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Master equation approach to molecular motors
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A master equation approach to molecular motors allows us to describe a mechanochemical cyclic system
where chemical and translational degrees of freedom are treated on an equal footing. A generalized detailed
balance condition in the out-of-equilibrium regime is shown to be compatible with the Fokker-Planck equation
in the continuum limit. The Onsager reciprocity relations hold for stationary states close to equilibrium,
provided the generalized detailed balance condition is satisfied. Semiphenomenological considerations in the
case of motor proteins lead to a discrete kinetics model, for which interesting observable quantities may be
directly calculated and compared with experimental data.
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Current models used to describe the properties of molecuhe potential-energy surface that is no longer needed in full
lar motors and the energy transduction process fall under twdetail. Detailed balance was used[ 8] to calculate transi-
distinct categories: continuous moddts—3] and discrete tion rates for particles diffusing over potential barriers. The
models[4,5]. Both represent a coarse grained description ofbtained discrete kinetics model led to a fast and reliable
a very complicated physicochemical system and the use dgfumerical procedure to calculate mean velocity of correla-
one or the other depends on the quantities one is interestdi@n ratchets. A model similar to ours was also developed in
in. For example, continuous models are very useful to invesk14] in the context of thermal ratchets, even if no connection
tigate the role of an external force on chemical kinefigk with the actual chemistry of motor proteins was done. More-
since the external force is inserted into the Fokker-Planclover, motor proteins are isothermal, and therefore, are better
(FP) equations without any ambiguity. This is no longer truedescribed by correlation ratchets. [It5], a master equation
for discrete models, when one has to resort to samhéioc ~ approach was used to investigate the force generation in
principle ora priori reasoning to insert force in transition RNA polymerase, which may be considered a motor protein,
rates[4]. Nonetheless, discrete models present the importargven if it differs from kinesin, myosin, and dynein, both in
advantage of being analytically solvable, as it happens, fostructure and function. In Sec. I, we outline the general
instance, in jump processgs]. On the other hand, an ana- framework, which may be useful not only for modeling mo-
lytical solution is quite difficult to obtain in the general case lecular motors, but also any mechanochemical cyclic system.
of continuous models, and one has to resort to Complex nuh the general formulation of our model, the chemical reac-
merical integrations. In this paper, we introduce a discretdion coordinate is treated on an equal footing as the spatial
model, similar to the ones proposed[#] and[5], but with ~ one. Onsager reciprocity relations will be shown to hold in
the following constraint: ifa is the lattice distance between the most general case in the stationary periodic close to equi-
subsequent spatial positions of the system, the continuodirium state, provided detailed balance is verified. In Sec. II,
model should be obtained as a limit of the discrete one fokve specify our model to the context of molecular motors. We
a—0. The connection between a kinetic theory involvingshow that our model may be regarded as the discrete ana-
activated transitions over potential-energy barriers and a diflogue of the continuous one proposed[ %3], leading to a
fusion theory approach based on a FP equation dates back @gar interpretation of the generalized forces and currents in-
Kramers[8], (see[9], for a recent review In [10], the idea  troduced in Sec. I. In Sec. llI, a discrete chemical kinetics
was applied to models for protein motors, but the force demodel with a generalized detailed balance condition is de-
pendence was left in equal apportionments over backwartined for the case of motor proteins. Semiphenomenological
and forward transition rates and the experimental results ofonsiderations help to decide the apportionments of general-
the force dependence of the apparent Michaelis congtaht ized forces over forward and backward transitions. In Sec.
were not available. 1112], a general theory for motor pro- 1V, two example models are studied and their predictions
teins was presented. This theory was developed in a twgsompared with experimental data.
dimensional manifold and complex integrations over state
variables were used to calculate force-dependent transition
rates over potential barriers in a discrete model. In the I. GENERAL FRAMEWORK
present paper, we do not use complex integrations; instead,
we identify in the generalized detailed balance the condition Our model will describe the time evolution of a thermo-
for a discrete model to be compatible with a continuous onedynamic out-of-equilibrium system in a complex phase
Few parameters are needed to capture the overall shape sface. The state of the systéamotor protein, an ion pump,

or whatsoeveris determined by the thermodynamic param-
etersx, (a=1...,d). One of these parameters may repre-
*Corresponding author: lattanzi@sissa.it sent the position of the protein center of mass, another a
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chemical reaction coordinat@r a variable indicating the We introduce a time-independent varialgle, depending
conformation of the proteinand so on. In general, the num- explicitly on theX coordinate, i.e., on the state of the system.
ber of these thermodynamic paramet@sd hence, the di- We define the current, conjugated to the variablgy
mensionality of the system under stydy sufficient to iden-
tify the state of the system by a direct experimental measure. 3 _ K@)
Therefore, we will assume the state of the system to be de- a  dt
scribed by ad-dimensional vectoK subject to a time evolu-
tion in ad-dimensional discrete phase space, which may bavhere(q) is the averag€q)=2yqxPx. By applying Egs.
mapped onz¢ (in general, the lattice spacing in each direc-(3) and(5) it easily follows that
tion will be differeny.

The probability of being in a particular staxeat timet is _ _
written asPy(t). Since the system must be in one of ke % ;( (Gx=av)LxrPy. ®
states, the normalization condition follows

()

We introduce probabilities and transition rates over all
periods, following some of the formalism of tlie=1 case

2 Px(h=1vt. (D studied in[7]
Wyy is defined as the transition probability per unit time RXEE PyiLN, (9
from stateY to stateX and it is assumed to be time indepen- L
dent.
Another hypothesis is the full periodicity along any direc- =3 L 1
tion a. This is usually assumed for all models of motor pro- Exv EL: XYL (10

teins,(se€[10,12)). The periodicityN,, depends ory, but we
assumeN,,=1, since it is always possible to reduce the steps By definition,Ry is a periodic quantity. It is easy to show
until this constraint is satisfied. In other words, we assuméhat alsoLyy is periodic in both argumentX and Y. At
that the state described by the parametedgN{ variance ofLyy,Lxy is a finite matrix; alsoRy is a finite
+X1,..lgNg+xg) with L={l,,...14} e 2% is equivalent to  vector, wherea®y is not. From the time evolution dPy,
the state described by the parameters, (.. Xq) - we may easily obtain the time evolution Bf

We introduce the variable

1 for 1=x,<N, Vae{l,.d! szg LxRy. (D

- 0 otherwise

Xx 2
For any variabldy and using Eq(2), the following prop-

which is an indicator of the period in which the system is €1ty holds

moving and will be useful for subsequent calculations.
The time evolution of the system is simply given by the D =2 x> Fxain- (12
master equation X X L

Applying property(12) to Eqg.(11) and the periodicity of

Px=2 (WyyPy—WyxPy)=2> LyxyPy, (3) R we obtain
Y Y
where we have defined RX:Z, LyvyRy, (13
_ where, by definition2\=3yxy, i.e., a primed sum is re-
Lyy=Wyy— Wy 4 . Y AYAY . o
e 5XY§z: “x @ stricted only to one period along any axis. This is a master
equation for a system with a finite numbe{_;N,) of
From this definition, it follows states. TheCyy matrix is finite and has the following prop-
erties:
2 Ly=0=3 Px=0, (5) Lyy=0 for XY, (14)
which is consistent with the normalization condition, D). > Lyy=0 VYe 2 (15)
Since the system is assumed to be periodic, X
Wy vy in=Wyy VYLeZ9, (6) It is easy to show, by applying Eqg&l2) and (5), that
where LN=(I1N,...,I4Ng). It is simple to show that the SV R= Py=1. (16)
same rule holds also for the matili, defined in Eq(4). X K
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Therefore, there exists a stationary solutiypof Eq. (13) Lyy(F)Ry(0)eF Y=Lyyx(F)Ry(0)eF X, (23
and, under general hypothesgdways satisfied in the ex-
amples treated in the next sectign is unique[16]. It is We remark that the stationary solutid(F) does not
also periodic, by definition. satisfy a detailed balance condition

If gx=x, for any value of @, then qx—Qgv=0qx+Ln
— 0y LN IS also periodic, and we may rewrite the current as Lyy(F)RV(F)# Ly x(F)Ry(F). (24

JqZE Yy(Ax—ay)LxyRy,  Gx=X,. (17) An equality in Eq.(24) would imply thatRy(F) could be
XY written as
A subsequent application of propert{2) to Eq. (17) Ry(F)=Ry(0)eF X, (25)
gives
which is, evidently, not periodic.
In a local thermodynamic equilibrium, the generalized

Jq:% Xx(Ax = av)bxRy, Qx=X, (18 stationary currents may be written in the following form:
d
and, after some manipulation, we obtain the following ex- A
pression: Jxa—ﬁzl Nogfs. (26)
Xxt xy The coefficients\ ,; are called Onsager coefficients. In
Jq= > (dx—av)(LxyRy—LyxRx), (19 af g

general, even when the linear approximation cannot be ap-
plied, we may define
where the argument in the sum is evidently symmetric under
a changeX« Y. ZAM
Nog=—.
If the detailed balance condition for the periodic station- b ay

ary stateRy=Ry, holds

v 4

(27)

We show in the Appendix that, provided the generalized
detailed balance condition ER3) holds, these coefficients

WiyRy =Wy xRy (20 verify the generalized Gyarmati-I[iL7] reciprocal relations
which is equivalent to the following: A=\ Va,Bell d} (28)
aﬁ_ ,Bll y yoron oy
LxyRy=LyxRx, (21)  and, hence, the Onsager reciprocity relations. These proper-

ties are general and do not depend on the specific parameters

then from Eq.(19), the ngt stationary current is zefd\ ngt of the model and are based on the generalized detailed bal-
flow, i.e., a nonzero stationary current, may occur only if the

) - o ; ance condition Eq(23). This condition is a common as-
deta|le_d balance cond|t_|on EO) IS violated. This can be .sumption also for continuous models, as discussed further in
done in several ways: in the continuous model proposed i

the next section.
Ref. [3], for instance, detailed balance holds separately for X !

each chemical reaction, introducing the chemical potential
Ap. In our model, we introduce a set of generalized forces,
able to drive the system out of equilibrium, so that a finite  The ysual choice for molecular motors is a two-

stationary current may occur. Each generalized fdrgés  dimensional manifold in which one direction represents the
coupled to one generalized coordinadg. Both the transi-  position of the center of mass along the linear trdtie
tion matrix Lxy and the stationary solution will depend ex- microtubule or the actin filamentThe other is the reaction

[I. CONTINUUM LIMIT FOR MOLECULAR MOTORS

plicitly on the force vectolF, so that coordinate for the ATP hydrolysigsee[12]), which is also
related to the conformational changes of the motor protein.
' & _ These conformational changes are commonly thought to oc-
Lyy(F)Ry(F)=0. 22
zv: xv(F)Rv(F) 22 cur after binding ATP and release of reaction products ad-

enosine diphosphatéDP) and P; [18].

Of course, at equilibriumF=0 and the stationary cur- — The transition rates will be therefore written &))"
rents are all identica”y zero. Our aSSUmption is that Condiwhere the Subscrip{y denotes a transition from Spatia| po-
tion (20) is replaced by a generalized detailed balance consijtion y to spatial positionx whereas the superscriptm
dition (in this section and in the Appendix, the factBr  stands for a transition from a state withATP molecules to
=1/kgT is absorbed in the definition &) a state withn ones? Of course, this variable may also repre-

INotice that if Eq.(21) holds, then aIstY§Y=£YX§X holds, but 2Using the definitions of the previous section, the spatial and
the converse is not guaranteed to be true. chemical directions correspond éo=1 anda =2, respectively.

061905-3



G. LATTANZI AND A. MARITAN PHYSICAL REVIEW E 64 061905
sent a noninteger chemical reaction coordin@ecounting
for multiple states modelsbut this is the simplest possible
choice. The periodicity is not specified for the spatial direc- By means of this correspondence, E86), and using
tion, while it is one for the chemical direction, i.e., we are Egs.(33) and(35), we obtain

assuming that the state of the motor in presence AfP

Ix=i(x0). (36)

— 2
molecules is equivalent to the one in presence6flL ATP D=aWyx+a, (37)
molecules. We remark that this assumption does not mean B
that a thermodynamic system with ATP molecules is —DVV(x) +Df=a(Wyax— Wy x+a)- (38
equivalent to the same thermodynamic system with1 Solving forw.
ATP molecules, but only that the chemical state of the motor xrax
protein after the reaction cycle is complef@thd 1 ATP mol- Wys ax=Wy xsal 1—aB[VV(X) — 1], (39)

ecule is consumed or produgeid equivalent to the state it
was before entering the cycle. We allow only transitionswhere Eq(37) has been used. If we suppose that the follow-
from a positionx to x+a andx—a. All other transition rates  ing relation holds:

will be identically zero. Chemical transitions, i.e., those in-
volving the superscripteim (with n#m) will be specified
later. At the moment, we only use transition rates in th
form® W,y =3 W' According to the definition E¢{9) and

Wx+a,x:Wx,x+aeiﬁ[v(x+a)7v(x)7af]: (40)

€then, Eq.(39) is satisfied in the continuum limita(—0).
This relation corresponds to the standard detailed balance

due to our choice of periodicity one in the chemical reaction

coordinate, the master equation for the rate of chande, of
or Eq.(11) is

sz Wy x+ aRx+a_ Wx+a,xRx+Wx,x—aRx—a_Wx—a,xRx .

(29
We define a discrete currept
1= (Wx+ 2 xRx =Wy x+-aRx+a) - (30)
Applying this definition to Eq(29)
Re= = (ix—Ix-a)=—a(Vai)x, (3D

where (V)4 is, by definition, the discrete gradient pf.
In the continuum(FP) description

P(x,t)=—Vj(x,t), (32

j(x,t)= ?[—TV P(x,t)—P(x,t)VV(x)+ P(x,t)f],
(33

whereT is the temperaturd) the diffusion constanty(x) a
periodic potentialf the force, and (x,t) is the probability

density current. The potentidd(x) has the same period as

the transition ratesv,, .
For very small values o& we define
R,=aP(x,t). (39

If in Eq. (30) we expandR,, , to the first order img, the
discrete current may be rewritten as
jx:Rx(Wx+a,x_Wx,x+a)_a(VRx)Wx,x+a- (39

Using Egs«(31), (32), and(34), for very smalla, one gets

3The dependence anis no more necessary, sin\té})’,“ is periodic
in n andm with period one.

condition whenf=0 and the stationary periodic solution is

Ry(0)oce™ AV, (42)
whereas Eq(40) corresponds to a generalized detailed bal-
ance condition Eq(23), whenf#0.

A. The chemical reaction

By analogy with the continuum mod¢PR], we suppose
that each transition rat/;’ is essentially due to three sub-
processes, leading to ATP consumptiantransitions in 3]),
ATP production(y), and no change in ATP concentration or
thermal transitiongg).

Since a chemical reaction is presentimandy processes,
the chemical potential differenc@ u= warp— Lapp— Lpi
plays the role of a generalized force, conjugated to the num-
ber of ATP molecules. In this paper, only transitions from
m=n+ An to n ATP molecules wittAn= =1,0 will be con-
sidered.

The generalized detailed balance condition E2P) is
therefore

Wn,n+An

X+a,X = efﬁ[v(x+ u)—V(x)ffafAnA,u],

WA (42)

wheree #V®« R (0) is the stationary equilibrium solution
when all generalized forces are zero. Transitions vt
>0(<0) correspond to ATP consumptiofproduction.
Equation(42) states that whem >0(Ax<0) transitions
leading to ATP consumptiofproduction are more favorable
and lead to a spatial advancement of the motor. This is the
core of the energy transduction process: chemical energy is
used to perform mechanical work against a load or
chemical energy is produced performing a mechanical work
on the protein. Notice that, according to our choice of nota-
tion, f;=pBf andf,=— BAu.

These generalized detailed balance conditions are the
same introduced in3], in the limit a—0. We remark that
this scheme corresponds to a periodicity one in the chemical
reaction coordinate. A different periodicity in the chemical
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coordinate would allow us to introduce different potential Ill. DEFINITION OF THE MODEL
shaped/(x, &) for each value of the reaction coordindteas
for instance in[5]. Using periodicity two in the chemical
coordinate, the continuous two-state mofg&B] is fully re-
covered in thea—O0 limit with the same detailed balance
conditions as in[2,3]. Indeed, using periodicity 2 for the
chemical coordinate, if we allow only transitions between
neighboring sites both in the spatial and chemical coordinat
Eqg. (11) becomes

We showed that Eq40), i.e., a generalized detailed bal-
ance condition, is sufficient for a discrete model to be com-
patible with a Fokker-Planck equation in the continuum
limit. Actually, Eq. (40) is compatible with a very general
class of models, for which any apportionment of fof@nd
chemical potential differencéu over forward(in space and
Sackward transitions, is perfectly reasonable. This is true as
long as each transition allows the protein to take a substep
1 that may be made infinitesimally small. If this is not possible
Ry for some of these substeps, the simple Fokker-Planck equa-
+W}§R§—W§iR}<, 43) tjon may not be able to describe the system i_n the continuum

limit. Nevertheless, the Onsager relations still hold, as long

5111 1\l 1 11 1\l
Rx_Wx,x+aRx+a Wx+a,xRx+Wx,x7aRx7a W.

X—a,x

as Eq.(23) holds and provided that the sum of all substeps is

RI=WZ2, (R, .— W22 (RE+WD_RZ . —W2_ R equal to one period. The continuum limit, left alone, is there-
fore not sufficient to fix the parameters required to define
21p1 1252
T WiR = WioRs, 44 giscrete models.

To be as general as possible, we use forwarg @nd

where 1 and 2 represent the two conformational state i_”dex%%ckward (v;) transition rates, witta priori not specified
and not the number of ATP molecules. In the Com'”uumapportionmejnts

limit, this model is perfectly equivalent to the ones proposed
in [2,3], with the following substitutionsw, . ,=W, ;. ,, ‘ - B(—vi+a f+m’ Ap)
VO)=Vi(x), i=1, 2 in Eq. (40 and W= ay(x), W2k U A= o (fAu) R BT TR B, (@)
=w;(X) in Eqgs.(43)—(44) in the notation of Refd.2,3]. The
effective mobility¢ ™! of Refs.[2,3] is Ba®W, . ,. The gen-
eral scheme introduced here allows us to treat the chemicwherevj is the potential difference between stajesl and
and mechanical coordinates on an equal footing and write thgwhile ;(0,0) corresponds to a spontaneous transition prob-
detailed balance condition in a more standard and transpareghility from statej to statej + 1 in the absence of any poten-
way. tial difference and generalized force. Since the potential is
periodic, thev;’s are subject to the conditiabjv;=0. In the
B. Generalized currents absence of any potential difference and generalized force, the
According to the definitions given in Sec. I, the stationary'iartICIe may (_1|ffuse. in both directions, W(O’O):Wl(o’q)

- . } ) =w;(0,0). This choice corresponds to a FP equation in two
currentJ, (t stays for translational motionassociated to the - gimensjons where both the spatial and chemical coordinates,
protein center of mass corresponds to the velocity of theys el as their associated generalized forces, are treated on
motor protein. Its full expression is given by an equal footing. This equation may be written in the follow-

wi(f,Ap)=w;(f,Ap)ef-3 f-m 2w, (48)

ing form:
Ji=a, [Wysax—WyaxRy, 4
t 2 [ X+a,x X a,x] X ( 5) &P(X,g,t) ~ &Jl(X,g,t) ﬂJZ(X,glt) 49
i a ax 9E (49)
whereas the stationary currefit associated to the chemical
coordinate is 3-b T&P(x,g,t) b IV(X, &) P
1— Y1 IX (ngit) IX (Xrgat)g y
3= 3 (WEI WL - WEI - WET DR, 50
(46)
B IP(X,&,t) NV (x,§)
which does not depend om since Wy'=Wyt™ % This D=0y ~T———~ (&0 9E FPOGEDAR,
current corresponds to the number of ATP molecules con-
sumed per unit time, so we will refer to it as the “rate of ATP (51

consumption.” Notice that this current has the opposite sign

of the one in Eq.(19). This is consistent with the above where x and ¢ are, respectively, the spatial and chemical
choicef,= — BA u. We remark thap transitions do not con- coordinates.

tribute to ATP production since they do not involve any According to Eq. (23), all sums aj++aj’(mj*+mj*)
chemical reaction. These considerations will be used in thehould be interpreted as the effective size of the spatial
next section to develop and fully characterize a very simpldchemica) substep taken by the motor protein. Some recent
discrete model whose continuum limit is still described by aexperiments[19] seem to suggest the existence of these
Fokker-Planck equation. small substeps. A substep may be of different types: only
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positional (" +m; =0), only chemical 4 +a; =0), or
mixed. Thef andAu dependence in the transition ratess

PHYSICAL REVIEW E 64 061905

sumed in discrete models for substeps of any §#5,10,
whereas in our model, it is assumed only for these elemen-

andw;’s, accounts also for more complicated schemes thatary substeps. For a natural substep, a more complicated

cannot be ruled out, in principle.

force dependence of transition rates is possible, at least in

The substep size is unknown and it is related to the conprinciple.
formational changes involved after binding ATP, but on a At the same time, since in the absence of any internal

purely theoretical basis, space may be discretized so as

otential or external generalized force, the probability to pro-

obtain the largest unit of substep such that all “natural” sub-ceed in one direction or the other is simply given by the

steps are multiples of this elementary unit. After ilsub-

steps, a full spatial and chemical period has been covered, $ftes we assume tha

that

1
=m’+m =

5 (52)

p

wherep is the typical spatial step performed by the motor.
We assume that the; for this elementary unit of substep do
not depend orf and Au. This hypothesis is commonly as-

probability to diffuse by IN of a full period in both coordi-
t does not depend gnand omit the
subscript in the transition rates; .

It is possible to show that such a model, in general, is not
compatible with very simple requests, i.e., that the velocity
of the motor saturates for high ATP concentrations, and that
the velocity obeys a Michaelis law, as follows from the data
of [6,11]. Indeed, using Eq52), it is possible to show that
the velocity is given in general bisee[7]).

pw(ef —1)

Ji= N—1

N
> ef
n=1

i=1

in the case wheré=0. If all m =0, in the largeAu limit,
the velocity is given by

Pw

‘J[ + 7
E eB(Un_mn Aw)
n

(59

which is exponentially large il unless allm, =0. But
this condition, together with the condition that, +m,
=1/N implies that the velocity may be written in the form

B A(g—1)
-~ KnG+H Ky gt N K g™

‘Jt q= eBA,u,

(59

where the constants’s do not depend o and are model
dependent. Equatiof5) is not a Michaelis law, i.e., of the
form J;=(Ag/Ky+q)—B, even in the large limit. This is
true for any value ofN exceptN=1. Therefore, one such
discrete model is compatible with a Michaelis law only if we

concentrate all the chemical reaction in a single substep
Thus, let us assume now that the chemical reaction occurs i
a single step, and without loss of generality, we suppose tha I I

this ATP-driven step is the first one in the cycle. We notice

[ont1-mDAul 143 -

| , (53
B(i/N—l/N+m:+i+m;)AMH eBvn+j

i=1

A graphical representation of this class of discrete models
with only one chemical transition is given in Fig. 1, for the
case wherdN=3. Let Au be apportioned over the forward
and backward transitions, so that, =e,m; =1—¢€. With
some calculations, it is possible to show that in this case we
obtain for velocity an expression of the type

3 A(q—1) (56
UUKg+HKgf+KLgt e
T3
2 % 3
n-21 @ ° ° ® OO
Wy
2 1 3 " w1
n-1-4 @ .O\_/l ° °
w2 w3
w1
n— ° ° ° ° °
1
—
0 a 2a P p+a p+2a i

that this, in turn, would imply that the smallest substep is the g, 1. Graphical representation of a discrete model, With

one that occurs during ATP hydrolysis, which is reasonéble.

=3 states along the spatial directinp. The chemical direction,
represents the number of ATP molecules. Conformational states of

the motor protein are represented by the numbers 1, 2, 3. The sys-
4A net advancement of the protein center of mass is commonlgem is periodic both in the spatial direction (periodicity p; a
thought to occur upon release of the reaction products, whereas thep/N=p/3) and in the chemical directiofperiodicity 1. Only
hydrolysis reaction does not seem to imply any net macroscopitransition ratesi; andw, involve a chemical reaction, all the others

rearrangement on its owr20].

are purely positional.
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which is still incompatible with a Michaelis law unless  vation of the continuum limit is no longer a good approxi-
=0 or e=1. Choosing one or the other leads essentially tamation. Therefore, it is not surprising that in discrete models,
the same Michaelis law, except some multiplicative parama particular choice of apportionment has dramatic conse-
eters that, in turn, depend on the produe&®i, and ought quences on the asymptotic behaviors of the quantities of in-
to be determined by experiments. terest, in the same way a different apportionment of the
In the same way, the force apportionment may be invesehemical potential leads to asymptotic behaviors that are not
tigated. The problem is that at variance of chemical potentialcompatible with the expected Michaelis law unless, as shown
experimental data are obtained only for small forces. Thereabove, the chemical reaction is concentrated in a single step.
fore, it is not possible to use the same criteria since, to ouln the following section, we will study in detail some ex-
knowledge, for high values of force, the velocity may grow amples of models with spatial periodicity two and three high-
up even to*o, meaning that the motor detaches from thelighting their main predictions.
fiber. Nevertheless, by the same line of reasoning, if we as-
sume that the velocity should reach a constant value for high |v. MODEL PREDICTIONS AND EXAMPLE STUDIES

values of force in the positive direction, we find the condi- ) ] ) ]
tion In all the following, lengths are measured in units of fila-

ment periods, while potential differencey;, and chemical
aj+=0 Vj=1,... N. (57) potentials Au, are measured in units &fT, forces f, in units
of kT/p. According to our previous discussion, since experi-
On the contrary, if we assume that a constant velocity isnental data suggest that the velocity should reach a constant
reached only when the external force opposes the naturghlue for high-negative forces, we assume the force appor-
direction of movementwhich is what one expects on the tionment to be asymmetric and concentrated in the forward
basis of the available dafd1]), then we find the condition transitions. In the same way, we assume the first step to be
that chemically driven, so as to obtain a Michaelis law. We will
_ ) show that these two hypotheses, left alone, are sufficient to
a; =0 Vvj=1,... N. (58) obtain a force dependent Michaelis constant for velocity and
drate of ATP consumption, and also some interesting predic-

All intermediate cases, the symmetric one included, lead,. : .
tions about effective step-size and randomness factor.

therefore, to velocities growing up tbee as the force tends

to £, Remarkably, this is what happens when using a FP In these models

equation with very high forces, since the probability distri- Uy = we vt IN+Audy (59
bution is not sensitive to the potential shape and becomes
flat, i.e., velocity is a linear function of force. Of course, in a Wy=w, (60)

FP description, every apportionment is totally equivalent to
any other, as long as we consider the smadliimit. This is  with the condition=,v,=0. The expression for velocity, us-
not true in the limit for very high forces, for which our deri- ing Egs.(59) and(60), is

pw(eﬁ(Aﬂ+f ) 1)
N—T i . (61)

N
E eUnt (1= 8 Ap+(1-1N)f| 1 4 E e—(i/N)fH eVn+j Ot jidn
n=1 i=1 j=1

‘Jt:

|

Interestingly, the correct law for velocity is of the type data in this parameter region are subject to large experimen-
tal errors, due to rapid detachment of beads from the micro-
_ Aq _B 62) tubule under stall conditions, so a comparison with experi-
T Kyt+tq ment, at present, may be only of qualitative nature.
The rate of ATP consumption follows from E6) and

whereK,, is the Michaelis constant. The same result has alsonay be written as
been obtained 6] in the context of continuous models.

Ji

Equation(61) may be used to calculate the “stall” force, i.e., J :M_ (64)
the force for which the velocity is zero. This is simply given ¢ S R
by 2, Ry

foai= —Ap. (63 Using Egs.(61) and (64), it is possible to show that the

rate of ATP consumption and the velocity, when measured in

The picture is, of course, very simplified. The experimen-ATP molecules hydrolyzed per second and periods per sec-

tal data reposted ifill] show that the stall load<f) in-  ond, respectively, are exactly the same quantity, so that the
creases with increasing ATP concentrations, but probably theffective step sizéthe number of periods taken per hydro-
dependence oAu is not as simple as in E463). However, lyzed ATP moleculgis one, which is consistent with experi-
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ments on kinesifi21]. This is no longer true if we use amore .14
complicated scheme with pure thermal processes in additior

to the normal ATP consuming ones, leading to transitions 1-2f
between different states: in this case, the effective step siz
may be smaller than one.

Using Eq.(61), it is possible to obtain an explicit expres-
sion for the force-dependent Michaelis constant; for simplic-
ity, we concentrate on models with spatial periodicity two ¢!
(two-state modelsand three(three-state modelsFor two-
state models,=v, v,=—v, whereas for three-state mod- 0.4}
els, we assume ;=v, v,=—v/2,v3=—v/2. This means
that the chemical potential difference is used in the first tran- 0-2
sition to overcome the internal potential barrigrwhile the
other transitions are favored by the internal potential shape.
The Michaelis constant of E62) is given by

11

0.8t

0 5 10 15 20 25 80 Au(kT)

FIG. 2. Randomness parameter in a two-state model vergus

with v=10kT. Randomness approaches the value 1/2 whgn

KM(Z):e2”+2e’”2+”, (65) ~2v, !ndlcatlng that bot_h t_rgnsmons_a}re rate limiting. At higlu,
there is only one rate-limiting transition, so that randomness ap-

03/ 4 3o~ 113+u y off3+20 proaches one. The fordes measured in units of k.

KM(S)_ 1+ Zef/3+v/2 ’ (66)

presents some interesting propert[d4,22,23: first, r=0

for a perfectly clocklike motor, whereas=1 for a “Pois-

for two-state and three-state mOdels, respectively. In botlgon” motor W|th one biochemica| transition and exponen_
examples, the Michaelis constant grows exponentially withjally distributed time intervals between events. In general,
—f (See discussion of SeC.)“in accordance with the recent r71 provides a Continuous measure Of the number of rate-
experimental observation of an increase in the Michaeligimiting transitions in the overall mechanochemical cycle
constant with an applied lodd1]. Interestingly, both models  (see[23] for a simple proof in the case of a jump process
predict a constant value iy, at high positive values of the \ith equal forward and backward transition rates our
force. We remark that experimental data on the Michaelisnodels, the expressions for the randomness parameter may
constant for positive forces, to our knowledge, are still un-pe easily calculated, but their expressions are rather cumber-

available. . _ some. Some important features can be directly inferred and
Recently developed experimental techniques allowed Ugompared with experiments.

to measure the randomness parame2d], defined as the At small loads—f and smallAy, the velocity decreases
long-time fimit of the ratio between the variance of the pro-jinearly with both—f andA, so that the randomness factor
tein position on the filamen{x“(t)) —(x(t))*, and the prod-  from Eq. (68) should approache, assuming that the macro-

uct of its average positio{x(t)) and periodicityp scopic diffusion coefficient approaches a constant value, in
5 5 general, different from zero. This should be also verified un-
r=li () —{x(®) _ (67) der stall conditions, when the randomness factor again ap-

too (x(t))p proachesc. At low values ofAu, but still sufficient to force

the protein out of the stall condition, the randomness factor
In fact, the time resolution of experiments corresponds texhibits different behaviors, depending on force, as shown in
the same order of magnitude of one hydrolysis evyyi- Figs. 2 and 3. WheA u<uv, the rate-limiting step is essen-
cally millisecond$, while, at present, conformational tially the first one for both models, so the randomness factor
changes leading to ATP hydrolysis cannot be directly meaapproaches one when the stall condition is overcome. At in-
sured. Nonetheless, they affect the statistical distribution ofermediate valuesy<Au<2v for two-state models and
the protein movement and the randomness paramdtee <A u<3/2v for three-state models, the rate-limiting transi-
macroscopic diffusion coefficienD is defined so that: tion is still the first one, but its rate-limiting power is de-
(x2(t))—(x(t))2=2Dt, while (x(t))=Vt, whereV is the  creasing with respect to the others, due to the increadgin
velocity. Therefore, so that the randomness parameter is decreasing, until at the
border of this parameter regiodypu=v for two-state and
2D Au=(3/2)v for three-state models, all forward transition
T pVv’ (68) rates have essentially the same value: all steps are equally
rate limiting, so that there are two rate-limiting steps for
The expression fob is rather complicated, but still cal- two-state models and three for three-state models. This is
culable for jump processd§]. The randomness parameter evident also in the figures; in this part of the graphs, the
randomness parameter approaches 1/2 and 1/3 for two-state
and three-state models, respectively. At very high ATP con-
®See[15] for a very interesting discussion on the relevance of thecentrations, the first step has a high-occurrence probability,
randomness parameter and the effective diffusion constant fowhereas the other steps are rate limiting. This implies that
mechanochemical transducers. the randomness parameter should approach a constant value

r
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14 reciprocity relations for the periodic stationary solutions in
the close to equilibrium regime. This property is not surpris-
1.2¢ ing, since both Onsager relations and detailed balance are
] supposed to descend from microscopic reversibility. Motor
i proteins operate far from equilibrium, and far from the linear
08l regime, where reciprocity relations are expected to hold.
Nevertheless, reciprocity relations constitute a minimal re-
06l quirement in a model for mechanochemical transduction, as
stated by Hill[25] and, more recently, in the context of con-
0.41 tinuous model$3]. Moreover, to our knowledge, a proof for
the case of discrete models, has never been given.
0-20 : 5 : , The continuum limit has been shown to be insufficient to
0 5 20 25 Ap(kT) fix all parameters in a discrete chemical kinetics model for

any cyclic out-of-equilibrium thermodynamic system. How-

FIG. 3. Randomness parameter in a three-state model vers%g/er, in the case of motor proteins, semiphenomenological

Apu, with v =10kT. Randomness approaches the value 1/3 when . . . .
oo o A considerations led us to the formulation of discrete models
Ap~3v/2, indicating that all transition rates are rate limiting. At

high Au, there are essentially two rate-limiting transition rates, sothat fire Comp{itlble.wnh the stochastic qontm_uous OT‘eS in the
that randomness approaches 1/2, at least at low loads. Theffigrce continuum limit, satlsfy_ the Of‘sager re_'CIpI’OCIty relations and
measured in units of K. allow an easy comparison with experimental data.

We believe this paper to be useful to study the general

one for two-state models and 1/2 for three-state models. Aﬁ:onditions that ought to be verified by a discrete kinetics

these behaviors may be observed in the figures, at least f&aodel a_f?d' most u_nportantly, to stugly the force depen_dgnce
small values of force. Under very high loads, the velocity c)fof transition rates in mechanochemical processes. This is of

the motor protein is very low in a wide range f values. relevance not only for research on motor proteins, but also

This implies that the randomness factor is very high, until®" other important biomolecules.

Ap is high enough to force the system out of the stall con-

dition. A direct comparison with experiments would be de- APPENDIX: ONSAGER COEFFICIENTS AND RELATIONS
sirable. The central part of our figures reproduces data ob-
tained for randomness ifll]. Our predictions in this

parameter region also agree with theoretical derivations fo nsager relations Eq28) hold for any discrete model. We

continuous tWO'.S tate ratchet m(_)d_els on k_m_e[ﬂﬁ], but in also provide a derivation of the Onsager coefficients and give
the case of continuous models, it is very difficult to calculate,, ™

- ~“their values for the case of two- and three-state m&dlsi-
the randomness parameter at very high ATP concentratmnls(:jd in Sec. IV. In the followina. we use the notatian to
due to numerical problems. This is no longer true for discrete s 9. o

models, for which all complications are algebraic, rather tha denote a partial derivative with respect to a generalized force
numerical. The experimental measure of randomness undef
very small loads or for small positive values of force should
also be useful to infer, on a quantitative basis, the spatia
periodicity necessary to fully characterize the system. Data A A
in [11] seem to suggest a three-state model, since the ran- [[9aLxv(F)IRv(0) = [daLyx(F)IRx(0)r=0
domness factor approaches a minimum value close to 1/3, _ & _

but measurements at smaller loads would be useful to con- Lx(OR(0) (Xa=Ya)- (AD)
firm or reject this hypothesis.

In this appendix, we will prove that, provided a general-
ized detailed balance condition in the for®3) holds, the

Differentiating both sides of Eq23), we obtain the con-
ition

Differentiating the stationarity condition, Eq22), and
applying Eq.(Al1) we obtain, after some manipulation
V. CONCLUSIONS

In this paper, we have introduced a master equation ap- | >, Lyy(F)d,Ry(F) = Lyy(0)Ry(0)(Yo—X4).
proach to describe interesting properties of molecular mo- L Y F=0 '
tors. Our approach is similar in spirit to a Kramers-Moyal (A2)

expansion of the FP equati¢®4], but it is specifically stud-

ied for the problem of motor proteins, where both the me- If Axy=Axsiny+nYL e Z°

chanical and chemical coordinates are important. In this N

framework, we have studied the general conditions needed to _ _ XXXy

obtain a discrete chemical kinetigs model from a continuous xzv XXAXY_% XYAXY_Z 2 Axv: (A3)
one, when all generalized coordinates are treated on an equal

footing. In this limit, a FP equation is recovered, when the

requirement of a generalized detailed balance condition EQ.®|n these simplified model3,=J,, but this does not imply that
(23) is fulfilled in the out of equilibrium regime. This condi- the Onsager reciprocity relations are trivially satisfied. If they are,
tion has been shown to imply the validity of the OnsagerJ.=J; simply implies that all coefficients should be equal.
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as a consequence of Ed.2).

Replacinggy with x, in Eq. (19) and differentiating with
respect tof 5, we obtain

Xx+ Xy
Nog=
B ;{ 4 (

Xa_ya)[(aBLXY)ﬁY_ (dgLyx) Ry

+Lyxy(d5Ry) = Lyx(95Rx) e =o- (A4)

Using condition(Al), we are left with

N o=
aBXEY

Xxt Xxy

(Xa—Ya) (Xg—Y5) Lxy(0)Ry(0)

+
+2 XX XY(Xa

vy 4

_ya)[LXY(&BARY)

_LYX(aﬁﬁx)]F=0- (AS5)

Applying the property (A3) to the quantities X,

_ya)l—xv(o)(aﬁﬁv) and (Xa_ya)LYX(O)(O’)BﬁX) the On-
sager coefficients are

+ .
Nas= 2 G e V) (X Y5 Lxr(ORY(0)

1
t52 (X

ya)[XYLXY(ﬁBr?Y)

_XxLYx(ﬁ,eﬁx)]ho- (A6)

A subsequent application of Eq#2) and (23) leads to

XxT Xy

x:
QBXEY

(Xa—Ya) (Xg—Y5) Lxy(0)Ry(0)

Lyy
((9 RX)(‘?[-}RY) txx——
RY Rx

1
+E ((9 Ry)

XY

X(d5Ry) (A7)

F=0

From Eg.(23) and another application of EgA3), we
finally obtain

+ A
Nas= 2 XY (%= Ya) (Xg— Y ) Lxy(0)Ry(0)
L 0
4 oA )AXY(O)} (A8)
Rx(0)

PHYSICAL REVIEW E 64 061905

with Axy(F)=d,RxdsRy+d,RydsRx. Equation (A8) is
evidently symmetric under a change— 3, so that finally
the Onsager relations, E(R8), are verified. The quantities
Axy(0) may be obtained by solving E@L3) at stationarity
for a finite number of states.

1. Two-state models

For the two-state models defined in Sec. IV, the coeffi-
cient A1, may be easily calculated; it is obtained from Eg.
(A8), by making explicit the two contributions

xxtx .
MY =3 S () (X~ Yol L 0)RY(0),
(A9)
+ xv Lxy(0
A=, MO, o), (a0

Y4 Ry(0)
where the subscrigi{c) means translationdthemical. Af-
ter some manipulations, and bearing in mind thaty, rep-
resents the spatial displacement from shte stateX, while
X.— Y. is the ATP consumption from statéto stateX (posi-
tive when ATP is consumegdwe obtain

W u; +w
p_"1_ 1772 All
M2 = U+ Up+Wy+Ww,’ (A1D)

U, (UsWo—UuUsWw
)\322): 1( 2VW2 1 1) (AlZ)

2(Uy+Wsy) (U +Uy+wy+w,) '

where allu; and v; are calculated atf(Auw)=(0,0) and
finally

W2W1+ 2UWWo+ UqUosWoy

N12= 2(Ug+Wp) (Up+ Uyt Wy +wy) (AL3)

Using Eqgs.(59) and (60), we find
Nqp= © Al4
e vyrer42” (A14)

The same Onsager coefficient may be obtained by linear-
izing the expression for velocity, E¢61).

2. Three-state models

The calculation for the Onsager coefficient in three-
models by a direct application of EGA8) is rather long. Its
value may be obtained by a direct linearization of Ef):

(O]

Nqjo=— — .
27 e v 20721 pev2 L v 43

(A15)
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