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Indications of nonlinear deterministic and finite-dimensional structures in time series
of brain electrical activity: Dependence on recording region and brain state
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We compare dynamical properties of brain electrical activity from different recording regions and from
different physiological and pathological brain states. Using the nonlinear prediction error and an estimate of an
effective correlation dimension in combination with the method of iterative amplitude adjusted surrogate data,
we analyze sets of electroencephalographic~EEG! time series: surface EEG recordings from healthy volunteers
with eyes closed and eyes open, and intracranial EEG recordings from epilepsy patients during the seizure free
interval from within and from outside the seizure generating area as well as intracranial EEG recordings of
epileptic seizures. As a preanalysis step an inclusion criterion of weak stationarity was applied. Surface EEG
recordings with eyes open were compatible with the surrogates’ null hypothesis of a Gaussian linear stochastic
process. Strongest indications of nonlinear deterministic dynamics were found for seizure activity. Results of
the other sets were found to be inbetween these two extremes.
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I. INTRODUCTION

The theory of deterministic chaos deals with complex d
namical systems that are characterized by the fact that
can be rather simple to describe, e.g., by a set of nonlin
differential equations, but can show a complicated, often
ratic, temporal evolution@1#. Nonlinearity as a necessar
condition for such chaotic behavior is present in many
namical systems found in nature. For a neuronal netw
such as the brain, nonlinearity is introduced even on the
lular level, since the dynamical behavior of individual ne
rons is governed by threshold and saturation phenom
Moreover, the hypothesis of an entirely stochastic brain
be rejected due to its ability to perform sophisticated cog
tive tasks. For these reasons, the electroencephalog
~EEG! appears to be an appropriate area for nonlinear t
series analysis~NTSA! techniques, the practical spin-o
from the theory of deterministic chaos@2#.

The structure of the brain, however, is highly comp
cated. Furthermore, the EEG always results from a h
number of individual neurons, each interacting with
neighboring neurons as well as with remote neurons wh
electric potentials are not included in the measurement.
therefore questionable whether EEG time series, particul
those of short duration, can carry enough information to
veal dynamical properties of the underlying system bra
Many studies are known from the literature in which NTS
techniques were applied to different kinds of EEGs fro
humans, such as recordings from healthy volunteers at
@3–10#, sleep@11–13#, during periods of cognitive activity
@14–17#, under the influence of low doses of ethanol@18# or
anesthetics @19#, or from patients with diseases lik
Alzheimer’s @16,20#, Parkinson’s@21,22#, Creutzfeldt-Jakob
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@23#, depression@24#, and schizophrenia@25# mostly during
cognitive activity and in comparison against healthy cont
subjects. In particular, recordings from epilepsy patients h
often attracted researchers’ attention@9,26–41#. This is due
to outstanding features of actual seizure activity and, mo
over, to the medical indication to perform recordings inv
sively in epilepsy patients, which offers a unique view of t
dynamical system human brain.

Interpretations of results ranged from ‘‘evidences for ch
otic attractors’’ underlying the alpha rhythm@7#, sleep re-
cordings@11#, or epileptic seizures@33,35,40#, to the conclu-
sion that EEG data of healthy volunteers ‘‘may be mo
appropriately modeled by linearly filtered noise’’@15#. In be-
tween these two extremes, authors concluded significan
dications of nonlinearity but no indication of low dimensio
ality or determinism@3–5,8,13#. Besides the aim of finding a
certain dynamical model for the EEG, it was furthermo
investigated if relative changes of the calculated quanti
are capable of differentiating between different physiologi
brain states@14,15,17#, increasing insight into brain dysfunc
tion @9,16,21–25# or even of yielding information useful fo
diagnostic purposes@26,28–30,34#. The anticipation of im-
pending epileptic seizures is a further challenging aspect
was investigated by a number of studies@31,36–39#.

Nevertheless, it remains uncertain whether the aforem
tioned varying results indeed reflect different dynamical fe
tures of brain electrical activity, or whether they must inste
be attributed to differences in parameters of the respec
algorithms and recording setups. Thus the aim of our stud
to compare dynamical properties of brain electrical activ
from different extracranial and intracranial recording regio
and from different physiological and pathological bra
states, using fixed analysis parameters. Apart from the dif
ent recording electrodes used for extracranial and intracra
EEG registration, all other recording parameters were fix
Some of the morphological characteristics of the differe
EEG time series under investigation, which are obvious to
expert’s eye, will be sketched in the following.
©2001 The American Physical Society07-1
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EEG time series recorded extracranially during the
laxed state of healthy subjects with eyes closed show a
dominant physiological rhythm, the so-called alpha rhyth
in a frequency range of 8–13 Hz, an activity which is mo
pronounced at the back of the head@42#. In contrast, broade
frequency characteristics are obtained for open eyes. E
time series are also recorded intracranially in humans, h
ever only in the framework of a presurgical evaluation
focal epilepsies. In this context the implantation of electrod
is carried out to exactly localize the seizure generating a
which is termed the epileptogenic zone@43#. During a sei-
zure free interval the EEG recorded from within the epile
togenic zone is often characterized by intermittent occ
rences of so-called interictal epileptiform activitie
Investigation of these steep, sometimes rhythmic high am
tude patterns in EEG recordings contributes to a localiza
of the epileptogenic zone. Fewer and less pronounced in
ictal epileptiform activities can be found at recording sit
distant from the epileptogenic zone. Finally, the EEG
corded during epileptic seizures, termed ictal activity, is
most periodic and of high amplitude, resulting from hyp
synchronous activity of large assemblies of neurons.

We tested indications of deterministic and/or low
dimensional structures in the aforementioned EEG time
ries against the null hypothesis that these properties are c
patible with a Gaussian linear stochastic and station
process that was passed through a monotonic static b
possibly nonlinear measurement function. To this end, a n
linear prediction error@44# and an estimate of the correlatio
dimension@45# were calculated in a reconstructed state sp
@46# for both the original EEG time series and an ensem
of surrogate time series@47#. To reduce the probability o
rejections of this null hypothesis, due solely to nonstation
ity, EEG segments were chosen under an inclusion crite
of weak stationarity.

II. METHODS

A. Data selection and recording techniques

Five sets ~denoted A–E! each containing 100 single
channel EEG segments of 23.6-sec duration, were comp
for the study. These segments were selected and cut out
continuous multichannel EEG recordings after visual insp
tion for artifacts, e.g., due to muscle activity or eye mov
ments. In addition, the segments had to fulfill a stationa
criterion described in detail in Sec. II B. Sets A and B co
sisted of segments taken from surface EEG recordings
were carried out on five healthy volunteers using a stand
ized electrode placement scheme~cf. Fig. 1!. Volunteers
were relaxed in an awake state with eyes open~A! and eyes
closed~B!, respectively. Sets C, D, and E originated from o
EEG archive of presurgical diagnosis. For the present st
EEGs from five patients were selected, all of whom h
achieved complete seizure control after resection of one
the hippocampal formations, which was therefore correc
diagnosed to be the epileptogenic zone~cf. Fig. 2!. Segments
in set D were recorded from within the epileptogenic zo
and those in set C from the hippocampal formation of
opposite hemisphere of the brain. While sets C and D c
06190
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tained only activity measured during seizure free interva
set E only contained seizure activity. Here segments w
selected from all recording sites exhibiting ictal activity.

All EEG signals were recorded with the same 12
channel amplifier system, using an average common re
ence@omitting electrodes containing pathological activity~C,
D, and E! or strong eye movement artifacts~A and B!#. After
12 bit analog-to-digital conversion, the data were writt
continuously onto the disk of a data acquisition compu
system at a sampling rate of 173.61 Hz. Band-pass fi
settings were 0.53–40 Hz~12 dB/oct.!. Exemplary EEGs are
depicted in Fig. 3.

B. Steps of analysis

1. Surrogate time series

For each time seriess539 surrogate time series were ge
erated using the technique of Schreiber and Schmitz@47#.
This iterative amplitude adjusting scheme results in sur
gates that consist of the original sample values and h
power spectra ‘‘practically indistinguishable’’@47# from
those of the original time series. The underlying null hypo

FIG. 1. Scheme of the locations of surface electrodes accor
to the international 10-20 system. Names of the electrode posit
are derived from their anatomical locations. Segments of sets A
B were taken from all depicted electrodes.

FIG. 2. Scheme of intracranial electrodes implanted for pres
gical evaluation of epilepsy patients. Depth electrodes were
planted symmetrically into the hippocampal formations~top!. Seg-
ments of sets C and D were taken from all contacts of the respec
depth electrode. Strip electrodes were implanted onto the latera
basal regions~middle and bottom! of the neocortex. Segments of s
E were taken from contacts of all depicted electrodes.
7-2
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INDICATIONS OF NONLINEAR DETERMINISTIC AND . . . PHYSICAL REVIEW E64 061907
esis is that the time series is compatible with a Gauss
linear stochastic and stationary process measured by a s
and monotonic, possibly nonlinear, function. Since disco
nuities between the end and beginning of a time series
known to cause spurious spectral frequency compone
segments of 4396 samples were at first cut out of the rec
ings. Within these longer intervals, the beginning of each
the final segments ofN54096 samples was then chosen
such a way that the amplitude difference of the last and
data points was within the range of amplitude differences
consecutive data points, and the slopes at the end and b
ning of the time series had the same sign. This algorit
avoids the use of window functions for a calculation of t
power spectrum. A comparable technique was applied in R
@18#.

2. Weak stationarity criterion

The probative force of a rejection of the surrogates’ n
hypothesis for deterministic and/or low-dimensional stru
ture is limited, since stationarity is included in this null h
pothesis. On the other hand, this particular property allo
one to use surrogates in a test for nonstationarity. Here
propose such a test as a preanalysis step that eventual
duces the probability of rejections of the null hypothesis d
to nonstationarities.

EEG-time series and respective surrogates were eac
vided into n516 nonoverlapping subsegments~length N*
5256). For each subsegment (j 51, . . . ,n) the average de
viation of amplitudes

mj
x5

1

N*
(
i 51

N*

uxi2 x̄u ~1!

FIG. 3. Exemplary EEG time series from each of the five se
From top to bottom: set A to set E~denoted EEG-a to EEG-e!.
Amplitudes of surface EEG recordings are typically in the order
somemV. For intracranial EEG recordings amplitudes range arou
some 100mV. For seizure activity these voltages can exce
1000mV.
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~wherex̄ denotes the mean of the respective subsegment! and
the center frequency

mj
v5

2

N*
(
i 51

N* /2
v iS~v i !

S~v i !
~2!

~whereS denotes the amplitude of the Fourier transform
the respective subsegment! were calculated. The fluctuatio
of these properties among subsegments was quantified u
the average deviations

Fx5
1

n (
j 51

n

umj
x2mxu, ~3!

Fv5
1

n (
j 51

n

umj
v2mvu, ~4!

where the overbar denotes mean of all 16 subsegments
an inclusion criterion, bothFv and Fx of the original time
series were required to range within the distribution cal
lated from the respective surrogate ensemble, i.e., both
ues must neither exceed the maximum nor fall below
minimum of the surrogate distribution.

3. Estimate of an effective correlation dimension

Using delay coordinatesxi5(xi ,xi 1t , . . . ,xi 1(m21)t)
@46# and the correlation sum

C~«,N!5
2

~N2T!~N2T21! (
i 50

N21

(
j 5 i 1T

N21

Q~«2ixi2xj i!

~5!

@where Q is the Heaviside step function,Q(a)50;a<0
and Q(a)51;a.0# the correlation dimensionD2 is de-
fined @45# by

D25 lim
N→`

lim
«→0

d~«,N!, ~6!

where

d~«,N!5
] ln C~«,N!

] ln «
. ~7!

From these definitions it follows that a true correlation d
mension cannot be calculated from time series of fin
length and limited accuracy. An estimation of an effecti
correlation dimension, however, can be obtained for th
time series where a quasiscaling behavior ofd(«,N) is found
at least for a limited range of the hypersphere radius« @50#.
The applied steps of analysis and the choice of parame
follow Ref. @36#, and use the algorithm described in Re
@51#. With a fixed time delay (t51 sampling time!, d(«,N)
was calculated for a range of embedding dimensionsm
51, . . .,25) using the maximum norm and applying
Theiler window@52# (T55 sampling times!. The range of«

.

f
d
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RALPH G. ANDRZEJAKet al. PHYSICAL REVIEW E 64 061907
was chosen to match the resolution of the analog-to-dig
converter, and divided into 128 intervals. A ‘‘quasiscali
region’’ @« l ,«u# is defined by

«u5max$«u d~«,N! um51.0.975%, ~8!

« l5min$«u ud~«u ,N! um5252d~«,N! um525u

<0.05d~«,N! um525%. ~9!

If «u and « l existed, and the numberNr of « values in
@« l ,«u# was greater than or equal to 5, the estimate

D2,e f f5
1

Nr
(

«5« l

«u

d~«,N! um525 ~10!

was computed. If no quasiscaling existed or ifD2,e f f>7.2
'2 logN ~cf. Ref. @53#!, D2,e f f was set to an arbitrary valu
of Du510.

4. Nonlinear prediction error

For each reference pointxi ( i 51, . . . ,N2mt) in a re-
constructed state space~embedding dimensionm56 and
time delayt58 sampling times! a fixed number (k55) of
nearest neighbors$xj% j 51, . . . ,k was used to perform an
H-step prediction:

xi 1H̃5
1

k (
j 51

k

xj 1H . ~11!

The difference between the actualxi 1H and predicted trans
lation xi 1H̃ is the local prediction error

« i ,xi 1H̃
5uxi 1H2xi 1H̃u. ~12!

The local prediction error for the mean of the time seriesx̄ is

« i ,x̄5uxi 1H2 x̄u, ~13!

wherex̄ is anm-dimensional vector that carries the mean
each of its component. Finally the nonlinear prediction er
~P! is calculated from

P5
R~« i ,xi 1H̃

)

R~« i ,x̄!
, ~14!

whereR indicates the root mean square. For a nearest ne
bor search for every reference pointxi , a Theiler window
(T525 sampling times! was applied to its own trajector
segment and to neighboring trajectory segments: In a
step, vectors with indices$ i 2T, . . . ,i 21,i 11, . . . ,i 1T%
were discarded. In a second step, out of a group of nea
neighbors passing the first step but closer to each othe
time thanT, only the one nearest toxi was included. The
second step is important to ensure that information for thP
is gathered from multiple adjacent trajectory segments ra
than from only one trajectory segment~cf. Refs. @48,49#!.
The prediction horizonH was set to 65 sampling times. Th
06190
al

r

h-

st

st
in

er

parameter values reported were obtained from preana
with regard to an optimum differentiation between nonline
deterministic and linear stochastic model systems. In orde
meet the requirements of the respective statistics, we ch
all parameters independently for bothP andD2,e f f .

5. Levels of null hypothesis testing - Statistical methods

All following steps of analysis were carried out forP and
D2 ,e f f . In the following,M stands for any of the two mea
sures. The null hypothesis was tested on two levels: on
level for every individual EEG segment, and on a seco
level for each of the five sets of EEG segments. On
individual level the null was rejected ifMEEG ranged outside
the distribution calculated from all of its surrogate
$MSuri 51, . . . ,s%. For a given set and measure, letRmin be the
number of rejections of the null hypothesis which we
caused by the fact thatMEEG was smaller than the minimum
of $MSuri 51, . . . ,s%. To rate a given number of rejections of th
null hypothesis, the probabilitypmin to find Rmin or less re-
jections on a set ofn 5100 time series just by chance wa
calculated as

pmin5 (
k50

Rmin S n
kD S 1

s11D kS 12
1

s11D n2k

. ~15!

In complete analogy, we calculated the probabilitypmax to
find Rmax or less rejections that were caused by the fact t
MEEG exceeded the surrogates’ maximum.

On the set level one surrogate per EEG segment was u
In accordance with Ref.@3#, values of$MEEG% and$MSUR1%
were used as paired observations for a nonparametric
coxon signed rank test. In order to ensure that the choic
Du did not influence results of the null hypothesis testing
the set level, the Wilcoxon test was carried out with differe
values ofDu .

III. RESULTS

Figure 4 depicts results of exemplary EEGs. Table I a
Fig. 5 summarize the results of all EEG segments and s
On the individual level, sets E and D exhibited highest a
second highestRmin values for bothP and D2,e f f . For all
sets, the use ofP led to higherRmin values than the use o
D2,e f f . This was particularly true for sets B and C, for whic
the strongest discordance between the two measures
found: while for P both Rmin values were significant, they
were both nonsignificant forD2,e f f . Concordance was found
only for set A: here none of the two measures led to sign
cant Rmin values. None of theRmax values was significant
Segments with rejection of the null hypothesis for bothP and
D2,e f f were found in sets D and E only.

For the vast majority of segmentsD2,e f f could not be
calculated, and was therefore set toDu ~cf. Table I!. For sets
A and B, this was the case for all EEG segments and alm
all surrogates. Consequently, the null hypothesis on the
level could not be tested usingD2,e f f . For set C, only a few
segments resulted inD2,e f f,Du , whereas most segments r
7-4
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FIG. 4. Results for the exemplary EEG times series depicted in Fig. 3. From top to bottom: results for EEG-a to EEG-e. Left
PEEG and PSUR1, . . . ,s vs prediction horizonH. Circles markPEEG. Right column:d(«,N)EEG andd(«,N)SUR1, . . . ,s vs the logarithm of the
hypersphere radius« for an embedding dimensionm525. Diamonds markd(«,N)EEG. In addition,d(«,N)EEG for embedding dimension
m51 is given. Asterisks mark cases for which the null hypothesis was rejected. Note that for EEG-b there is a limited rang
hypersphere radius« for which d(«,N)EEG was below the surrogates minimum. Hence the null hypothesis could be rejected. Neith
EEG nor the surrogate time series, however, resulted in a finite value ofD2,e f f , so that the null was not rejected forD2,e f f . Only for
examples EEG-d and EEG-e values ofD2,e f f could be estimated: 5.5 and 4.4, respectively.
l-
r
o
d

se

a
-

sing
r

sulted inD2,e f f
EEG5D2,e f f

SUR5Du , and therefore entered the Wi
coxon test as binded observations. A noteworthy numbe
D2,e f f

EEG values was calculated only from EEG time series
sets D and E. These sets were the only ones that resulte
significantpWilc values, so that the null hypothesis on the
06190
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level could be rejected.
Using P set A was the only one for which we obtained

nonsignificantpWilc value. For all other sets the null hypoth
esis could be rejected on the set level. Although decrea
mean values of PEEG were found in the set orde
7-5
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TABLE I. Results forP andD2,e f f on the individual level~rows 1 and 2 and 6 and 7! and on the set leve
~rows 3 and 4 and 8 and 9!. Values ofpmax are not listed, since all were nonsignificant. Values in row
denote the number of segments for which a value ofD2,e f f could be computed for the EEGs and th
surrogates, respectively. The last row contains the number of segments for which the null was rejec
both measures. n.s.: values ofp.0.05 are assumed to be nonsignificant.x: no Wilcoxon test was carried ou
for sets A and B~see the body text!.

A B C D E

Rmin /Rmax 4/1 9/3 14/3 37/0 89/0
P pmin n.s. ,0.001 ,0.001 ,0.001 ,0.001

pWilc n.s. 0.004 ,0.001 0.001 ,0.001
ZWilc -0.6 -2.9 -7.0 -3.5 -8.6

D2,e f f
EEG/SUR,Du 0/1 0/1 7/7 27/9 76/5
Rmin /Rmax 0/0 0/0 0/1 17/2 56/0

D2,e f f pmin n.s. n.s. n.s. ,0.001 ,0.001
pWilc x x n.s. ,0.001 ,0.001
ZWilc x x -1.0 -3.7 -7.6

P& D2,e f f Rmin /Rmax 0/0 0/0 0/0 10/0 40/0
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A-C-B-D-E, smallest values were still found to be high
than 0.5~cf. Fig. 5!.

In summary, the null hypothesis of an underlying line
stochastic and stationary process, measured by a static
monotonic but possibly nonlinear measurement function
represented by the iterative amplitude adjusted surroga
could be rejected for sets D and E for bothP andD2,e f f . For
sets B and C, only the use ofP led to a rejection, while these
sets appeared to be compatible with the null forD2,e f f . Set A
was the only set which was compatible with the null hypo
esis for both measures.

FIG. 5. Results forP ~upper panel! andD2,e f f ~lower panel! for
sets A–E. For every measure and set, circles depict the mean
of $MEEG%, and diamonds the mean value of$MSUR1%; bars on
symbols are given by the ranges of these distributions. Vertical l
in between the symbols depict those values ofMEEG for which the
null hypothesis was rejected on the individual level by the fact t
MEEG was smaller than the minimum of$MSUR1, . . . ,s%.
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IV. DISCUSSION

Our study showed clear differences in dynamical prop
ties of brain electrical acitivity from different extracrania
and intracranial recording regions and from different phy
ological and pathological brain states. Despite the assu
nonlinear deterministic nature of neuronal dynamics, a q
silinear stochastic and high-dimensional appearance of
EEG, as found for set A, consistent with results reported
Refs.@4,9,15#, might originate from both the huge number
neurons included in an EEG measurement and the com
cated structure of the brain. Particularly for surface EE
recordings, a further blurring of possible dynamical stru
tures in the EEG is caused by filter processes due to diffe
conductivities of the skull and other intermediate tissue. C
tain imposed constraints in dynamics, however, might
mask or further strengthen nonlinear deterministic traits
neuronal dynamics. Results found withP for set B suggest
that the closing of eyes might represent the imposing of s
a constraint in dynamics resulting in the well-known phy
ological alpha rhythm. For no segment of sets A and B, ho
ever, a conclusive indication of a finite dimension or even
low dimension could be obtained. Therefore, a differentiat
of the conditions of eyes closed and eyes open, such a
ported in Refs.@14,16#, could not be obtained. Regardin
these aspects, the results of our study are in agreement
other studies carried out on surface EEG recordings
healthy volunteers@3,5,6,8,13,18#, where indications of non-
linearity but not of an underlying low dimensional structu
were found.

The strong indications of nonlinear deterministic stru
tures found for set D were certainly often related to interic
epileptiform activity, as also reported in Refs.@28,29#. In
some cases, however, NTSA measures might be capab
detecting more subtle dynamical manifestations of the d
ease epilepsy. This view was supported by a number of s
ies @26–28,30,34,41#, all of which demonstrated a successf
localization of the epileptogenic zone during seizure free
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INDICATIONS OF NONLINEAR DETERMINISTIC AND . . . PHYSICAL REVIEW E64 061907
tervals, and the anticipation of seizures by analysis of mu
channel EEGs recorded from epilepsy patients@31,36–39#.
The results of these studies, as well as the present one,
gest that the pathological epileptic process imposes ce
constraints on neuronal dynamics. Even in the absenc
seizure activity these constraints appear to be reflected
nonlinear deterministic traits in the EEG, as suggested
results found for set D. Most prominently, however, this ph
nomenon was observed during seizure activity~set E!. This
finding is in correspondence with previous studies on in
cranial @29# and extracranial@9,32# recordings of epileptic
seizures. Theiler@32# evena priori assumed seizure activit
to be ‘‘undoubtedly nonlinear.’’

When comparing extracranial and intracranial record
locations, it is important to note that the latter integrate p
tentials over a much smaller steradian, i.e., fewer neur
contribute to the measured potentials, which furthermore
less filtered as compared to extracranial recording locatio
This might explain differences in results from sets A and
An additional and not contradictory explanation might
given by the following. Set C was measured from brain
gions which were proven to be nonepileptogenic but wh
may nevertheless participate in secondary, nonautonom
epileptic processes initiated by the epileptogenic zone.

The significant numbers of rejectionsRmin on the indi-
vidual level allow two different interpretations. On the on
hand, the sets could be assumed to have a certain distrib
of some distinct dynamical property not included in the n
hypothesis. Due to the limited sensitivity of the applied t
statistics for this very property, the individual null will b
rejected only for segments in one tail of this distributio
Differences ofRmin values between sets could then be e
plained by different centers and widths of these distributio
Given the respective calculation parameters used in
study, both higher values and a higher intergroup variabi
of Rmin were found forP as compared toD2,e f f . A compari-
son between Refs.@4#, and @8#, as well as data reported i
Ref. @18# show analogous results. This could be interpre
as a higher degree of sensitivity ofP for indications of dy-
namical structures in EEG time series. The contrary con
sion, i.e., a lower level of specificity, cannot of course
ruled out.

On the other hand, the sets could consist of different s
sets, each containing segments of different dynamical na
This idea was followed in Ref.@8#, where Stamet al. con-
cluded that their ‘‘study underscores the heterogeneous
ture @ . . . # of the alpha rhythm from a dynamical point o
view.’’ This interpretation of different subsets would discou
s
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age any further statistical analysis of the set level which
sumes the sets to be homogeneous.

Doubtlessly, sets under investigation exhibited distin
linear properties described by power spectra and amplit
distributions. However, since these properties were share
the surrogates, they cannot account for results given her
is important, however, to point out that a rejection of t
surrogates’ null hypothesis is only a necessary but not su
cient criterion for nonlinearity. Surrogates that were used
stationary by construction. Therefore, even if a simple s
tionarity inclusion criterion was used to select the EEG s
ments, nonstationarity as a cause of ‘‘false’’ positive reje
tions cannot be excluded. Since this stationarity test is ba
on linear properties of the time series, it can neither
highly sensitive nor highly specific for nonstationarities
nonlinear dynamical systems. Nonlinear techniques ca
lated in a reconstructed state space such as the one prop
in Ref. @54# could help to overcome this shortcoming. Fu
thermore, Kugiumtzis@55# showed that although the iterativ
amplitude adjusted surrogates are more consistent in re
senting the given null hypothesis than older techniques@56#,
the remaining mismatch of linear correlations of the origin
time series can still be relevant, and can cause false re
tions of the null. Since these and other shortcomings wea
the probative force of the applied method, we only use
term indication rather thanevidenceof nonlinear determin-
istic structures.

It has become a common point of view that values of
estimate of the correlation dimension calculated from an
known dynamical system cannot be taken as a true estim
of a number of degrees of freedom. Particularly, our res
give no indication of chaos in the underlying dynamical sy
tem brain. In a way this is to be expected, since a pur
chaotic behavior of brain functions would consequently i
ply that our brains’ behavior is changed dramatically by ea
and every arbitrary small input.

In accordance with other studies, our results show tha
application of NTSA measures to EEG dynamics offers
sights into the dynamical nature and variability of the syst
brain. As a feedback for NTSA, complicated properties
EEG dynamics can further motivate one to improve exist
methods and develop new methods@57#.
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