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Entropy and local uncertainty of data from sensory neurons
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We present an empirical comparison between neural interspike interval sequences obtained from two differ-
ent kinds of sensory receptors. Both differ in their internal structure as well as in the strength of correlations
and the degree of predictability found in the respective spike trains. As a further tool in this context, we suggest
the local uncertainty, assigning a well-defined predictability to individual spikes. The local uncertainty is
demonstrated to reveal significant patterns within the interspike interval sequences, even when its overall
structure is(almos) random. Our approach is based on the concept of symbolic dynamics and information
theory.
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[. INTRODUCTION sequences and discuss the biological implications of the find-
ings.
In recent years, several authors have investigated the en-
coding of information in neural spike trains using the con-
cepts of entropy and information thedry—7]. Of particular Il. PADDLEFISH AND CRAYFISH
interest has been the correlation between the ability of an ) ) ) ) )
animal to detect weak sensory signals and the existence of OUr first experimental object is the paddiefigblyodon
extended memory in the respective spike trg8(8]. Weak spathula an ancient freshwater species native to the Missis-
deviations, caused by external stimuli, must be detecte@iPpi River drainage, having evolved 65 million years ago
against the ongoing background of the spontaneous activity10]. The paddlefish is characterized by a unique, rostral ex-
Intuitively, this task should be easier when the spontaneoutension in front of the head, covered with tens of thousands
activity is rather regular and predictabd]. On the other of electrosensory receptors, morphologically similar to the
hand, predictability and correlations are known to reduce enampullae of Lorenzini of sharks and rajyil—13. The elec-
tropy, and thus might be expected to degrade informatiofirosense is passive, and is used to detect weak electrical sig
transmission. While it is presently not clear what effect cor-nals from planktonic prey14].
relations will have on the signal detection performance of Significant for this study, each electroreceptor is a rather
different animals, we may safely assume that nature has deomplex system, consisting of a cluster of 35 skin pores,
veloped a variety of different mechanisms to provide an efeach leading into a short canal, which ends in a sensory
fective (well-adapted representation of outside stimuli. epithelium containing approximately 400 hair cells. The hair
Here we present an empirical comparison between theells of each pore, which are considered electrosensitive,
spontaneous activity obtained from two different sensory resynaptically excite the terminals of a primary afferent axon
ceptors, the paddlefish electroreceptieR) and the crayfish ~projecting to the brai11,14. The synapse from each hair
mechanoreceptors. Both are sensory receptors, for perceptiégll, together with the spiking properties of the primary af-
of the outside world, still they differ in their internal struc- ferent endings, convert the analog signal from the hair cells
ture and the complexity of the generated interspike intervainto spike trains, coding the electrosensory information as a
sequences. We will study the entropy and predictability oftime seriethe intervals between spikes
these sequences based on the concept of symbolic dynamics.We recorded single-unit spikes of electroreceptor affer-
The paper is organized as follows. First, we will give aents,in vivo, using tungsten microelectrodes. For a detailed
brief description of the experimental setup. After that, wedescription of the apparatus and methods[dde-16. Each
will shortly review the concepts of symbolic dynamics andrecording contains 10000 to 50 000 interpike intervals. All
Shannon entrop}Q]. In the last section, we will summarize sets of interspike intervals had coefficients of variatw
the results obtained from the empirical interspike interval<0.3, defined a€V:=o /() with () being the mean in-
terspike interval andr,= \(72) —(7)2. The interspike inter-
val histogram(ISIH) of all files resembled a log-normal dis-
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correlation function of interspike intervals that displayslimit h may be taken as a measure of correlations. If no
alternations(anticorrelations extending to up to 20 to 40 correlations exist beyond a finite-range (Markov chain
interspike intervals. property the asymptotic value is reached for=m. How-

The spike trains obtained from the paddlefish electroreever, for most systems, the Markov property applies to an
ceptor will be set against those obtained from mechanoreceppproximate description of the system only. The generic case
tor afferents in the sensory nerve roots of the crayfish. Comyields an exponential decay of the conditional entrbpyto
pared to the paddlefish, the crayfish has a much longdts limit [23]. Sequences showing a subexponential decay of
evolutionary history, having ancestors that arose more thathe h,, are related to long-range correlatioist,22.

600 million years ag$18]. The mechanoreceptor system is  Particular attention must be paid to the estimation of the
thought to be primarily a predator avoidance system, sensdescribed quantities for finite sequences of lergthn this

tive to hydrodynamic motions. Details of the apparatus andase, then-block entropyH,, becomes systematically under-
methods used for the crayfish experiments are givdi9  estimated 25,26|.

21]. Each mechanoreceptor may be viewed as having two

elements: a stiff hair, which compresses a stretch-sensitive 1

region of the sensory neuron and the neuron itself. There are m : )
no synapses. The extracellular recordings were made with a
suction electrode attached to the afferent sensory neuron. Ffere | is the size of the alphabet andM,<I" denotes the
this, the c_rayfls_;h tailfan and part of th_e abdominal nerve Co,r(humber of differenn-blocks within the sequence.

were excised intact and immersed in an appropriate saline
solution. Each recording yielded 10 000 to 220 000 interspike
intervals under relatively constant experimental conditions.

The firing sequences of mechanoreceptors are character- In addition to the conditional entropiés,, which charac-
ized by high variability:CV’s are in the range from 0.7 to terize the average uncertainty, we useltl predictability
1.2. The ISIH’s of mechanoreceptors do not possess any exe quantify structure within the interspike interval sequences.
pressed maxima and can be well approximated by an expd\t each time step, the local conditional entropy(Xpe.)
nential distribution. This indicates the lack of oscillations. gives the uncertainty of the next symbd) ., ;, based on the
The autocorrelation function is characterized by a very fasprecedingn-block Xy, [33] [22,27.
drop that is less than five interspike intervals. In the subse-
qguent sections, we will compare the spike trains from both o
receptors. Before that, we shall shortly review the relevant M (Xprev) += {A%l} P(An11Xpred10G P(An1/Xpre) . (4
results for Shannon entropy.

M,—1

b d
Hg serve_Hn_ N

A. The local predictability

Note that the average over all possible prehistories is the
IIl. SHANNON ENTROPY AND PREDICTABILITY previously defined conditional entrofy,

The starting point is a symbolic sequerg§econsisting of
successive symboléetters drawn from a finite alphabet. hn=(Nn(Xprev)) = {XE ; P(Xprew Nn(Xprev) - (5
Substringsx(M=A,- - -A,, A e A of lengthn are termech- o
words orn-blocks and are supposed to appear with a well-The local predictability or local redundanay,(Xpre,) is
defined probabilityp(x(™) within the infinite sequenc&  given by
Following Shannon’s approadB], then-block entropied
are given by M'n(Xprev) =1 = hn(Xprey)- (6)

o - ") For that we assume thhf,(X,,) is normalized to the size of
Hpi=— 2 p(x™)logp(x™). (D) the alphabet: All logarithms are taken to bdse2. In the
following, we refer to all entropy measures as dimensionless
The summation is carried out over alblocks with nonzero quantities in the intervdl0,1].
probability p(x(™)>0. Then-block entropieH,, are a mea- In the next section, we will demonstrate that local mea-
sure ofuncertaintyand give the average amount of informa- sures provide an appropriate tool to identify significant pat-
tion contained in a word of length. Consequently, the con- terns within a sequence, even when its overall structure is
ditional entropiedh, close to random.
hni=Hni1=Hn, ho=Ha, @) B. Symbolic dynamics
give the average amount of information required to predict The application of the aforementioned concepts to the in-
the (n+1)th symbol, when the preceding symbols are terspike interval sequences requires a coarse-grained repre-
known [22]. Note thath, is monotonically decreasing: sentation of the signal, and the results will partly depend on
h,r1<h,. how this coarse graining is performed. There have been sev-
Of particular interest is thentropy of the sourcer limit  eral approaches to the discretization of data, the most com-
entropyh, defined as the limit of the conditional entropy for mon being to divide the time series into small bins, assigning
largen. The convergence of the conditional entrdpyto its  the value “1” or “0” to each bin according to the occurrence
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FIG. 1. The conditional entroply, as a function of word length conditional entropy conditional entropy hy

n for an interspike interval sequence of the paddlefisfi) and the
crayfish (right). The straight lines denote the average conditional
entropy obtained from mth-order Markov process. Both sequences
have memory at least up to order=5. Note that they axis is
different in both plots. higher-order conditional entropynmax(c). Since each file had

a different length(number of spikesthe ordern,,,, up to
or nonoccurrence of a spiké]. Here, we will use a different  which the conditional entropi, could be estimated differs
approach. Each interspike interva| will be labeled either  from file to file. All files allowed for at least order=7.
long (“1” ) or short(*0” ), depending on whether itis longer  The result for each file was tested against Markov se-
or shorter than a given threshatd quences of given orden=0,1, . . . ,6.These surrogate data
sets were produced as follows: For each shuffle step, two
™m>Cc=%=1 m=c=$=0. @) symbols were randomly chosen within the sequence and ex-

) _ changed only if them-nearest neighbors of both symbols
Naturally, the question arises whether such a crude represepyaiched each other. For=0. this corresponds to an uncon-
tation of the data is sufficient to capture the essential strucsirained random shuffle. With=1. two symbols are ex-

ture within the time series. changed only if the left neighbor of the first symbol is iden-

_ Previous investigations revealed that one may give heugcy 1o the left neighbor of the second symbol and the same
ristic criteria for choosing an optimal threshold-crossing par-4 5o holds for the right neighbors.

tition [5,28,29, which ensure that the coarse-grained se- gy construction, multiple iterations of shuffle steps will

quence is a reasonable approximation of the dataset. It isreserve the two-block frequency, hence, the conditional en-
understood that the situation here is more complex. Still, W&ropy h,. For higherm, the shuffling preserves the condi-
argue that while some microscopic detail of the dynamicsjonal entropyh,, up to ordern=m, corresponding to an
may be lost on the symbolic level, most temporal correélayh_order Markov process. Figure 1 shows a representative
tions are embedded in the structure of thord distribu- reqit for a paddlefish electroreceptdeft) and a crayfish
tions. Here, this view is mainly supported by the results Ob'mechanorecepto(rright). In both cases, the conditional en-
tained. h 2l point is the i | hich | tropy h,, decreases with increasing word length, indicating
_ Another crucial point is the timescale on which our analy-cqreations and long memory in the respective spike trains.
sis is applied. Based on behavioral experiments, an UpPgqvever, the magnitude of the decrease is differ@ite
bound for the reaction time of the paddlefish is givenTby 14t in Fig. 1, they axes of both plots are not identizaThe

~125-200 msed16]. Given that the mean interspike in- ot ghservation is thus, that the paddiefish sequences pos-
terval for the paddlefish ig7,)~10—30 msec, we may

speculate that the relevant information is encoded in no more

FIG. 2. The histogram of the conditional entropigsfor a word
lengthn=>5. Left, paddlefish, right, crayfish.

than a few spikes. For the crayfish, reflex reactions may take 0.12 ~'101010"

place in a fraction of this timéthough as with all animals, 5- 0.1 *010101"

slow adaptive responses occur over an extended period of c . .

time) [30,31]. Given these considerations, we restrict our- g 0.08 110104

selves to a study of 3 10 interspike intervals in spontaneous g 0.06 144

recordings from both crayfish and paddlefish. Our way of &=

partitioning the data allows us to investigate this timescale - 0.04

with high precision and without the need to make further o

assumptions about the scaling of entropies for finite data. In 0.02

the subsequent analysis, E@®) was used to monitor the LTI —
expected deviations. 0 10 20 30 40 50 60

rank
IV. APPLICATION ON DATA

EROM SENSORY NEURONS: RESULTS FIG. 3. The Zipf-ordered frequency distribution for six blocks,
calculated from a paddlefish sequence. The structure is dominated
A total of 29 paddlefish and 29 crayfish recordings werepy the pattern “101010” and “010101.” The bold line denotes the
analyzed. The data were partitioned according to &g. average for surrogates with preserved conditional probabilities
with the partition threshold optimized to produce a maximalp(A,.1|A,).
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TABLE I. Some examples for typicai-blocks found within a '§ 01
(partioned paddlefish sequence. For all word lengtlthe sequence @, ™
was dominated by patterns with alternating “1”s and “0"s. The T”’u
first row contains the conditional probabilities, which define a first- E 0.05
order Markov process. The relative frequencies of occurrence of the € -
n-blocks were compared to the respective product of conditional E
probabilities. @ 0
[T
p(0)= 0.501 n-block Relative frequency Expected £
p(1)~ 0.499 “101” 0.286 0.269 1
p(0|0)~  0.267 “011” 0.089 0.098 As
p(1]0)=~  0.733 “1010” 0.230 0.197 xa 0.9
p(0j1)~ 0.735 “0110” 0.059 0.072 -
p(1j]1)~ 0.265 “1100” 0.033 0.026 =
0.8
1050 1060 1070 1080 1090 1100
sess a larger amount of structure, while the data from the time [sec]
crayfish is more close to random. Figure 2 shows a histogram
of the estimated conditional entropibg for all sequences. FIG. 4. The local uncertaintf;o(Xpe) based on the previous
The clustering of the crayfish data sets at large entropies fen-block for a recorded interspike interval sequence of the crayfish
clearly seen. mechanoreceptor. Upper plot, interspike intervals lower plot,

To be more specific about which substructures within theh€ local uncertainto(Xpre,) . For example, the peak with the low
spike trains contribute to this difference, we examine the!ncerainty at timet~1092sec was preceded by the pattern
respectiven-word distributions. For the paddlefish ER, the 1110100000.
decrease of conditional entropy is mostly due to long-short
anticorrelations, already reported for this kind of sensory re- ] ] ]
ceptor[32]. Long interspike intervals are often followed by ~ Can the crayfish recognize certain words? At least for
short ones, and vice versa. Consequently, for 20 of 29 sesome crayfish recordings, the deviations from a random se-
quences ther-block distribution was dominated by the pat- duence r_nust be attributed to nontrivial structure in the
terns of alternating series of ones and zeros, e.g., “101010™-Plock distribution. _
and “010101” forn=6. To emphasize this, we take into account the local uncer-

However, in no case could this finding be explained by a@iNty Nn(Xpre)), as defined in Eqi4). As an example, Fig. 4
first-order Markov process, incorporating the long-short anShows the local uncertainty,o(Xyre\) Of crayfish interspike
ticorrelation(see Fig. 3 and Table.IFor four sequences, the intervals based on the previous ten-block. Although the over-
n-block distribution was dominated by more complicateda” structure of the spike train is almost completely rand_om,
patterns, e.g., such as “'010010” or *011001" for=6. rare events still stand out:_ we observe a few _part_lcu!a_lr indi-
The remaining five sequences have to be treated separatefydual patterns, after which the sequence is significantly
Here, the structure was due to blocks of repeating ones or
zeros, indicating nonstationarity of the time series. This will  TABLE Ill. The local uncertaintyh;o(Xp,) for a crayfish se-
be discussed in more detail for the crayfish data. quence. Also included are in.ght variations of the first pattern

The comparison with higher-order surrogates reveale(gﬂ_'pped symbols are deplcteo_l in boldrhe results for the pattern
that except for two, no sequence could be approximated by with the lowest local uncertainty stay reasonably stable when re-

Markov process up to orden=6 (see Table I\. stricting the sequence length ko
For the crayfish, the situation is different. Here, 1 of 29
sequences matched a first-order Markov process, seven stprev P(LXpre) POl Xpred) M (Xprey)
guences were compatible with Markov processes up to order;110100000” 0.75 0.25 0.806
m=6 (Table Il). For 17 of 29 sequences, tlsenall devia-  «1911110000” 0.75 0.25 0.815
tions from random sequences were mostly due to blocks ofy590011111" 0.27 0.73 0.840
repeating ones or zeros. Caution requires us to interpret thig),,; 190000 0.72 0.28 0.856
as a sign of nonstationarity, almost unavoidable in recordingsonooooooo,, 0.71 0.29 0.863
from living animals[34]. : : : :
TABLE II. _Each column denotes the number of files for which “1011118111000000009, 09;5579 00.;1431 0?.998769
the hypothesis of anth-order Markov sequence was accepted.

“11101000Q” 0.46 0.54 0.996
m= 0 1 2 3 4 5 6 m>7 “1110100000" - - -
Paddlefish 0 0 0 1 0 0 1 27 N=2N 0.75 0.25 0.811
Crayfish o 1 1 3 1 1 0 22 N=32N 0.72 0.28 0.852
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more predictable than on averaggee Table IlJ. To ensure sory receptors, we want to emphasize that our analysis does
that the occurrences of these patterns are not simply fluctuaot aim at measuring the information transfer in neuronal
tions, as expected in a random process, we have to test tlsggnals. Our study was restricted to spontaneous activity,
results against their counterparts in shuffled sequences. Sincentaining no information about external stimuli at all. Still,
we deliberately choose the patterns with the lowest unceranti-)correlations in spontaneous activity do have an influ-
tainty, we must expect them to lie on the edge of their re-ence on the detectability of weak changes in the interspike
spective distributions. Most conventional tests would thereinterval probability distributior{3]: A weak signal is poten-
fore assign to them a spurious significance. Still, our resultsially difficult to detect, given a relatively high variability
show that the local uncertainties given in Table Il lie well and the lack of correlations in the spontaneous activity. Cor-
outside their distributions, obtained from an ensemble ofelations will decrease the possibility that small dynamical
first-order Markov surrogates. changes in the spike activity are obscured by statistical fluc-
A more faithful indicator of significance may be applied tuations, but maybe at the cost of reducing the signals capac-
to the pattern with the lowest local uncertainty ity to allow for an effective encoding of different stimuli.
*1110100000." Within an ensemble of 499 first-order Mar- ~ While the correlation between the existence of extended
kov surrogates, no pattern with less or eghalx,e) Was memory in the afferent spike train and the sensitivity of the
found. Another crucial point is the question of nonstationarreceptive systems is presently unkown, we may note that the
ity. As could be observed, all patterns in Table Ill share thguvenile paddlefish feeds on individual Daphnia, which pro-
common feature of a final block of repeating ones or zerosduce oscillations at about-510 Hz. The electrosensory sys-
As a first indication that the high predictability is not solely tem is tuned to this frequengghown by both the behavioral
due to the block of repeating zeros, Table Ill also containexperiments and electrophysiolody4—17.
the results for slight variations of the pattern “1110100000.” On the other hand, the crayfish mechanoreceptor array
Moreover, the results stay reasonably stable when restrictinigcks a primary specialization. The sensitivity of single
the analysis to a part of the original recording. mechanoreceptors may vary considerably over a broad range
Similar results were obtained for other crayfish record-from 1 Hz to 40 HZ[21].
ings. Examples of a pattern with the lowest local uncertainty It is understood that general conclusions may not be
for different files are: “1111011000,” “1000001010,” drawn from a study of peripheral systems of only two ani-
0000010011, and “0000001010.” However, due to the mals. Our comparison focuses on characterizing the variabil-
finite length of the datasets and nonstationarity, the numbety of the spontaneous activity of both sensory systems. In
of examples is limited. Thus, the claim thedt files have this  particular, we want to emphasize that entropy measures, such
property would not be justified by the data. as the local uncertainty, are also applicablgabnos) ran-
While it is beyond the scope of this paper to arguedom spike trains and to situations in which the animal must
whether these patterns of low uncertainty are of biologicaimake a decision on the basis of a finite number of interspike
relevance, we will speculate on how they might influence thentervals.
balance between order and disorder. Moreover, each such As demonstrated, even in almost random sequences, rare
specific pattern corresponds to a precise time in the interevents can still stand out. Thus, the crayfish may indeed be
spike interval sequence, making experimental tests abouble to recognize certain “words” even though they appear

their relevance possible. rarely in its neural sequences. To this end, we have proposed
the local uncertainty, which quantifies the predictability of
V. DISCUSSION individual spikes, as an additional tool.

In the first section, we have compared the overall struc-
ture of spike trains from the paddlefish electroreceptor with
those from the crayfish mechanoreceptor. Both yield a differ- ACKNOWLEDGMENTS
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