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Master equation approach to molecular motors
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A master equation approach to molecular motors allows us to describe a mechanochemical cyclic system
where chemical and translational degrees of freedom are treated on an equal footing. A generalized detailed
balance condition in the out-of-equilibrium regime is shown to be compatible with the Fokker-Planck equation
in the continuum limit. The Onsager reciprocity relations hold for stationary states close to equilibrium,
provided the generalized detailed balance condition is satisfied. Semiphenomenological considerations in the
case of motor proteins lead to a discrete kinetics model, for which interesting observable quantities may be
directly calculated and compared with experimental data.
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Current models used to describe the properties of mole
lar motors and the energy transduction process fall under
distinct categories: continuous models@1–3# and discrete
models@4,5#. Both represent a coarse grained description
a very complicated physicochemical system and the us
one or the other depends on the quantities one is intere
in. For example, continuous models are very useful to inv
tigate the role of an external force on chemical kinetics@6#,
since the external force is inserted into the Fokker-Pla
~FP! equations without any ambiguity. This is no longer tr
for discrete models, when one has to resort to somead hoc
principle or a priori reasoning to insert force in transitio
rates@4#. Nonetheless, discrete models present the impor
advantage of being analytically solvable, as it happens,
instance, in jump processes@7#. On the other hand, an ana
lytical solution is quite difficult to obtain in the general ca
of continuous models, and one has to resort to complex
merical integrations. In this paper, we introduce a discr
model, similar to the ones proposed in@4# and @5#, but with
the following constraint: ifa is the lattice distance betwee
subsequent spatial positions of the system, the continu
model should be obtained as a limit of the discrete one
a→0. The connection between a kinetic theory involvi
activated transitions over potential-energy barriers and a
fusion theory approach based on a FP equation dates ba
Kramers@8#, ~see@9#, for a recent review!. In @10#, the idea
was applied to models for protein motors, but the force
pendence was left in equal apportionments over backw
and forward transition rates and the experimental results
the force dependence of the apparent Michaelis constant@11#
were not available. In@12#, a general theory for motor pro
teins was presented. This theory was developed in a t
dimensional manifold and complex integrations over st
variables were used to calculate force-dependent trans
rates over potential barriers in a discrete model. In
present paper, we do not use complex integrations; inst
we identify in the generalized detailed balance the condit
for a discrete model to be compatible with a continuous o
Few parameters are needed to capture the overall shap
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the potential-energy surface that is no longer needed in
detail. Detailed balance was used in@13# to calculate transi-
tion rates for particles diffusing over potential barriers. T
obtained discrete kinetics model led to a fast and relia
numerical procedure to calculate mean velocity of corre
tion ratchets. A model similar to ours was also developed
@14# in the context of thermal ratchets, even if no connect
with the actual chemistry of motor proteins was done. Mo
over, motor proteins are isothermal, and therefore, are be
described by correlation ratchets. In@15#, a master equation
approach was used to investigate the force generation
RNA polymerase, which may be considered a motor prote
even if it differs from kinesin, myosin, and dynein, both
structure and function. In Sec. I, we outline the gene
framework, which may be useful not only for modeling m
lecular motors, but also any mechanochemical cyclic syst
In the general formulation of our model, the chemical rea
tion coordinate is treated on an equal footing as the spa
one. Onsager reciprocity relations will be shown to hold
the most general case in the stationary periodic close to e
librium state, provided detailed balance is verified. In Sec.
we specify our model to the context of molecular motors. W
show that our model may be regarded as the discrete
logue of the continuous one proposed in@2,3#, leading to a
clear interpretation of the generalized forces and currents
troduced in Sec. I. In Sec. III, a discrete chemical kinet
model with a generalized detailed balance condition is
fined for the case of motor proteins. Semiphenomenolog
considerations help to decide the apportionments of gene
ized forces over forward and backward transitions. In S
IV, two example models are studied and their predictio
compared with experimental data.

I. GENERAL FRAMEWORK

Our model will describe the time evolution of a therm
dynamic out-of-equilibrium system in a complex pha
space. The state of the system~a motor protein, an ion pump
or whatsoever! is determined by the thermodynamic param
etersxa (a51 . . . ,d). One of these parameters may repr
sent the position of the protein center of mass, anothe
©2001 The American Physical Society05-1
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G. LATTANZI AND A. MARITAN PHYSICAL REVIEW E 64 061905
chemical reaction coordinate~or a variable indicating the
conformation of the protein!, and so on. In general, the num
ber of these thermodynamic parameters~and hence, the di-
mensionality of the system under study! is sufficient to iden-
tify the state of the system by a direct experimental meas
Therefore, we will assume the state of the system to be
scribed by ad-dimensional vectorX subject to a time evolu-
tion in a d-dimensional discrete phase space, which may
mapped onZd ~in general, the lattice spacing in each dire
tion will be different!.

The probability of being in a particular stateX at timet is
written asPX(t). Since the system must be in one of theX
states, the normalization condition follows

(
X

PX~ t !51;t. ~1!

WXY is defined as the transition probability per unit tim
from stateY to stateX and it is assumed to be time indepe
dent.

Another hypothesis is the full periodicity along any dire
tion a. This is usually assumed for all models of motor pr
teins,~see@10,12#!. The periodicityNa depends ona, but we
assumeNa>1, since it is always possible to reduce the ste
until this constraint is satisfied. In other words, we assu
that the state described by the parameters (l 1N1
1x1 ,...,l dNd1xd) with L[$ l 1 ,...l d%PZd is equivalent to
the state described by the parameters (x1 ,...,xd).

We introduce the variable

xX5H 1 for 1<xa,Na ;aP$1,...,d%

0 otherwise
, ~2!

which is an indicator of the period in which the system
moving and will be useful for subsequent calculations.

The time evolution of the system is simply given by t
master equation

ṖX5(
Y

~WXYPY2WYXPX![(
Y

LXYPY, ~3!

where we have defined

LXY5WXY2dXY(
Z

WZX . ~4!

From this definition, it follows

(
X

LXY50⇒(
X

ṖX50, ~5!

which is consistent with the normalization condition, Eq.~1!.
Since the system is assumed to be periodic,

WX1LN,Y1LN5WXY ;LPZd, ~6!

where LN[( l 1N1 ,...,l dNd). It is simple to show that the
same rule holds also for the matrixLXY , defined in Eq.~4!.
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We introduce a time-independent variableqX , depending
explicitly on theX coordinate, i.e., on the state of the syste
We define the currentJq conjugated to the variableqX

Jq5
d^q&
dt

, ~7!

where ^q& is the averagêq&5SXqXPX . By applying Eqs.
~3! and ~5! it easily follows that

Jq5(
XY

~qX2qY!LXYPY . ~8!

We introduce probabilities and transition rates over
periods, following some of the formalism of thed51 case
studied in@7#

RX[(
L

PX1LN , ~9!

LXY[(
L

LX,Y1LN . ~10!

By definition,RX is a periodic quantity. It is easy to show
that alsoLXY is periodic in both argumentsX and Y. At
variance ofLXY ,LXY is a finite matrix; alsoRX is a finite
vector, whereasPX is not. From the time evolution ofPX ,
we may easily obtain the time evolution ofRX

ṘX5(
Y

LXYRY . ~11!

For any variablef Y and using Eq.~2!, the following prop-
erty holds

(
X

f X5(
X

xX(
L

f X1LN . ~12!

Applying property~12! to Eq. ~11! and the periodicity of
R, we obtain

ṘX5( 8
Y

LXYRY , ~13!

where, by definition,SY85SYxY , i.e., a primed sum is re
stricted only to one period along any axis. This is a mas
equation for a system with a finite number (Pa51

d Na) of
states. TheLXY matrix is finite and has the following prop
erties:

LXY>0 for XÞY, ~14!

(
X

8 LXY50 ;YPZd. ~15!

It is easy to show, by applying Eqs.~12! and ~5!, that

(
X

8 RX5(
X

PX51. ~16!
5-2
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MASTER EQUATION APPROACH TO MOLECULAR MOTORS PHYSICAL REVIEW E64 061905
Therefore, there exists a stationary solutionR̂X of Eq. ~13!
and, under general hypotheses~always satisfied in the ex
amples treated in the next sections!, it is unique@16#. It is
also periodic, by definition.

If qX5xa for any value of a, then qX2qY5qX1LN
2qY1LN is also periodic, and we may rewrite the current

Jq5(
XY

xY~qX2qY!LXYRY , qX5xa . ~17!

A subsequent application of property~12! to Eq. ~17!
gives

Jq5(
XY

xX~qX2qY!LXYRY , qX5xa ~18!

and, after some manipulation, we obtain the following e
pression:

Jq5(
XY

xX1xY

4
~qX2qY!~LXYRY2LYXRX!, ~19!

where the argument in the sum is evidently symmetric un
a changeX↔Y.

If the detailed balance condition for the periodic statio
ary state,RX5R̂X , holds

WXYR̂Y5WYXR̂X , ~20!

which is equivalent to the following:

LXYR̂Y5LYXR̂X , ~21!

then from Eq.~19!, the net stationary current is zero.1 A net
flow, i.e., a nonzero stationary current, may occur only if t
detailed balance condition Eq.~20! is violated. This can be
done in several ways: in the continuous model propose
Ref. @3#, for instance, detailed balance holds separately
each chemical reaction, introducing the chemical poten
Dm. In our model, we introduce a set of generalized forc
able to drive the system out of equilibrium, so that a fin
stationary current may occur. Each generalized forcef a is
coupled to one generalized coordinatexa . Both the transi-
tion matrix LXY and the stationary solution will depend e
plicitly on the force vectorF, so that

(
Y

8 LXY~F !R̂Y~F !50. ~22!

Of course, at equilibrium,F50 and the stationary cur
rents are all identically zero. Our assumption is that con
tion ~20! is replaced by a generalized detailed balance c
dition ~in this section and in the Appendix, the factorb
51/kBT is absorbed in the definition ofF!

1Notice that if Eq.~21! holds, then alsoLXYR̂Y5LYXR̂X holds, but
the converse is not guaranteed to be true.
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LXY~F !R̂Y~0!eF•Y5LYX~F !R̂X~0!eF•X. ~23!

We remark that the stationary solutionR̂X(F) does not
satisfy a detailed balance condition

LXY~F !R̂Y~F !ÞLYX~F !R̂X~F !. ~24!

An equality in Eq.~24! would imply that R̂Y(F) could be
written as

R̂X~F !}R̂X~0!eF•X, ~25!

which is, evidently, not periodic.
In a local thermodynamic equilibrium, the generaliz

stationary currents may be written in the following form:

Ĵxa
5 (

b51

d

lab f b . ~26!

The coefficientslab are called Onsager coefficients. I
general, even when the linear approximation cannot be
plied, we may define

lab5
] Ĵxa

] f b
. ~27!

We show in the Appendix that, provided the generaliz
detailed balance condition Eq.~23! holds, these coefficients
verify the generalized Gyarmati-Li@17# reciprocal relations

lab5lba ;a,bP$1, . . . ,d% ~28!

and, hence, the Onsager reciprocity relations. These pro
ties are general and do not depend on the specific param
of the model and are based on the generalized detailed
ance condition Eq.~23!. This condition is a common as
sumption also for continuous models, as discussed furthe
the next section.

II. CONTINUUM LIMIT FOR MOLECULAR MOTORS

The usual choice for molecular motors is a tw
dimensional manifold in which one direction represents
position of the center of mass along the linear track~the
microtubule or the actin filament!. The other is the reaction
coordinate for the ATP hydrolysis,~see@12#!, which is also
related to the conformational changes of the motor prote
These conformational changes are commonly thought to
cur after binding ATP and release of reaction products
enosine diphosphate~ADP! andPi @18#.

The transition rates will be therefore written asWxy
nm

where the subscriptxy denotes a transition from spatial po
sition y to spatial positionx whereas the superscriptnm
stands for a transition from a state withm ATP molecules to
a state withn ones.2 Of course, this variable may also repr

2Using the definitions of the previous section, the spatial a
chemical directions correspond toa51 anda52, respectively.
5-3
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G. LATTANZI AND A. MARITAN PHYSICAL REVIEW E 64 061905
sent a noninteger chemical reaction coordinate~accounting
for multiple states models!, but this is the simplest possibl
choice. The periodicity is not specified for the spatial dire
tion, while it is one for the chemical direction, i.e., we a
assuming that the state of the motor in presence ofn ATP
molecules is equivalent to the one in presence ofn11 ATP
molecules. We remark that this assumption does not m
that a thermodynamic system withn ATP molecules is
equivalent to the same thermodynamic system withn11
ATP molecules, but only that the chemical state of the mo
protein after the reaction cycle is completed~and 1 ATP mol-
ecule is consumed or produced! is equivalent to the state i
was before entering the cycle. We allow only transitio
from a positionx to x1a andx2a. All other transition rates
will be identically zero. Chemical transitions, i.e., those
volving the superscriptsnm ~with nÞm! will be specified
later. At the moment, we only use transition rates in
form3 wxy5SmWxy

nm . According to the definition Eq.~9! and
due to our choice of periodicity one in the chemical react
coordinate, the master equation for the rate of change ofRx ,
or Eq. ~11! is

Ṙx5wx,x1aRx1a2wx1a,xRx1wx,x2aRx2a2wx2a,xRx .

~29!

We define a discrete currentj x

j x5~wx1a,xRx2wx,x1aRx1a!. ~30!

Applying this definition to Eq.~29!

Ṙx52~ j x2 j x2a![2a~¹dj !x , ~31!

where (¹d j)x is, by definition, the discrete gradient ofj x .
In the continuum~FP! description

Ṗ~x,t !52¹ j ~x,t !, ~32!

j ~x,t !5
D

T
@2T¹P~x,t !2P~x,t !¹V~x!1P~x,t ! f #,

~33!

whereT is the temperature,D the diffusion constant,V(x) a
periodic potential,f the force, andj (x,t) is the probability
density current. The potentialV(x) has the same period a
the transition rateswxy .

For very small values ofa we define

Rx[aP~x,t !. ~34!

If in Eq. ~30! we expandRx1a to the first order ina, the
discrete current may be rewritten as

j x5Rx~wx1a,x2wx,x1a!2a~¹Rx!wx,x1a . ~35!

Using Eqs.~31!, ~32!, and~34!, for very smalla, one gets

3The dependence onn is no more necessary, sinceWxy
nm is periodic

in n andm with period one.
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By means of this correspondence, Eq.~36!, and using
Eqs.~33! and ~35!, we obtain

D5a2wx,x1a , ~37!

2D¹V~x!1D f 5a~wx1a,x2wx,x1a!. ~38!

Solving for wx1a,x

wx1a,x5wx,x1a@12ab@¹V~x!2 f ##, ~39!

where Eq.~37! has been used. If we suppose that the follo
ing relation holds:

wx1a,x5wx,x1ae2b@V~x1a!2V~x!2a f#, ~40!

then, Eq.~39! is satisfied in the continuum limit (a→0).
This relation corresponds to the standard detailed bala

condition whenf 50 and the stationary periodic solution i

R̂x~0!}e2bV~x!, ~41!

whereas Eq.~40! corresponds to a generalized detailed b
ance condition Eq.~23!, when f Þ0.

A. The chemical reaction

By analogy with the continuum model@2#, we suppose
that each transition rateWxy

nm is essentially due to three sub
processes, leading to ATP consumption~a transitions in@3#!,
ATP production~g!, and no change in ATP concentration
thermal transitions~b!.

Since a chemical reaction is present ina andg processes,
the chemical potential differenceDm5mATP2mADP2mPi
plays the role of a generalized force, conjugated to the nu
ber of ATP molecules. In this paper, only transitions fro
m5n1Dn to n ATP molecules withDn561,0 will be con-
sidered.

The generalized detailed balance condition Eq.~23! is
therefore

Wx1a,x
n,n1Dn

Wx,x1a
n1Dn,n 5e2b@V~x1u!2V~x!2 f a2DnDm#, ~42!

wheree2bV(x)}R̂x(0) is the stationary equilibrium solution
when all generalized forces are zero. Transitions withDn
.0(,0) correspond to ATP consumption~production!.
Equation~42! states that whenDm.0(Dm,0) transitions
leading to ATP consumption~production! are more favorable
and lead to a spatial advancement of the motor. This is
core of the energy transduction process: chemical energ
used to perform mechanical work against a load2 f or
chemical energy is produced performing a mechanical w
on the protein. Notice that, according to our choice of no
tion, f 15b f and f 252bDm.

These generalized detailed balance conditions are
same introduced in@3#, in the limit a→0. We remark that
this scheme corresponds to a periodicity one in the chem
reaction coordinate. A different periodicity in the chemic
5-4
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MASTER EQUATION APPROACH TO MOLECULAR MOTORS PHYSICAL REVIEW E64 061905
coordinate would allow us to introduce different potent
shapesV(x,j) for each value of the reaction coordinatej, as
for instance in@5#. Using periodicity two in the chemica
coordinate, the continuous two-state model@2,3# is fully re-
covered in thea→0 limit with the same detailed balanc
conditions as in@2,3#. Indeed, using periodicity 2 for the
chemical coordinate, if we allow only transitions betwe
neighboring sites both in the spatial and chemical coordin
Eq. ~11! becomes

Ṙx
15Wx,x1a

11 Rx1a
1 2Wx1a,x

11 Rx
11Wx,x2a

11 Rx2a
1 2Wx2a,x

11 Rx
1

1Wxx
12Rx

22Wxx
21Rx

1, ~43!

Ṙx
25Wx,x1a

22 Rx1a
2 2Wx1a,x

22 Rx
21Wx,x2a

22 Rx2a
2 2Wx2a,x

22 Rx
2

1Wxx
21Rx

12Wxx
12Rx

2, ~44!

where 1 and 2 represent the two conformational state inde
and not the number of ATP molecules. In the continuu
limit, this model is perfectly equivalent to the ones propos
in @2,3#, with the following substitutions:wx,x6a5Wx,x6a

ii ,
V(x)5Vi(x), i 51, 2 in Eq. ~40! and Wxx

125v2(x), Wxx
21

5v1(x) in Eqs.~43!–~44! in the notation of Refs.@2,3#. The
effective mobilityj21 of Refs.@2,3# is ba2Wx,x1a

ii . The gen-
eral scheme introduced here allows us to treat the chem
and mechanical coordinates on an equal footing and write
detailed balance condition in a more standard and transpa
way.

B. Generalized currents

According to the definitions given in Sec. I, the stationa
currentĴt ~t stays for translational motion!, associated to the
protein center of mass corresponds to the velocity of
motor protein. Its full expression is given by

Ĵt5a(
x

8 @wx1a,x2wx2a,x#R̂x , ~45!

whereas the stationary currentĴc associated to the chemica
coordinate is

Ĵc5(
x

8 ~Wx1a,x
n,n111Wx2a,x

n,n112Wx1a,x
n,n212Wx2a,x

n,n21!R̂x,

~46!

which does not depend onn since Wxy
nm5Wxy

n11,m11. This
current corresponds to the number of ATP molecules c
sumed per unit time, so we will refer to it as the ‘‘rate of AT
consumption.’’ Notice that this current has the opposite s
of the one in Eq.~19!. This is consistent with the abov
choicef 252bDm. We remark thatb transitions do not con-
tribute to ATP production since they do not involve a
chemical reaction. These considerations will be used in
next section to develop and fully characterize a very sim
discrete model whose continuum limit is still described by
Fokker-Planck equation.
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III. DEFINITION OF THE MODEL

We showed that Eq.~40!, i.e., a generalized detailed ba
ance condition, is sufficient for a discrete model to be co
patible with a Fokker-Planck equation in the continuu
limit. Actually, Eq. ~40! is compatible with a very genera
class of models, for which any apportionment of forcef and
chemical potential differenceDm over forward~in space! and
backward transitions, is perfectly reasonable. This is true
long as each transition allows the protein to take a subs
that may be made infinitesimally small. If this is not possib
for some of these substeps, the simple Fokker-Planck e
tion may not be able to describe the system in the continu
limit. Nevertheless, the Onsager relations still hold, as lo
as Eq.~23! holds and provided that the sum of all substeps
equal to one period. The continuum limit, left alone, is the
fore not sufficient to fix the parameters required to defi
discrete models.

To be as general as possible, we use forward (uj ) and
backward (wj ) transition rates, witha priori not specified
apportionments

uj~ f ,Dm!5v j~ f ,Dm!eb~2v j 1aj
1 f 1mj

1Dm!, ~47!

wj~ f ,Dm!5v j~ f ,Dm!eb~2aj
2 f 2mj

2Dm!, ~48!

wherev j is the potential difference between statesj 11 and
j while v j (0,0) corresponds to a spontaneous transition pr
ability from statej to statej 11 in the absence of any poten
tial difference and generalized force. Since the potentia
periodic, thev j ’s are subject to the conditionS jv j50. In the
absence of any potential difference and generalized force
particle may diffuse in both directions, souj (0,0)5wj (0,0)
5v j (0,0). This choice corresponds to a FP equation in t
dimensions where both the spatial and chemical coordina
as well as their associated generalized forces, are treate
an equal footing. This equation may be written in the follo
ing form:

]P~x,j,t !

]t
52

]J1~x,j,t !

]x
2

]J2~x,j,t !

]j
, ~49!

J15D1F2T
]P~x,j,t !

]x
2P~x,j,t !

]V~x,j!

]x
1P~x,j,t !gG ,

~50!

J25D2F2T
]P~x,j,t !

]j
2P~x,j,t !

]V~x,j!

]j
1P~x,j,t !DmG ,

~51!

where x and j are, respectively, the spatial and chemic
coordinates.

According to Eq. ~23!, all sums aj
11aj

2(mj
11mj

2)
should be interpreted as the effective size of the spa
~chemical! substep taken by the motor protein. Some rec
experiments@19# seem to suggest the existence of the
small substeps. A substep may be of different types: o
5-5
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G. LATTANZI AND A. MARITAN PHYSICAL REVIEW E 64 061905
positional (mj
11mj

250), only chemical (aj
11aj

250), or
mixed. Thef andDm dependence in the transition rates,uj ’s
and wj ’s, accounts also for more complicated schemes
cannot be ruled out, in principle.

The substep size is unknown and it is related to the c
formational changes involved after binding ATP, but on
purely theoretical basis, space may be discretized so a
obtain the largest unit of substep such that all ‘‘natural’’ su
steps are multiples of this elementary unit. After allN sub-
steps, a full spatial and chemical period has been covere
that

aj
11aj

2

p
5mj

11mj
25

1

N
, ~52!

wherep is the typical spatial step performed by the mot
We assume that thev j for this elementary unit of substep d
not depend onf and Dm. This hypothesis is commonly as
e
te
rs
th
ice
th
le

n
s
op
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sumed in discrete models for substeps of any size@4,5,10#,
whereas in our model, it is assumed only for these elem
tary substeps. For a natural substep, a more complic
force dependence of transition rates is possible, at leas
principle.

At the same time, since in the absence of any inter
potential or external generalized force, the probability to p
ceed in one direction or the other is simply given by t
probability to diffuse by 1/N of a full period in both coordi-
nates, we assume thatv j does not depend onj and omit the
subscript in the transition ratesv j .

It is possible to show that such a model, in general, is
compatible with very simple requests, i.e., that the veloc
of the motor saturates for high ATP concentrations, and t
the velocity obeys a Michaelis law, as follows from the da
of @6,11#. Indeed, using Eq.~52!, it is possible to show tha
the velocity is given in general by~see@7#!.
Jt5
pv~ebDm21!

(
n51

N

eb@vn1~12mn
1

!Dm#F11 (
i 51

N21

e2b~ i /N21/N1mn1 i
1

1mn
2

!Dm)
j 51

i

ebvn1 jG , ~53!
els
e

d

we

s of
sys-

s

in the case wheref 50. If all mn
6>0, in the largeDm limit,

the velocity is given by

Jt'
pv

(
n

eb~vn2mn
1Dm!

, ~54!

which is exponentially large inDm unless allmn
150. But

this condition, together with the condition thatmn
11mn

2

51/N implies that the velocity may be written in the form

Jt5
A~q21!

KNq1KN21q121/N1•••1K1q1/N , q5ebDm,

~55!

where the constantsK’s do not depend onq and are model
dependent. Equation~55! is not a Michaelis law, i.e., of the
form Jt5(Aq/KM1q)2B, even in the largeq limit. This is
true for any value ofN exceptN51. Therefore, one such
discrete model is compatible with a Michaelis law only if w
concentrate all the chemical reaction in a single subs
Thus, let us assume now that the chemical reaction occu
a single step, and without loss of generality, we suppose
this ATP-driven step is the first one in the cycle. We not
that this, in turn, would imply that the smallest substep is
one that occurs during ATP hydrolysis, which is reasonab4

4A net advancement of the protein center of mass is commo
thought to occur upon release of the reaction products, wherea
hydrolysis reaction does not seem to imply any net macrosc
rearrangement on its own@20#.
p.
in
at

e
.

A graphical representation of this class of discrete mod
with only one chemical transition is given in Fig. 1, for th
case whereN53. Let Dm be apportioned over the forwar
and backward transitions, so thatm1

15e,m1
2512e. With

some calculations, it is possible to show that in this case
obtain for velocity an expression of the type

Jt5
A~q21!

Kq1K1qe1K2q12e , ~56!

ly
the
ic

FIG. 1. Graphical representation of a discrete model, withN
53 states along the spatial directionx1 . The chemical directionx2

represents the number of ATP molecules. Conformational state
the motor protein are represented by the numbers 1, 2, 3. The
tem is periodic both in the spatial directionx1 ~periodicity p; a
5p/N5p/3! and in the chemical direction~periodicity 1!. Only
transition ratesu1 andw1 involve a chemical reaction, all the other
are purely positional.
5-6
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which is still incompatible with a Michaelis law unlesse
50 or e51. Choosing one or the other leads essentially
the same Michaelis law, except some multiplicative para
eters that, in turn, depend on the productsvebv j , and ought
to be determined by experiments.

In the same way, the force apportionment may be inv
tigated. The problem is that at variance of chemical poten
experimental data are obtained only for small forces. The
fore, it is not possible to use the same criteria since, to
knowledge, for high values of force, the velocity may gro
up even to6`, meaning that the motor detaches from t
fiber. Nevertheless, by the same line of reasoning, if we
sume that the velocity should reach a constant value for h
values of force in the positive direction, we find the con
tion

aj
150 ; j 51, . . . ,N. ~57!

On the contrary, if we assume that a constant velocity
reached only when the external force opposes the na
direction of movement~which is what one expects on th
basis of the available data@11#!, then we find the condition
that

aj
250 ; j 51, . . . ,N. ~58!

All intermediate cases, the symmetric one included, le
therefore, to velocities growing up to6` as the force tends
to 6`. Remarkably, this is what happens when using a
equation with very high forces, since the probability dist
bution is not sensitive to the potential shape and beco
flat, i.e., velocity is a linear function of force. Of course, in
FP description, every apportionment is totally equivalent
any other, as long as we consider the smalla limit. This is
not true in the limit for very high forces, for which our der
ls
.
.,
n

n

th

06190
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d,

P

es

o

vation of the continuum limit is no longer a good approx
mation. Therefore, it is not surprising that in discrete mode
a particular choice of apportionment has dramatic con
quences on the asymptotic behaviors of the quantities of
terest, in the same way a different apportionment of
chemical potential leads to asymptotic behaviors that are
compatible with the expected Michaelis law unless, as sho
above, the chemical reaction is concentrated in a single s
In the following section, we will study in detail some ex
amples of models with spatial periodicity two and three hig
lighting their main predictions.

IV. MODEL PREDICTIONS AND EXAMPLE STUDIES

In all the following, lengths are measured in units of fil
ment periodsp, while potential difference,v j , and chemical
potentials,Dm, are measured in units ofkT, forces,f, in units
of kT/p. According to our previous discussion, since expe
mental data suggest that the velocity should reach a cons
value for high-negative forces, we assume the force ap
tionment to be asymmetric and concentrated in the forw
transitions. In the same way, we assume the first step to
chemically driven, so as to obtain a Michaelis law. We w
show that these two hypotheses, left alone, are sufficien
obtain a force dependent Michaelis constant for velocity a
rate of ATP consumption, and also some interesting pre
tions about effective step-size and randomness factor.

In these models

un5ve2vn1 f /N1Dmdn1, ~59!

wn5v, ~60!

with the condition(nvn50. The expression for velocity, us
ing Eqs.~59! and ~60!, is
Jt5
pv~eb~Dm1 f !21!

(
n51

N

evn1~12dn1!Dm1~121/N! fF11 (
i 51

N21

e2~ i /N! f)
j 51

i

evn1 j 2dn1 j ,1DmG . ~61!
men-
icro-
eri-

e
d in
sec-
t the
ro-
ri-
Interestingly, the correct law for velocity is of the type

Jt5
Aq

KM1q
2B, ~62!

whereKM is the Michaelis constant. The same result has a
been obtained in@6# in the context of continuous models
Equation~61! may be used to calculate the ‘‘stall’’ force, i.e
the force for which the velocity is zero. This is simply give
by

f stall52Dm. ~63!

The picture is, of course, very simplified. The experime
tal data reposted in@11# show that the stall load (2 f ) in-
creases with increasing ATP concentrations, but probably
dependence onDm is not as simple as in Eq.~63!. However,
o

-

e

data in this parameter region are subject to large experi
tal errors, due to rapid detachment of beads from the m
tubule under stall conditions, so a comparison with exp
ment, at present, may be only of qualitative nature.

The rate of ATP consumption follows from Eq.~46! and
may be written as

Jc5
u1R12w1R2

(
n

Rn

. ~64!

Using Eqs.~61! and ~64!, it is possible to show that th
rate of ATP consumption and the velocity, when measure
ATP molecules hydrolyzed per second and periods per
ond, respectively, are exactly the same quantity, so tha
effective step size~the number of periods taken per hyd
lyzed ATP molecule! is one, which is consistent with expe
5-7
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ments on kinesin@21#. This is no longer true if we use a mor
complicated scheme with pure thermal processes in add
to the normal ATP consuming ones, leading to transitio
between different states: in this case, the effective step
may be smaller than one.

Using Eq.~61!, it is possible to obtain an explicit expres
sion for the force-dependent Michaelis constant; for simp
ity, we concentrate on models with spatial periodicity tw
~two-state models! and three~three-state models!. For two-
state modelsv15v, v252v, whereas for three-state mod
els, we assumev15v, v252v/2, v352v/2. This means
that the chemical potential difference is used in the first tr
sition to overcome the internal potential barrierv, while the
other transitions are favored by the internal potential sha
The Michaelis constant of Eq.~62! is given by

KM~2!5e2v12e2 f /21v, ~65!

KM~3!5
2e3/2v13e2 f /31v1ef /312v

112ef /31v/2 , ~66!

for two-state and three-state models, respectively. In b
examples, the Michaelis constant grows exponentially w
2 f ~see discussion of Sec. III!, in accordance with the recen
experimental observation of an increase in the Micha
constant with an applied load@11#. Interestingly, both models
predict a constant value forKM at high positive values of the
force. We remark that experimental data on the Micha
constant for positive forces, to our knowledge, are still u
available.

Recently developed experimental techniques allowed
to measure the randomness parameter@22#, defined as the
long-time limit of the ratio between the variance of the pr
tein position on the filament,^x2(t)&2^x(t)&2, and the prod-
uct of its average position,^x(t)& and periodicityp

r 5 lim
t→`

^x2~ t !&2^x~ t !&2

^x~ t !&p
. ~67!

In fact, the time resolution of experiments corresponds
the same order of magnitude of one hydrolysis event~typi-
cally milliseconds!, while, at present, conformationa
changes leading to ATP hydrolysis cannot be directly m
sured. Nonetheless, they affect the statistical distribution
the protein movement and the randomness parameter.5 The
macroscopic diffusion coefficientD is defined so that:
^x2(t)&2^x(t)&252Dt, while ^x(t)&5Vt, where V is the
velocity. Therefore,

r 5
2D

pV
. ~68!

The expression forD is rather complicated, but still cal
culable for jump processes@7#. The randomness paramet

5See@15# for a very interesting discussion on the relevance of
randomness parameter and the effective diffusion constant
mechanochemical transducers.
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presents some interesting properties@11,22,23#: first, r 50
for a perfectly clocklike motor, whereasr 51 for a ‘‘Pois-
son’’ motor with one biochemical transition and expone
tially distributed time intervals between events. In gene
r 21 provides a continuous measure of the number of ra
limiting transitions in the overall mechanochemical cyc
~see@23# for a simple proof in the case of a jump proce
with equal forward and backward transition rates!. In our
models, the expressions for the randomness parameter
be easily calculated, but their expressions are rather cum
some. Some important features can be directly inferred
compared with experiments.

At small loads2 f and smallDm, the velocity decrease
linearly with both2 f andDm, so that the randomness facto
from Eq. ~68! should approach̀ , assuming that the macro
scopic diffusion coefficient approaches a constant value
general, different from zero. This should be also verified u
der stall conditions, when the randomness factor again
proaches̀ . At low values ofDm, but still sufficient to force
the protein out of the stall condition, the randomness fac
exhibits different behaviors, depending on force, as show
Figs. 2 and 3. WhenDm,v, the rate-limiting step is essen
tially the first one for both models, so the randomness fac
approaches one when the stall condition is overcome. At
termediate values,v,Dm,2v for two-state models andv
,Dm,3/2v for three-state models, the rate-limiting trans
tion is still the first one, but its rate-limiting power is de
creasing with respect to the others, due to the increase inDm,
so that the randomness parameter is decreasing, until a
border of this parameter region,Dm.v for two-state and
Dm.(3/2)v for three-state models, all forward transitio
rates have essentially the same value: all steps are eq
rate limiting, so that there are two rate-limiting steps f
two-state models and three for three-state models. Thi
evident also in the figures; in this part of the graphs,
randomness parameter approaches 1/2 and 1/3 for two-
and three-state models, respectively. At very high ATP c
centrations, the first step has a high-occurrence probab
whereas the other steps are rate limiting. This implies t
the randomness parameter should approach a constant

e
or

FIG. 2. Randomness parameter in a two-state model versusDm,
with v510 kT. Randomness approaches the value 1/2 whenDm
'2v, indicating that both transitions are rate limiting. At highDm,
there is only one rate-limiting transition, so that randomness
proaches one. The forcef is measured in units of kT/p.
5-8
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MASTER EQUATION APPROACH TO MOLECULAR MOTORS PHYSICAL REVIEW E64 061905
one for two-state models and 1/2 for three-state models.
these behaviors may be observed in the figures, at leas
small values of force. Under very high loads, the velocity
the motor protein is very low in a wide range ofDm values.
This implies that the randomness factor is very high, u
Dm is high enough to force the system out of the stall co
dition. A direct comparison with experiments would be d
sirable. The central part of our figures reproduces data
tained for randomness in@11#. Our predictions in this
parameter region also agree with theoretical derivations
continuous two-state ratchet models on kinesin@23#, but in
the case of continuous models, it is very difficult to calcula
the randomness parameter at very high ATP concentrati
due to numerical problems. This is no longer true for discr
models, for which all complications are algebraic, rather th
numerical. The experimental measure of randomness u
very small loads or for small positive values of force shou
also be useful to infer, on a quantitative basis, the spa
periodicity necessary to fully characterize the system. D
in @11# seem to suggest a three-state model, since the
domness factor approaches a minimum value close to
but measurements at smaller loads would be useful to c
firm or reject this hypothesis.

V. CONCLUSIONS

In this paper, we have introduced a master equation
proach to describe interesting properties of molecular m
tors. Our approach is similar in spirit to a Kramers-Moy
expansion of the FP equation@24#, but it is specifically stud-
ied for the problem of motor proteins, where both the m
chanical and chemical coordinates are important. In
framework, we have studied the general conditions neede
obtain a discrete chemical kinetics model from a continu
one, when all generalized coordinates are treated on an e
footing. In this limit, a FP equation is recovered, when t
requirement of a generalized detailed balance condition
~23! is fulfilled in the out of equilibrium regime. This condi
tion has been shown to imply the validity of the Onsag

FIG. 3. Randomness parameter in a three-state model ve
Dm, with v510 kT. Randomness approaches the value 1/3 w
Dm'3v/2, indicating that all transition rates are rate limiting. A
high Dm, there are essentially two rate-limiting transition rates,
that randomness approaches 1/2, at least at low loads. The forcf is
measured in units of kT/p.
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reciprocity relations for the periodic stationary solutions
the close to equilibrium regime. This property is not surpr
ing, since both Onsager relations and detailed balance
supposed to descend from microscopic reversibility. Mo
proteins operate far from equilibrium, and far from the line
regime, where reciprocity relations are expected to ho
Nevertheless, reciprocity relations constitute a minimal
quirement in a model for mechanochemical transduction
stated by Hill@25# and, more recently, in the context of con
tinuous models@3#. Moreover, to our knowledge, a proof fo
the case of discrete models, has never been given.

The continuum limit has been shown to be insufficient
fix all parameters in a discrete chemical kinetics model
any cyclic out-of-equilibrium thermodynamic system. How
ever, in the case of motor proteins, semiphenomenolog
considerations led us to the formulation of discrete mod
that are compatible with the stochastic continuous ones in
continuum limit, satisfy the Onsager reciprocity relations a
allow an easy comparison with experimental data.

We believe this paper to be useful to study the gene
conditions that ought to be verified by a discrete kinet
model and, most importantly, to study the force depende
of transition rates in mechanochemical processes. This i
relevance not only for research on motor proteins, but a
on other important biomolecules.

APPENDIX: ONSAGER COEFFICIENTS AND RELATIONS

In this appendix, we will prove that, provided a gener
ized detailed balance condition in the form~23! holds, the
Onsager relations Eq.~28! hold for any discrete model. We
also provide a derivation of the Onsager coefficients and g
their values for the case of two- and three-state models6 stud-
ied in Sec. IV. In the following, we use the notation]a to
denote a partial derivative with respect to a generalized fo
f a .

Differentiating both sides of Eq.~23!, we obtain the con-
dition

†@]aLXY~F !#R̂Y~0!2@]aLYX~F !#R̂X~0!‡F50

5LXY~0!R̂Y~0!~xa2ya!. ~A1!

Differentiating the stationarity condition, Eq.~22!, and
applying Eq.~A1! we obtain, after some manipulation

F(
Y

LXY~F !]aRY~F !G
F50

5(
Y

LXY~0!R̂Y~0!~ya2xa!.

~A2!

If AXY5AX1LN,Y1LN;LPZd

(
XY

xXAXY5(
XY

xYAXY5(
XY

xX1xY

2
AXY , ~A3!

6In these simplified modelsJc5Jt , but this does not imply that
the Onsager reciprocity relations are trivially satisfied. If they a
Jc5Jt simply implies that all coefficients should be equal.

us
n

o
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as a consequence of Eq.~12!.
ReplacingqX with xa in Eq. ~19! and differentiating with

respect tof b , we obtain

lab5(
XY

xX1xY

4
~xa2ya!@~]bLXY!R̂Y2~]bLYX!R̂X

1LXY~]bR̂Y!2LYX~]bR̂X!#F50 . ~A4!

Using condition~A1!, we are left with

lab5(
XY

xX1xY

4
~xa2ya!~xb2yb!LXY~0!R̂Y~0!

1(
XY

xX1xY

4
~xa2ya!@LXY~]bR̂Y!

2LYX~]bR̂X!#F50 . ~A5!

Applying the property ~A3! to the quantities (xa

2ya)LXY(0)(]bR̂Y) and (xa2ya)LYX(0)(]bR̂X) the On-
sager coefficients are

lab5(
XY

xX1xY

4
~xa2ya!~xb2yb!LXY~0!R̂Y~0!

1
1

2 (
XY

~xa2ya!@xYLXY~]bR̂Y!

2xXLYX~]bR̂X!#F50 . ~A6!

A subsequent application of Eqs.~A2! and ~23! leads to

lab5(
XY

xX1xY

4
~xa2ya!~xb2yb!LXY~0!R̂Y~0!

1
1

2
(
XY

FxY

LYX

R̂Y

~]aR̂X!~]bR̂Y!1xX

LXY

R̂X

~]aR̂Y!

3~]bR̂X!G
F50

. ~A7!

From Eq. ~23! and another application of Eq.~A3!, we
finally obtain

lab5(
XY

xX1xY

4 F ~xa2ya!~xb2yb!LXY~0!R̂Y~0!

1
LXY~0!

R̂X~0!
AXY~0!G , ~A8!
06190
with AXY(F)[]aR̂X]bR̂Y1]aR̂Y]bR̂X . Equation ~A8! is
evidently symmetric under a changea↔b, so that finally
the Onsager relations, Eq.~28!, are verified. The quantities
AXY(0) may be obtained by solving Eq.~13! at stationarity
for a finite number of states.

1. Two-state models

For the two-state models defined in Sec. IV, the coe
cient l12 may be easily calculated; it is obtained from E
~A8!, by making explicit the two contributions

l12
~1!5(

XY

xX1xY

4
~xt2yt!~xc2yc!LXY~0!R̂Y~0!,

~A9!

l12
~2!5(

XY

xX1xY

4

LXY~0!

R̂X~0!
AXY~0!, ~A10!

where the subscriptt(c) means translational~chemical!. Af-
ter some manipulations, and bearing in mind thatxt2yt rep-
resents the spatial displacement from stateY to stateX, while
xc2yc is the ATP consumption from stateY to stateX ~posi-
tive when ATP is consumed!, we obtain

l12
~1!5

w1

2

u11w2

u11u21w11w2
, ~A11!

l12
~2!5

u1~u2w22u1w1!

2~u11w2!~u11u21w11w2!
, ~A12!

where all ui and v i are calculated at (f ,Dm)5(0,0) and
finally

l125
w2

2w112u1w1w21u1u2w2

2~u11w2!~u11u21w11w2!
. ~A13!

Using Eqs.~59! and ~60!, we find

l125
v

e2v1ev12
. ~A14!

The same Onsager coefficient may be obtained by line
izing the expression for velocity, Eq.~61!.

2. Three-state models

The calculation for the Onsager coefficient in thre
models by a direct application of Eq.~A8! is rather long. Its
value may be obtained by a direct linearization of Eq.~61!:

l125
v

e2v12e2v/212ev/21ev13
. ~A15!
.
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