelation function is characterized by a very f
drop that is less than five interspike intervals. In the sub
quent sections, we will compare the spike trains from b
receptors. Before that, we shall shortly review the relev
results for Shannon entropy.

III. SHANNON ENTROPY AND PREDICTABILITY

The starting point is a symbolic sequenceS, consisting of
successive symbols~letters! drawn from a finite alphabetA.
Substringsx(n)5A1•••An , AiPA of lengthn are termedn-
words orn-blocks and are supposed to appear with a w
defined probabilityp(x(n)) within the infinite sequenceS.
Following Shannon’s approach@9#, then-block entropiesHn
are given by

Hnª2( p~x(n)!log p~x(n)!. ~1!

The summation is carried out over alln-blocks with nonzero
probability p(x(n)).0. Then-block entropiesHn are a mea-
sure ofuncertaintyand give the average amount of inform
tion contained in a word of lengthn. Consequently, the con
ditional entropieshn

hnªHn112Hn , h0ªH1 , ~2!

give the average amount of information required to pred
the (n11)th symbol, when the precedingn symbols are
known @22#. Note that hn is monotonically decreasing
hn11<hn .

Of particular interest is theentropy of the sourceor limit
entropyh, defined as the limit of the conditional entropy fo
largen. The convergence of the conditional entropyhn to its
06191
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limit h may be taken as a measure of correlations. If
correlations exist beyond a finite-rangem ~Markov chain
property! the asymptotic value is reached forn5m. How-
ever, for most systems, the Markov property applies to
approximate description of the system only. The generic c
yields an exponential decay of the conditional entropyhn to
its limit @23#. Sequences showing a subexponential deca
the hn are related to long-range correlations@24,22#.

Particular attention must be paid to the estimation of
described quantities for finite sequences of lengthN. In this
case, then-block entropyHn becomes systematically unde
estimated@25,26#.

Hn
observed5Hn2

Mn21

2N
1OS 1

N2D . ~3!

Here,l is the size of the alphabetA andMn< l n denotes the
number of differentn-blocks within the sequence.

A. The local predictability

In addition to the conditional entropieshn , which charac-
terize the average uncertainty, we use thelocal predictability
to quantify structure within the interspike interval sequenc
At each time step, the local conditional entropyhn(xprev)
gives the uncertainty of the next symbolAn11, based on the
precedingn-block xprev @33# @22,27#.

hn~xprev!ª2 (
$An11%

p~An11uxprev!log p~An11uxprev!. ~4!

Note that the average over all possible prehistories is
previously defined conditional entropyhn

hn5^hn~xprev!&5 (
$xprev%

p~xprev!hn~xprev!. ~5!

The local predictability or local redundancyr n(xprev) is
given by

r n~xprev!ª12hn~xprev!. ~6!

For that we assume thathn(xprev) is normalized to the size o
the alphabet: All logarithms are taken to basel 52. In the
following, we refer to all entropy measures as dimensionl
quantities in the interval@0,1#.

In the next section, we will demonstrate that local me
sures provide an appropriate tool to identify significant p
terns within a sequence, even when its overall structur
close to random.

B. Symbolic dynamics

The application of the aforementioned concepts to the
terspike interval sequences requires a coarse-grained re
sentation of the signal, and the results will partly depend
how this coarse graining is performed. There have been
eral approaches to the discretization of data, the most c
mon being to divide the time series into small bins, assign
the value ‘‘1’’ or ‘‘0’’ to each bin according to the occurrenc
1-2
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ENTROPY AND LOCAL UNCERTAINTY OF DATA FROM . . . PHYSICAL REVIEW E64 061911
or nonoccurrence of a spike@6#. Here, we will use a differen
approach. Each interspike intervaltn will be labeled either
long ~‘‘1’’ ! or short~‘‘0’’ !, depending on whether it is longe
or shorter than a given thresholdc.

tn.c⇒Sn51, tn<c⇒Sn50. ~7!

Naturally, the question arises whether such a crude repre
tation of the data is sufficient to capture the essential st
ture within the time series.

Previous investigations revealed that one may give h
ristic criteria for choosing an optimal threshold-crossing p
tition @5,28,29#, which ensure that the coarse-grained
quence is a reasonable approximation of the dataset.
understood that the situation here is more complex. Still,
argue that while some microscopic detail of the dynam
may be lost on the symbolic level, most temporal corre
tions are embedded in the structure of then-word distribu-
tions. Here, this view is mainly supported by the results
tained.

Another crucial point is the timescale on which our ana
sis is applied. Based on behavioral experiments, an up
bound for the reaction time of the paddlefish is given byT
'1252200 msec@16#. Given that the mean interspike in
terval for the paddlefish iŝtn&'10230 msec, we may
speculate that the relevant information is encoded in no m
than a few spikes. For the crayfish, reflex reactions may t
place in a fraction of this time~though as with all animals
slow adaptive responses occur over an extended perio
time! @30,31#. Given these considerations, we restrict o
selves to a study of 3210 interspike intervals in spontaneou
recordings from both crayfish and paddlefish. Our way
partitioning the data allows us to investigate this timesc
with high precision and without the need to make furth
assumptions about the scaling of entropies for finite data
the subsequent analysis, Eq.~3! was used to monitor the
expected deviations.

IV. APPLICATION ON DATA
FROM SENSORY NEURONS: RESULTS

A total of 29 paddlefish and 29 crayfish recordings we
analyzed. The data were partitioned according to Eq.~7!,
with the partition threshold optimized to produce a maxim

FIG. 1. The conditional entropyhn as a function of word length
n for an interspike interval sequence of the paddlefish~left! and the
crayfish ~right!. The straight lines denote the average conditio
entropy obtained from amth-order Markov process. Both sequenc
have memory at least up to orderm55. Note that they axis is
different in both plots.
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higher-order conditional entropyhnmax
(c). Since each file had

a different length~number of spikes! the ordernmax up to
which the conditional entropyhn could be estimated differs
from file to file. All files allowed for at least ordern57.

The result for each file was tested against Markov
quences of given orderm50,1, . . . ,6.These surrogate dat
sets were produced as follows: For each shuffle step,
symbols were randomly chosen within the sequence and
changed only if them-nearest neighbors of both symbo
matched each other. Form50, this corresponds to an uncon
strained random shuffle. Withm51, two symbols are ex-
changed only if the left neighbor of the first symbol is ide
tical to the left neighbor of the second symbol and the sa
also holds for the right neighbors.

By construction, multiple iterations of shuffle steps w
preserve the two-block frequency, hence, the conditional
tropy h1. For higherm, the shuffling preserves the cond
tional entropyhn up to ordern5m, corresponding to an
mth-order Markov process. Figure 1 shows a representa
result for a paddlefish electroreceptor~left! and a crayfish
mechanoreceptor~right!. In both cases, the conditional en
tropy hn decreases with increasing word length, indicati
correlations and long memory in the respective spike tra
However, the magnitude of the decrease is different~Note
that in Fig. 1, they axes of both plots are not identical!. The
first observation is thus, that the paddlefish sequences

l
FIG. 2. The histogram of the conditional entropieshn for a word

lengthn55. Left, paddlefish, right, crayfish.

FIG. 3. The Zipf-ordered frequency distribution for six block
calculated from a paddlefish sequence. The structure is domin
by the pattern ‘‘101010’’ and ‘‘010101.’’ The bold line denotes th
average for surrogates with preserved conditional probabili
p(An11uAn).
1-3
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sess a larger amount of structure, while the data from
crayfish is more close to random. Figure 2 shows a histog
of the estimated conditional entropiesh5 for all sequences
The clustering of the crayfish data sets at large entropie
clearly seen.

To be more specific about which substructures within
spike trains contribute to this difference, we examine
respectiven-word distributions. For the paddlefish ER, th
decrease of conditional entropy is mostly due to long-sh
anticorrelations, already reported for this kind of sensory
ceptor@32#. Long interspike intervals are often followed b
short ones, and vice versa. Consequently, for 20 of 29
quences then-block distribution was dominated by the pa
terns of alternating series of ones and zeros, e.g., ‘‘1010
and ‘‘010101’’ for n56.

However, in no case could this finding be explained b
first-order Markov process, incorporating the long-short
ticorrelation~see Fig. 3 and Table I!. For four sequences, th
n-block distribution was dominated by more complicat
patterns, e.g., such as ‘‘010010’’ or ‘ ‘011001’’ forn56.
The remaining five sequences have to be treated separ
Here, the structure was due to blocks of repeating one
zeros, indicating nonstationarity of the time series. This w
be discussed in more detail for the crayfish data.

The comparison with higher-order surrogates revea
that except for two, no sequence could be approximated
Markov process up to orderm56 ~see Table II!.

For the crayfish, the situation is different. Here, 1 of
sequences matched a first-order Markov process, seve
quences were compatible with Markov processes up to o
m56 ~Table II!. For 17 of 29 sequences, thesmall devia-
tions from random sequences were mostly due to block
repeating ones or zeros. Caution requires us to interpret
as a sign of nonstationarity, almost unavoidable in recordi
from living animals@34#.

TABLE I. Some examples for typicaln-blocks found within a
~partioned! paddlefish sequence. For all word lengthn, the sequence
was dominated by patterns with alternating ‘‘1’’s and ‘‘0’’s. Th
first row contains the conditional probabilities, which define a fir
order Markov process. The relative frequencies of occurrence o
n-blocks were compared to the respective product of conditio
probabilities.

p(0)' 0.501 n-block Relative frequency Expected
p(1)' 0.499 ‘‘101’’ 0.286 0.269
p(0u0)' 0.267 ‘‘011’’ 0.089 0.098
p(1u0)' 0.733 ‘‘1010’’ 0.230 0.197
p(0u1)' 0.735 ‘‘0110’’ 0.059 0.072
p(1u1)' 0.265 ‘‘1100’’ 0.033 0.026

TABLE II. Each column denotes the number of files for whic
the hypothesis of amth-order Markov sequence was accepted.

m5 0 1 2 3 4 5 6 m>7

Paddlefish 0 0 0 1 0 0 1 27
Crayfish 0 1 1 3 1 1 0 22
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Can the crayfish recognize certain words? At least
some crayfish recordings, the deviations from a random
quence must be attributed to nontrivial structure in t
n-block distribution.

To emphasize this, we take into account the local unc
tainty hn(xprev), as defined in Eq.~4!. As an example, Fig. 4
shows the local uncertaintyh10(xprev) of crayfish interspike
intervals based on the previous ten-block. Although the ov
all structure of the spike train is almost completely rando
rare events still stand out: we observe a few particular in
vidual patterns, after which the sequence is significan

TABLE III. The local uncertaintyh10(xprev) for a crayfish se-
quence. Also included are slight variations of the first patte
~flipped symbols are depicted in bold!. The results for the pattern
with the lowest local uncertainty stay reasonably stable when

stricting the sequence length toÑ.

xprev p(1uxprev) p(0uxprev) hn(xprev)

‘ ‘1110100000’’ 0.75 0.25 0.806
‘‘1011110000’’ 0.75 0.25 0.815
‘‘0000011111’’ 0.27 0.73 0.840
‘‘0001100000’’ 0.72 0.28 0.856
‘‘0110000000’’ 0.71 0.29 0.863

A A A A
‘‘ 0110100000’’ 0.59 0.41 0.979
‘‘1110110000’’ 0.57 0.43 0.986
‘‘1110100001’’ 0.46 0.54 0.996

‘‘1110100000’’ - - -

Ñ5
2
3 N 0.75 0.25 0.811

Ñ5
1
2 N 0.72 0.28 0.852

-
he
al

FIG. 4. The local uncertaintyh10(xprev) based on the previous
ten-block for a recorded interspike interval sequence of the cray
mechanoreceptor. Upper plot, interspike intervalstn ; lower plot,
the local uncertaintyh10(xprev). For example, the peak with the low
uncertainty at timet'1092 sec was preceded by the patte
‘‘1110100000.’’
1-4
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more predictable than on average~see Table III!. To ensure
that the occurrences of these patterns are not simply fluc
tions, as expected in a random process, we have to tes
results against their counterparts in shuffled sequences. S
we deliberately choose the patterns with the lowest un
tainty, we must expect them to lie on the edge of their
spective distributions. Most conventional tests would the
fore assign to them a spurious significance. Still, our res
show that the local uncertainties given in Table III lie we
outside their distributions, obtained from an ensemble
first-order Markov surrogates.

A more faithful indicator of significance may be applie
to the pattern with the lowest local uncertain
‘‘1110100000.’’ Within an ensemble of 499 first-order Ma
kov surrogates, no pattern with less or equalhn(xprev) was
found. Another crucial point is the question of nonstation
ity. As could be observed, all patterns in Table III share
common feature of a final block of repeating ones or zer
As a first indication that the high predictability is not sole
due to the block of repeating zeros, Table III also conta
the results for slight variations of the pattern ‘‘1110100000
Moreover, the results stay reasonably stable when restric
the analysis to a part of the original recording.

Similar results were obtained for other crayfish reco
ings. Examples of a pattern with the lowest local uncertai
for different files are: ‘‘1111011000,’’ ‘‘1000001010,’’
‘ ‘0000010011,’’ and ‘‘0000001010.’’ However, due to th
finite length of the datasets and nonstationarity, the num
of examples is limited. Thus, the claim thatall files have this
property would not be justified by the data.

While it is beyond the scope of this paper to arg
whether these patterns of low uncertainty are of biologi
relevance, we will speculate on how they might influence
balance between order and disorder. Moreover, each
specific pattern corresponds to a precise time in the in
spike interval sequence, making experimental tests ab
their relevance possible.

V. DISCUSSION

In the first section, we have compared the overall str
ture of spike trains from the paddlefish electroreceptor w
those from the crayfish mechanoreceptor. Both yield a dif
ent conditional entropy, the former showing a high degree
structure, while the latter is, apart from nonstationarity,
most random. Up to here, our findings support earlier rep
on correlations and memory found in different kinds of sp
trains @3,4#. In particular, for the paddlefish ER, short-ter
anticorrelations were reported in@17#.

Regarding the comparison of two different kinds of se
an

s.
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sory receptors, we want to emphasize that our analysis d
not aim at measuring the information transfer in neuro
signals. Our study was restricted to spontaneous activ
containing no information about external stimuli at all. Sti
~anti-!correlations in spontaneous activity do have an infl
ence on the detectability of weak changes in the intersp
interval probability distribution@3#: A weak signal is poten-
tially difficult to detect, given a relatively high variability
and the lack of correlations in the spontaneous activity. C
relations will decrease the possibility that small dynami
changes in the spike activity are obscured by statistical fl
tuations, but maybe at the cost of reducing the signals ca
ity to allow for an effective encoding of different stimuli.

While the correlation between the existence of extend
memory in the afferent spike train and the sensitivity of t
receptive systems is presently unkown, we may note that
juvenile paddlefish feeds on individual Daphnia, which pr
duce oscillations at about 5210 Hz. The electrosensory sys
tem is tuned to this frequency~shown by both the behaviora
experiments and electrophysiology! @14–17#.

On the other hand, the crayfish mechanoreceptor a
lacks a primary specialization. The sensitivity of sing
mechanoreceptors may vary considerably over a broad ra
from 1 Hz to 40 Hz@21#.

It is understood that general conclusions may not
drawn from a study of peripheral systems of only two a
mals. Our comparison focuses on characterizing the varia
ity of the spontaneous activity of both sensory systems
particular, we want to emphasize that entropy measures,
as the local uncertainty, are also applicable to~almost! ran-
dom spike trains and to situations in which the animal m
make a decision on the basis of a finite number of intersp
intervals.

As demonstrated, even in almost random sequences,
events can still stand out. Thus, the crayfish may indeed
able to recognize certain ‘‘words’’ even though they appe
rarely in its neural sequences. To this end, we have propo
the local uncertainty, which quantifies the predictability
individual spikes, as an additional tool.
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