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Collapsing bacterial cylinders
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Under special conditions bacteria excrete an attractant and aggregate. The high density regions initially
collapse into cylindrical structures, which subsequently destabilize and break up into spherical aggregates. This
paper presents a theoretical description of the process, from the structure of the collapsing cylinder to the
spacing of the final aggregates. We show that cylindrical collapse involves a delicate balance in which bacterial
attraction and diffusion nearly cancel, leading to corrections to the collapse laws expected from dimensional
analysis. The instability of a collapsing cylinder is composed of two distinct stages: Initially, slow modulations
to the cylinder develop, which correspond to a variation of the collapse time along the cylinder axis. Ulti-
mately, one point on the cylinder pinches off. At this final stage of the instability, a front propagates from the
pinch into the remainder of the cylinder. The spacing of the resulting spherical aggregates is determined by the
front propagation.
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The formation of a singularity—the divergence of aized[9-13 over the past 25 years, so we have a good un-
physical quantity in finite time—is central to diverse fields derstanding of how the bacteria sense and respond to their
[1], including nonlinear optics, gravitational collapse, andenvironment. As a consequence, it is possible to write down
fluid mechanics. The structure of singularities has beer “first-principles” hydrodynamic theory for the motion of
worked out in many examples for which a physical quantitymany bacterid14,15 in which the response coefficients are
blows up at a spatial poii2—4]. Typically, singular dynam- measurable. Quantitative comparison between theory and ex-
ics are self-similar: the characteristic scale separation be?€riment is possible, and any discrepancies can be traced
tween the singular and regular parts of the solution leads téirectly to the biochemistry of individual bacterid@]. The
the slaving of the spatial structure to the time dependence vi@pplication to singularity formation arose from the recent
scaling laws. The situation can be more complicated whegliscovery by Budrene and Bef§,6] of an assay in whick.
many singularities form collectively and simultaneously. Incoli excrete aspartate, an amino acid that is also an attractant
this paper, we analyze a simple example for which multiple
singularities form in a short time. This work was motivated
by a recent experiment in bacterial chemotd%is 7].

The experimental observation is shown in Fig. 1. In the
first panel a diffuse cloud dEscherichia coli(E. Coli) cov-
ers the depth of a Petri dish filled with agar. Note that even
though this experiment takes place in a Petri dish with a thin
agar layer, it isnot quasi-two-dimensional, as shown in Ref.
[7]. The dynamics in the thin direction are crucial to the
pattern formation. Other experiments on bacteria have exam-
ined the case where the bacteria do not penetrate thé&gar
our arguments do not apply to such experiments that are
confined to two dimensions.

The environment is prepared so that hecoli excrete an
attractant; each bacterium attracts all the other bacteria, and a
cloud can collapse. In the second panel, the diffuse cloud
collapses as a cylindrical structure, with highest bacterial
density on the cylinder axis. In the final panel, the cylinder
breaks down into spherical aggregates. In this paper, we ana-
lyze the cylindrical collapse of bacteria and the stability of
the collapsing cylinder.

Chemotaxis inE. coli provides a good model system for 1 1 Experiment showing formation and instability of a col-
studying singularity formation. The biochemical response Ofiapsing bacterial cylindefreproduced from(7] with permission
E. coli to a changing environment has been well characterfom the Biophysical Sociely The first panel shows a diffuse cloud

of bacteria filling the depth of a Petri dish filled with agar, which
then collapsegsecond panglinto a cylindrical structure. The cyl-
*Present address: Courant Institute, New York University, 25linder subsequently destabilizes into spherical aggregates. Details of
Mercer St., New York, NY 10012. the experiments are described in Budrene and B&/g].
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because it leads to an effective force between individual bac-
teria; a higher density of bacteria in a given region leads to
higher attractant concentration, which drives a further in-
crease in the bacterial density.

The initial interest in the Budrene-Berg experiment was
stimulated by the symmetrical pattertshown in Refs[5,6]) T T

for nearby bacteria. Attractant diffusion drives aggregation l' l'

that form when chemotactic bacteria are seeded in the center
of a Petri dish. For a review of the large literature on bacte-
rial colony development, see R¢8]. For the Budrene-Berg
experiments in particular, several theories have been devel-
oped for these patterns, most of whifh6—21] view the
pattern formation as resulting from a linear instability of a
(one-dimensional traveling wave of bacteria. Recently, it
was pointed ouf7] that each of the aggregates in a pattern
corresponds to a density singularity in the hydrodynamic de-
scription of the bacteria. Therefore, the pattern formation de-
pends crucially on the dynamics of singularity formation.
Singularities in chemotaxis were anticipated by Nanudjiah
[22] and Childress and Perci3] in studies of mathemati-

cal models of chemotaxis. An important feature, understood T T
first by Childress and Percus, is that chemotactic collapse has

a critical dimension although collapse to an infinite density

sheet is mathematically impossible, collapse to infinite den-

sity lines and points both can occur. It was argued in R&f. T~
that these facts crucially affect the patterns that can form.

In particular, Fig. 1 shows a step in the formation of ag- . . .
gregates. The initially diffuse bar(dlling the depth of agar
cannot form a singularity by collapsing only one of its di- =T

mensions to zero thickness; instead it collapses into a cylin- i o
P y FIG. 2. Schemati¢not to scalg of the three phases of cylindri-

der (contracting two of its dimensions simultaneoysiyhe I coll T lapsi inder is formed. Middie. the cvi-
cylinder later destabilizes to form aggregates, for which allf8 cotapse. Top, a collapsing cylinder i ' ’ Y

three dimensions contract simultaneously. Moddié—21 inder becomes modulgted. Bot_tom, the quulated cylinder pinches
L . ST . off and contracts, leaving a series of spherical aggregates. Note that

viewing aggregate formation as the '".“9"’“ instability OT Qthis sketch does not show the radial contraction of the cylinder,
band cannot account for these experimental observationg, . i, takes place as it collapses.
These two different pictures of how aggregates form lead to
different conclusions about which biochemical parametergrimary conclusion connecting the present theory with the
set the wavelength and structure of the patterns. For thexperiments is that the final spacing between aggregates is
“collapsing cylinder” mechanism advocated here, the char-determined by the local depletion of chemicals that make
acteristics of the pattern are set by the same biochemicaspartate production possible. According to Budr®4],
cutoff that prevents an aggregate from reaching infinite denexygen is the most likely depleted quantity. This dependence
sity. of the aggregate spacing on initial overhead oxygen concen-

Cylindrical collapse is also important when an initially tration in the cell could be directly tested in future experi-
uniform-density cloud of bacteria breaks into aggregatesments, and would serve to discriminate this theory from
Linear stability analysis of the uniform-density state predictsthose based on pure linear stability analysis.
that the cloud directly breaks down into spherical aggregates. In the following section, we review the basics of chemo-
However, experimentf24] find that the clumping is hierar- taxis, and discuss details necessary to understand the
chical: the uniform density cloud first collapses as cylindricalBudrene-Berg experiments. In Sec. Il, we review previous
structures, which then break into spherical aggregates. Aresults on chemotactic collapse. Section Il describes our at-
important unsolved issue is to explain the geometry of thaempt to characterize the cylindrical collapse of the bacteria.
high density regions during collapse, and to predict the finaCylindrical collapse(in which two dimensions of the cloud
distribution of aggregates. contract simultaneous)ys a critical cas¢23,25], for which

In this paper, we use a combination of simulations andiffusion and attraction nearly exactly balance. This critical-
asymptotics to describe the breakup of a cylinder in thredty complicates attempts to solve the collapse. We attempted
principal stepgFig. 2. First, the bacteria collapse as a cyl- to verify numerically the solution for the cylindrical collapse
inder towards a line of infinite density. In the second stepproposed by Herrero and Velazqug26]. We encountered
uniformity along the cylinder axis is broken, and a singular-numerical convergence difficulties that are described in Ap-
ity develops at one point. Finally, the remaining cylinder pendix B. In Sec. IV, we perform a stability analysis of a
breaks up, producing a sequence of spherical aggregates. Qeollapsing cylinder. Perturbations to the cylinder can be de-
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scribed by a “phase equation” for the singular ti27]. a consequence, both time-averaged and ensemble-averaged
Solutions to this envelope equation explain full numericalproperties of the bacteria are necessary to predict hydrody-
simulations of a modulated cylinder. Section V describes theamic coefficients; in addition, the dynamics must be such
final stage of the breakup of the cylinder, after the cylinderthat the distribution of bacteria in the ensemble does not
has pinched off at a point. Stability analysis predicts thechange with time.

breakup of the remaining column of bacteria, a situation It is convenient to nondimensionalize Ed4), (2) by
analogous to a propagating Rayleigh instability in a liquidchoosing a characteristic density equal to the maximum ini-
column[28]. We conclude with a comparison to experimen-tial densityp,. The characteristic scale of attractanbig/k.

tal results and experimentally testable predictions. The density then determines the length scale and time scale
according toH=+DyD./(akp,) andt, —D I (akpy). Typl-
|. BACTERIAL CHEMOTAXIS cal numencal values areD,=7X 10 cmzsec
=10~ cn12 sec’! k=10 *®cmPsec? and «a

Chemotaxis refers to the migration of bacteria up chemi-=10°sec’ L pacteria®. For an experiment7] that hasp,
cal gradients. FoEscherichia colithe basis of chemotaxis is =10° cm™3, the length scale is 26am and the time scale
largely understoof29,30: in the absence of a chemical gra- 100 sec. The equations become
dient, anE. coli bacterium performs a random wal1]. 5
Wher_l cheml_cal gradl_ents are present, thg bacterium’s inter- —p=V2p—V-(pVC)+ Sp, @)
nal biochemical reactions detect the gradients and couple to at
the bacterial movement system. This sensing biases the ran-
dom walk, and the bacterium has a net drift towards a chemi- dJc 2
cal attractant. Under special conditions, the bacterium can Eﬁ_v ctp, )
excrete the chemoattractant asparf&até] by converting car-
bon and nitrogen sourcgsuccinate and ammonia, respec- wheree=D,/D. and§=at,. For the experiments shown in
tively) in its environment. In these experiments, exiernal  Fig. 1, cells divide much more slowly than the collapse oc-
chemical gradients are present. Instead, each bacteriugurs; the time scale for cell division is=2 h, giving &
moves in response to the attractant produced by other bacte-0.01. Therefore, we sét=0. The value of the parameter
ria. Thus, the excretion of attractant produces a long-rangearies. For experiments in semisolid agar, the diffusion of
force between the bacteria, and induces complicated interabacteria is much slower than attractant diffusion, which mo-
tions in the colony. tivates the limite=0 [7]. For experiments on bacteria in a

The equations for the collective motion of the bacteria carliquid culture, e~1. We will consider both limits in this
be derived(with no free parameteysirom the underlying paper. Thee=0 limit is convenient for asymptotic calcula-
biochemistry [15], allowing quantitative comparison be- tions. Our numerical simulations give results independent of
tween theory and experiment. The basic equations for the in the range between 0 and 1.

bacterial density and the attractant concentratiorare For analytic calculations, working with the mass can be
5 useful. For reference, we show the form of the equations
o9 _ D,V2p—V-(kpVc)+ap, (1) here. Consider a radially symmetric density distribution, cen-

tered at the origin, which is symmetric éhdirections. Define
the mass contained within a radiugs
Jc
E=DCVZC+ap. (2)
m(r)=f drrd=1p. (5)
HereDy, is the bacterial diffusion constaritthe chemotactic . o ' o
coefficient, a the rate of bacterial divisiong the rate of  This definition(and the choice=0) allows us to eliminate
attractant production, an®. the chemical diffusion con- the concentration and write Eq$), (4) as
stant. The terms in Eq1) include the diffusion of bacteria,

chemotactactic drift, and division of bacteria. Equati@ om_ 4%, ®
expresses the diffusion and production of attractant. at ar P

Equations of this type were first used to describe bacteria
by Keller and Segdl32], and, with variations, have been the Il. COLLAPSING SOLUTIONS

subject of extensive investigatiofsee, e.9.,33,34)). ForE.

coli, Schnitzeret al.[14] and Schnitzef15] established the The equations for bacterial density and attractant concen-
connection between the time-averaged properties of the batration have collapsing solutions, for which the density goes
terial response and the parameters in Efjs.(2). Thus, the to infinity in finite time. In the experiments, the density of
extensive studies of individual bacteria provide a justificationbacteria does not become infinite. However, the density can
for the equations, as well as measurements of the coeffincrease by five orders of magnitude, and we expect that in
cients. There is one complication worth mentioning: Spudictthe experiments the bacteria follow the collapsing solution
and Koshland35] showed thatE. coli have “non-genetic up to some density cutoff. In this section, we introduce the
individuality,” manifest in a distribution of tumble timeby  types of allowed collapsing solutions. First we give heuristic
about a factor of Pbetween genetically identical bacteria. As arguments to explain why one-dimensional collajgeato
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planeg is not allowed, three-dimensional collapgento  >D.Dy/(ak), which suggests that a system with mass above
spheresis possible, and two-dimensional collagsato cyl-  this critical value collapses.

inder9 is marginal. We then review quantitative results. Be-

cause the length scale of density variations near a singularity B. Similarity solutions

is small, we can do asymptotics near the point where the _ ] _ _
density blows up. This leads to a similarity solution for the W& now quantify the preceding dimensional arguments
spherical collapsé36). and collect the known solutions to the chemotactic equations.

As discussed above, the analytic solutions are derived with
e=0. First, consider one-dimensional collapse. Making the
substitution[7,37] v=Vc=4,c in Egs.(3), (4) implies

The competition between diffusion and collapse leads to a
critical dimension. In this problem, the critical dimension is v v D,

2, and one-dimensional collapse—collapse to a planar Tt 2 Voax: (11)
: . IX X
structure—is forbidden.

We make qualitative arguments to explain the critical di-
mension by comparing the chemotactic and diffusive fluxe
in a contracting structure. For a sheet of thicknesshe
inward diffusive flux is of ordefsee Eqs(1), (2)]

A. Critical dimension for collapse

This is the Burgers’ equation; singular solutions to this equa-
Yion do not exis{38].

In d=2 and higher, density singularities can develop.

(Throughout this discussiod,refers to the number of simul-
P taneously contracting dimensiop$n three dimensions, the
JD~—Db|—. (7) nature of the blowup is straightforward. The characteristic
length scalg(L) varies in time, and the spatial structure is
determined by the changeslinA singularity corresponds to
L—0. We guess the form of the similarity solution by bal-
gncing the different terms in EgE3), (4). The diffusive dy-
namics implyL = t* —t= /7, with t* the singular time and
7 the time to singularity. Defining a dimensionless similarity
Je~kpc' ~akpMPD_ 1. (8)  Variable n=r/L, we find the scaling form of the density,
concentration, and mass by balancing all terms in the equa-
If the system collapses onto a plane, the thickness of thHONS
sheetl —0. The diffusive flux blows up while the chemotac-
tic flux is unchanged. Thus a plane with small thickness is 1
unable to reach infinite density, because diffusion eventually p= FR( ),
stops the collapse.

The situation is different for higher-dimensional struc-
tures. For symmetric spherical collap$leree directions con-
tract simultaneousl)y the chemotactic flux is singular. When
we balanceD . V%c~ ap, we find (2c’)’ ~ar?p/D;. This
implies a concentration gradiest ~aM?3P/(1?D,), where
M3P is the mass contained within a sphere of radiuhe
net inward flux of bacteria is then

The chemotactic flux follows by integratifg.c”~ ap (the
prime denotes differentiation with respectripand defining
M1P as the mass per unit area of the planar region. Then th
chemotactic flux is

(12

c=C(n), (13
m=_L%"2M (7). (14)

In writing this form of solution, we have assumed radial
collapse at the originr(=0). For a similarity solution to be
valid, it must obey the correct boundary conditions: the den-
D akpM3PD 1 _sity p and the attractant co_ncentrgticm must be ti_me-
J~ bP + c 9) independent far from the singularity, which requir&s
' 12 ~ 7 ? andC~ constant agy— .
Plugging in the scaling form gives an ordinary differential
As |—0, the inward flux(second termndominates and col- equation in the similarity variabley, where here the prime

lapse occurs. denote differentiation with respect t
In two dimensions, we encounter a subtlety. Assuming
cylindrical collapse and repeating the dimensional argument, M’
we have (c’)'~arp/D., and ¢'~aM?°/(ID.). (Here T=7}d_lR'+RM, (15
M?2P is the mass per unit length of the cylindeéFhe inward
flux is 7 IR=M". (16)

—Dpp+akpM?PD_ ! o ;
J= bP T XRP c (10) In d=3, the similarity equation can be solved exactly; the

| one stable solution, found by Kadan¢&®6], is

Two-dimensional collapse is critical; the chemotactic and 4(3+ 77
diffusive fluxes scale the same way withAccording to this = —77.
simplified argument, there is a net inward flux M?2P (1+ 7%)?

(17)
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As demonstrated in Ref36], this similarity solution agrees
well with numerical solutions. 10°

lll. CYLINDRICAL COLLAPSE

Density

In this section we describe the two-dimensional collaps-
ing solution of the evolution equations. As shown below, a
solution to the similarity equation€l5), (16) that satisfies
the necessary boundary conditions is not possible when
=2. Nevertheless, a collapsing solution with a density sin- 10
gularity does exis{25]. Here we describe our attempt to
simulate the cylindrical collapse. Our work on this problem Radius
was complicated by numerical difficulties, leading us to con- »
clude that our numerical scheme has not converdgéde
discuss the numerics in more detail in Appendix Because
of these problems, we are unable to evaluate the form of the
logarithmic correction to the collapse scaling laws. Here we
give an outline of the basic features of the cylindrical col-
lapsing solution, and leave the full numerical solution as an
open problem. 10

Herrero and Velazque26] used formal asymptotics to
construct the solution for a collapsing cylinder, and proposed
the form of the logarithmic correction. We see the qualitative 1010_,5 o
features of the Herrero-Velazquez solution in our numerics;
however, we are unable to verify their form of the logarith-
mic correction. 0

In two dimensions, there is no solution to E¢s5), (16)
that satisfies the boundary conditions. To see this, note that
for d=2 the similarity equations can be integrated to give

R=e’f2’4exp( f %) (18)

This form for R cannot satisfy the boundary conditions that

the density and mass be stationary at largebecauseR

grows without bound ag— . 107 10
Nevertheless, a similarity-type solution to the equations Time to Singularity

exists, the basic features of which we can capture in a simu-

lation, as shown in Fig. 3(The numerical method is de- . ) 2Ot - : )

scribed in Appendix A; its most important feature is the mesHon of radius for the cylindrical simulation. The different curves

refinement, which frequently moves mesh points to bettefOresPond to different times. Middle, the maximum density vs

resolve the singularity39].) As the simulation progresses characteristic length scale. The solid line has exporeu Bottom,

the maximum density increases. When we examine the S(,:atll:'e length scale of the cylinder vs time to the singularityThe

. fth - 3& it d the | h find solid line has exponent 0.5. The length scale is defined as the radius

Ing 0_2 € maximum daensity an e eng_ s_chjewe _|n where the density decreases from its maximum by a factor of 5.

p~L " “andL~ Jr, as expected for a similarity solution.

How can this be consistent with the argument that O her region matches onto an outer region wi -2 a5

similarity solution exists? We believe that corrections to the . . . .
similarity solution arise to solve this problem. Although the required for the collapsing solution to be stationary far from

. - ! > . the origin. The inner pseudostationary solution has a dimen-
basic self-similar scaling,,~L 2 is preserved, the time de- 9 X y

pendence of. can be different than what the simple dimen- sionless mass of 4. Thus, the evolution of the collapse has a

. X L specific physical interpretation. In dimensionléssnilarity)
§|onal argument suggests. This leads to sléwgarithmiq variables, the inner region expels excess mass to approach
time dependence df/ /.

o — M =4. Matching between the inner and outer regions should
The structure of the solution is shown in Fig. 4, where thedetermine the gynamics. g

curves have been co_llapsed by rs_:scalmg the density and the To illustrate the nature of the nearly self-similar solution,
radius. AsL— 0, the inner collapsing region converges to a . .
pseudostationargolution, which has the same spatial depen-We define the collapse r_.am(t)= ~LL. (Note that th? col-
dence as the stationaryg/dt=dc/at=0) solution to the lapse rate of the syste_mll.ftL; we can make a dimensionless
original equations(3), (4). The pseudostationary solution collapse rate by multiplying by the time scate-L2.) For

scales ap~ 74 for large 5, as shown in the figure. The exactly self-similar collapse, the collapse rateL=1/2is a

10

Density

—10

Length scale

Length scale

-10

10

—20

10

FIG. 3. Cylindrically collapsing solution. Top, density as a func-
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10° ] Compare this expression f&t, to the numerical density
‘ profiles in Fig. 4. The shape of the profile confirms that the

pseudostationary solution holds in the inner region. At large
7, the stationary solution ha®,~ 7 4, while the boundary
conditions requireR~ 7~ 2. The inner solution to the equa-
tions must, therefore, match an outer solution, as shown in
Fig. 4.

Note that the crossover between inner and outer solutions
S will occur at some coordinatey, , when AyM’~A7°R
10° 10° 10" ~RM [see Eq(19)]. This gives
Rescaled Radius

Inner
Region

Rescaled Density
S

o . . e~ A2 (24
FIG. 4. Similarity profiles. The density divided by the maximum
density vs the similarity variableg=r/L. The different curves are
the same as those shown in the previous figure. The solid line in th
inner region is a power law with exponent2; the line in the outer
region has exponent 4.

l’he matching between inner and outer solutions leads to a
length scaleL of the form L=/7/f(In7), wheref is the
correction to the dimensional scaling. An analysis of this
matching was performed by Herrero and Velazq(i2ag];

constant. In the presence of corrections, the collapse raf@eir result gave the correction term
goes asymptotically to zero.
We rewrite the similarity equations assuming tiatand Jr
R depend on the similarity variable and (slowly) on time. f(in7)=1-~exp( v2/2y[In 7). (25
The similarity equations are then

IM We were unable to compare our numerical results to this
LZW +ApM’'=gyR'+RM, (190  formula; see Appendix B for details. In the remainder of this
paper, we use the fact that the logarithmic correction exists,

7R=M". (20) but the results do not require the exact formf ¢ 7).

Note that here the time derivative bf refers only toexplicit IV. EVOLUTION OF A MODULATED CYLINDER
time dependence of the mass; the second term takes into

account the time dependence slaved to the varying length A collapsing cylinder eventually breaks into spherical ag-
scale. gregates. In this section, we derive an envelope equation that

We can solve the similarity equations in the inner region.describes how modulations to the cylinder evolve. The chal-

As the collapse proceeds, it slows down. This motivates us #$Nge is to describe eollapsingcylinder. Collapse amplifies
look for a solution withA=0; that is, a pseudostationary initially smaII. pertprbaﬂons. Therefore, lsmall variations
solution (in similarity variables. This pseudostationary solu- @long the cylinder(in density and the radial length scale
tion solves Egs(19), (20) when A=0 and 3;M=0. The become _Iarge. We can perform a valld_ perturbation analysis
equation for the mass is then by studying variations in the singular timé.

In the original similarity solution, the singular tiné& is

7M"+M’(M—1)=0. (21)  undetermined; ift* changes by a constant, the solution re-
mains valid. Allowing slow spatial variation irf breaks this
Exact solutions to this equation are symmetry. Therefore, we expect the variationtdfto pro-
duce slow dynamics in space and time. Because this mode is
8 the most slowly decaying, it dominates the evolution of a
Rozm' (22 cylinder. We derive a phase equation, an approach used in

many problems when stability is governed by a slow mode
) associated with a broken symmet27]. Phase equations
_ 47 _ (23) [40] were invented to understand problems such as convec-
1+ 72 tion, where the relevant symmetry is translation, and the sta-
bility analysis is relative to a traveling wave solution. Earlier
From the formula foM, we see an important feature of research moved towards applying phase equations to singu-
the stationary solution: the total mass is 4 in dimensionlestarities: in work on blowup in the semilinear heat equation,
units. This reflects a rigorous resy5,36: collapse will  Keller and Lowengrulj41] derived a transformation from a
occur if and only if the total mass per unit length of the blowing-up variable to one that vanishes, and they perturbed
cylinder satisfiesM>4. (For M<4, no collapse is in the vanishing variable. Also in the context of the semilin-
possible—the system evolves to a constant depsihen  ear heat equation, Berndf#2] has examined how the singu-
M=>4, collapse occurs; the solution converges toward a colkar time varies along a cylinder.
lapsing mass precisely equal to 4. In similarity variables, We compare solutions of our phase equation to full nu-
therefore, mass flows away from the origin. merics and show that the evolution of a modulated, collaps-

Mo
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ing cylinder is well described by the simplified phase equa-As shown in Appendix C, for a modulated cylinder the phase
tion. equation is

A. Derivation of a phase equation i+l 7'5

. L =Tz - (34)
Here we give a flavor of the derivation of the phase equa- f2 T

tion; for details see Appendix C. We seek an equation for the

dynamics of r(z,t)=t* —t=ty+T(z,t)—t. Slow variation The logarithmic correction terms in this equatitthe f2 in
requires that boti”<T’ and T<1. Once the collapse time the denominatgrarise directly from the logarithmic correc-
varies along the axis of the cylinder, the similarity functionstions to the length scale in the two-dimensional solution. In
R and C are no longer exact solutions to the equations. Wehe following section, we show that the logarithms lead to

write asymptotically different scalings for the radial and axial
length scales of the collapsing cylinder. Hence, a “point”
R=Ry(7)+ 6R1(7,z,1), (26)  singularity that forms on a collapsing cylinder does not have
the same collapse rate as a collapsing sphere. In the absence
C=Cy(m)+ 6Cq(m,z,1), (27) of logarithmic corrections to dimensional scaling, the phase

equation is simply
where »=r/L,, the radial length scalé,=/7(z,t)/f(7),
andf is the (unknown logarithmic correction. The perturba- Tf
tion paramete® is of orderL,/L,, whereL, is the scale of rtl=r —. (35
the density variation along the axis of the cylinder.
We apply this guess to Eg8), (4), and expand ir5. The
lowest-order equation gives the similarity equatiois), B. Numerical simulations of a collapsing cylinder

(20). At first order, we find an equation of the form Now we compare solutions of E¢34) with a fully non-
_ linear simulation of a collapsing cylinder. We have found
A(Ry,C1)=F(Ro,Co)(1i+1)+G(Ro,Co) 722 two different mechanisms by which modulations of the cyl-
2 inder can produce singularities: the first is a “point” singu-
+H(Ry ,Co)—z, (29 larity, in which the density blows up at a point on the cylin-
T der; the second is a “traveling” singularity, which moves

h is the derivati £ with q along the cylinder axis with a diverging velocity as the sin-
where 7, is the derivative ofr with respect taz, and so on. gularity is reached.

On the left-hand side, a linear operatbiis acting onR, and The primary technical difficulty in simulating a modu-
Cy; A comes from the linearization of the original equa- 516 collapsing cylinder is developing a remeshing algo-
tions. The right-hand side contains derivatives of the singulafjy,m 1o closely approach the singularity. The remeshing al-
time multiplied by known functions oR, andC . . gorithm described here resolves density singularities along
Although R, andC, are unknown, the right-hand side is he axis of the cylinder with essentially arbitrary resolution.
constrained by a solvability condition: any function that is The gigorithm is based on a simple one-dimensional scheme,
anniilated by the adjoint o\ must be orthogonal to the yhich redistributes mesh points every 50 time steps to re-
right-hand side. That is, iA'g=0 for a nonzer@, then the  goye the singularity. The two-dimensional algorithm uses

inner producf43] the one-dimensional remeshing scheme along bodind z
simultaneously; the two-dimensional equations are then
solved by operator splitting. Details of the algorithm are
summarized in Appendix A.

Hence the right-hand side of E8) is orthogonal tag. In : . . . . -
. . : } A typical simulation[44] started with a-independent ini-
this problem(see Appendix Eprecisely one nonzerg sat tial condition, which was allowed to progress until the maxi-

isfies ATg=0. Taking the inner products leads to a phase X . X . ;
equation of the form mum density reached 10At this point, the radial profile of

the collapse was well approximated by thé&wo-
2 dimensional collapsing similarity solution seen in the two-
C1(7+1)+CyTyyt Ca—=0, (300  dimensional simulation. We then added-dependent pertur-
T bation to the density profile, with amplitude much smaller
] than the ambient density.
where the constants, c,, andcg can be expressed interms  The separation of scales hypothesis underlying the deri-

(9.A(R1,Cy))=(A"g,(R;,Cy))=0. (29

of the known functionsy, F, G, andH: vation of the phase equation is maintained uniformly in time.
We experimented with different functional forms for the den-
¢1=(9,F(Ro,Co)), @31 sity perturbations; as long as the length sdaléor variation
in the z direction is longer than the variation in the radial
¢2=(9,G(Ry,Co)), (32)  directionL,, perturbations tended to grow. In all cases, the
relationL ,>L, was maintained. As demonstrated in Fig. 5, a
c3=(g,H(Ry,Cy)). (33)  radial cross section of the cylinder always revealed density
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FIG. 5. Radial density profile at a single point on a modulated, FIG. 7. Location of the edge of the maximum density region
collapsing cylinder. Note the™# region matched to the ? region:  z,(7) as a function of time. As predicted by the theory, the edge
the solution is well described by the two-dimensional similarity moves according to the lagy(7)=—A,|In 7. Regression gives
solution throughout the collapsgef. Fig. 3 even in the presence of A ,~0.17.

a zdependent modulation.

Toh—2Zomod' +1 ¢'?
profiles in agreement with the two-dimensional collapsing — =7 ”—7 . (37)
solution. f

omes arbitrarily small as the singularity is approached.

. . . . . C
Traveling singularities occur when a steplike perturbat'o”rherefore, the left-hand side must be equal to zero, which
is placed on the cylinder, increasing the densityZarz, and gives

decreasing the density far>z,. The subsequent evolution
occurs at the boundary between these two regions. A simu- : : f o

. : ) L . - +1=0.
lation of this process is shown in Fig. 6. We find that the To¢~ 2070 +1=0 (38)
boundary propagates toward the higher density. Heuristically, . . . . .
the higher-density region is beginning to contract as aspherér,] this equatlon,zor(_, must be mdependgnt of t'_me' If_we
so its decrease in size is consistent with the beginning oflemand the balancemo=—A, so the high-density region

spherical collapse. propagates to the lefdecreasing). Then
This propagating singularity can be described as a solu-
tion to the phase equatigi4) of the form Zo=Aln7o=—AlIn 7y|.

The solution for¢ is then
T=T1oP[2—2Z0(1)], (36)

d(np)=1+e"?A (39

where ro=t* —1 is the basic phase expected from collapse.

All the nontrivial space and time dependences are absorbed Figure 6 shows the density along the centerline of the
in ¢ andz,. Inserting into the phase equation, we have cylinder. The decay of the highest density is exponential, as
predicted by the phase-equation solution constructed above.

A fit to the numerical data shows that

p(r=0z)~el"ZAp) ~e(-31) (40)

o

—_
(=]

yielding A,,=0.32, the value oA measured from the profile
shape.

Figure 7 shows the location of the edge of the maximum
density regiorgy(7) as a function ofr. As predicted by the
phase equation analysis, the figure shows that— A|In 7.

A least squares fit gives the prefactdr(as measured from

5

(3

—_
(=)

Centerline density
—_
=)

10° ‘ the front velocity A,¢~0.17. The qualitative features of the
0 > 10 15 20 numerical simulations are thus in good agreement with the
Axial distance theory. Quantitatively, however, there is a discrepancy: the

FIG. 6. Time evolution of the centerline densjigr=0,z), with  theory predicts that we should hadg, /A, =1, while our
a steplike initial condition. The perturbation is seeded whpen Nhumerical simulation give#, e /A, ~0.5. We believe that
=10" The highest-density regigrropagatedo the left. Hence, the the discrepancy arises because the convergence of our nu-
spatial extent of the high-density region shrinks as the collapse igherical scheme requires that we keep a sraalD.1, while
approached. Note tha{(z)~p(r=0,2) L. the analysis in the previous subsection assuee8.
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20

10 T T L
=12, (44)

10" L | This shows that the generic density singularity that forms
during the breakup of cylindrical collapse ot spherical
collapse, but something milder. Locally, since the axial scale
i L, is much larger than the radial scdle the structure still

10" - 1 looks like a cylinder. Numerical evidence for this behavior is
shown in Fig. 8(although we note that the plots show be-

havior during an initial transient shown in Fig. 11 and dis-

cussed in Appendix B The singularity develops a length
scale in the axial direction that is much larger than the radial

scale 1{/p. For example, in Fig. 8, whep=10'° (so L,

=10"%), we findL,~ 10" 2. Our numerical algorithms unfor-

o s s " 2 tunatel_y have not aIIoweq us to find the a.symptciI;dLr .
numerically; the problem is that the separation of scales is so
great between the radial and axial scales that one needs many

FIG. 8. Time evolution of the centerline densjiyr =0,z) for a more mesh points than we can afford to resolve the
point singularity. The singularity was initiated by placing a pertur- asymptotic regime.

bation(symmetric abouz=10) on a uniformly collapsing cylindri-

cal solution.

p(p=0,2)

10

10

V. BREAKUP INTO SPHERICAL AGGREGATES

2. Point singularity The question of relevance to the experiments is what hap-
pens next. Once blowup occurs at a spatial point the cylinder
occur in the numerics for a wide variety of initial conditions. has a free end, which changes the nature of the collapse. We

We believe that the stationary singularity represents the geqan no Ipnger use the S”"’!tegy qf the previous sectlon'—
neric evolution of a modulated cylinder. Indeed, it is the endperturbanon about a collapsing cylinder—because the radial

state of the traveling solution just discussed, when the propats—trlJCture is no longer closely approximated by the cylindrical

gating wave runs into the reflection-symmetric boundarysplu“on‘ The pinchoff _drives the dynamics; specifically, the
condition. An instance of this solution is depicted in Fig. 8. pinched end of the cylinder forms a traveling wave. Heuris-

In contrast to the traveling singularity, the logarithmic tically, ?Ott? tha}f 6}[? etdgf zf batcr:erlgl prg)tdqcer? ?1 h|g_|f_1her
corrections to the scaling laws are important in this solution.conffer.',,ra lon of atfractant where the density 1S higner. 1hus
For our analysis, we take the point of blow-up to bezat the “tail” of bacteria moves toward higher attractant density,

0. Sastyng the equaton requres that g scale o0 2 V2Veg wave can form, Recal hal for aralon
incorporate corrections to the scaling: P 9 9

equation, which has traveling wave solutid®8]. The con-

traction of a cylinder end has been observed for the bacteria
[24], and the traveling waves have been discussed in other

- TO¢<H)' (41) contexts[7]. Here we discuss the instability of the recoiling
end and the final spacing of the spheres.

] o ) Note the qualitative similarity between this instability and

where we have defined the Slmllal’lty Var|abj|e Z/Tg)/. The the Ray|e|gh |nstab|||ty of a ||qu|d C0|um[]28]_ The Ray_

Stationary singularities—blow-up at a spatial point—

™ TO¢< 7$h(7)

phase equation becomes leigh instability is driven by surface tension, and causes a
cylinder of liquid to break up into spherical drops. This prob-
. ¢ 7o dh 12| n @'? lem is similar, although more complicated. First, the cylinder
o —d+p o'\ vty 57 1= ™4 ¢ e is collapsing The collapse is not present in the Rayleigh
(42) instability, and necessitates a different type of perturbation

analysis. Second, this problem has no surface tension, be-

Demanding that the two sides scale the same way in tim&ause there is no surface—the density varies smoothly. The

(and ignoring thergh’/h term because it is negligibly small instability is driven by interactions of the bacteria inside the
0

close to the singularijy we have cylinder.
Figure 9 shows a set of plots of a retracting cylinder. The
simulation shows that the end of the cylinder collapses as a
1 7(1)_27 spherical aggregate, and simultaneously, in front of the ag-
FEa (43 gregate waves travel into the bulk of the cylinder. The col-
lapse of a single aggregate corresponds to formation of a
singularity in the numerics. In order to continue beyond this
which givesy=1/2 andf=h. ThusL ,~ 7', which differs  singularity and simulate the formation of an array of aggre-

from the radial length scalbr~ré’2f‘1. The result is gates, we introduced a cutoff that emulates the biochemistry
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0.2

Jc

| E=DCV2C+ape_"/’J*. (45)

If the density of bacteria is higher than the cutoff dengity,

the bacteria stop producing attractant. This prevents collapse
to infinite density by limiting the increase in the gradient of

L
15

L
20

P attractant. In Ref[7] this cutoff density was estimatgds-
suming the cutoff was caused by oxygen depletiand

shown to vary exponentially with the overhead oxygen con-
. centration in the cellp, ~e“ox, For the simulation shown in
Fig. 9, this cutoffp, =500. Note that the density of tHan-
disturbed cylinder in front of the retracting rim slowly ap-
proaches the cutoff density, ; we have found in simula-
tions that the undisturbed cylinder always collapses to a

L
15

!
20

25 density close to the cutoff value.
The formation of the density wave occurs because the

retracting end perturbs the cylinder in front of it. We can find

. the time-evolution of perturbations to the cylinder, requiring
that they decay away from the free end. The most unstable
mode can be found using the method of stationary phase
[45]. If the linear growth rate i&(q), the point of stationary
phaseq, satisfies

L
15

L
20

e (46)

mdq q*— s

i dw _Re(w)
Redal, “m@ @7

Maximum density

FIG. 9. Numerical simulation of a collapsing cylinder with a
free end, showing contour plots of the density. As the cylinder re-
coils, aggregates are left behind. The spacing between the aggre-
gates is determined by the density of the cylinder as it collapses.
(Note that the value of the density corresponding to the black con-
tour changes between frames, because the density in the cylinder
increases with tim¢.The final frame in this figure shows the den-

2000

1500

1000

500 ¢

20

10
Axial distance

20

For the discussion here, we perform the calculation using
the free-space dispersion relation. A perturbation to constant
density that satisfies the boundary condition that the pertur-
bation decay to zero at large positizdnas the form

25

p=po+ 6evt~ 47 (48)
c=pot+ xe*' 92, (49)

where we have takea=1 for simplicity in this calculation.
Plugging into the equations and linearizing gives the disper-
sion relation

w=*i\poq+ > (50)

The most unstable mode is, in dimensionless units,

Vs =+ \Po, (51)
q*zig(l_ki): (52

sity profile along the centerline of the cylinder for the last contour
plot (with four aggregates The maximum density is near the cutoff Po
densityp, =500 discussed in the text.

W=7 (53

These formulas demonstrate that the wavelength of the

in the experiment: when the bacterial density becomes tomodulations is determined by the undisturbed density in the
high, the bacteria locally deplete chemicals such as succinatailk of the cylinder. Since this density increases to the cutoff
and oxygen and cease to produce the attractant aspartate. \density p,, , it follows that the wavelength of the ripples is

modeled this by changing the equation &oto

determined by the cutoff. Thus the biochemical parameter
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controlling the maximum density also determines the char- In this paper, we have discussed the logarithmic correc-
acteristic distance between aggregates. This conclusion cdions in two-dimensional collapse. In the experiments, the
be experimentally tested. subtle corrections to the dimensional scaling laws are prob-

The predictions for the wavelength and velocity of theably not directly observable. However, the basic scaling re-
front compare well with numerical simulations. On decreas-ations expected from the similarity solution—for example,
ing p, from 500 to 140, the wavelength of the ripples in- that the maximum density is related to the length scale of
creases from 1.4 to 2.5, in qualitative agreement with thelensity variations by,,~L ~?>—could be measured in ex-
formulas. periments, both for cylindrical and spherical collapse. So far,

We remark that the basic scenario outlined in this sectiomo quantitative and controlled measurements of the bacterial
was discovered by Budrene, in unpublished experimentdensity have been performed.

[24]. After observing the traveling band collapse as a cylin- To our knowledge, modulations of a collapsing cylinder
der (Fig. 1) Budrene observes fast “waves” propagating have never been quantitatively measured in experimeits
around the cylinder. Then, a fragmentation front moves alonghough as mentioned above, Budrene has made qualitative
the collapsing cylinder, leaving spherical aggregates behindbservations of this effectThe traveling and point singu-
The present theory predicts a scenario that is qualitativelyarities that we predict for a modulated cylinder may be ob-
similar: the fast “waves” correspond to the modulations of servable. In particular, we predict that the radial and axial
the cylinder described by the phase equatiomn, the travel- length scales should be different for the point singularity.
ing steps, described in Sec. IV)AThe fragmentation front Because the difference in these length scales arises from the
occurs due to the propagating instability outlined in this seccorrections in two-dimensional collapse, a measurement of
tion. Unfortunately, it is not currently possible to make athese length scales would verify the existence of slow cor-
guantitative comparison of the experiments to the presemtections.

theory, though such a comparison would prove interesting. The modulated cylinder ultimately pinches off at a point.
We have argued that the spacing of spherical aggregates is
determined by the instability of a cylinder with an end. In
practice, when does the modulated cylinder pinch(faffm-

This paper has shown how the patterns formedbygoli ~ iNg an end? To answer this question, we must know when
are connected to the geometry of singularity formation in theour theory breaks down. Collapse to infinite density cannot
hydrodynamic description of the bacteria. We have sketchefjappen for bacteria, because they have finite size. It was
the features of the solution for criticvo-dimensionalcol-  argued in Ref[7] that even before the hard packing density
lapse, and developed a theory for modulations to the cylinof bacteria is reached, oxygen depletion will stop the col-
der. The phase equation provides a useful simplified descrigapse. Regardless of the specific mechanism, at some time
tion of a perturbed cylinder. We argued that, ultimately, thethe highest-density part of the cylinder—the point
spacing of spherical aggregates is determined by the instabifingularity—will stop collapsing. This is the time of pin-
ity of a pinched cylinder of bacteria. choff, because the point singularity evolves much more

Here we compare our work to published experiments anglowly than do the neighboring, less dense regions of the
suggest tests of the theory. Not all the coefficients in thecylinder.
original equationg1) and (2) have been precisely measured ~ This argument gives a testable prediction of our model,
[7] for the experimental regime of interest. In particular, nei-because the spacing of aggregates depends on the maximum
ther the attractant production ratenor the chemotactic co- density of the cylinder. In dimensional units, the most un-
efficient k have been measured for bacteria in the samétable wavelengtkand, therefore, the aggregate spagiisg
chemical environment as that of the collapse experiments.

Thus, at this stage, we can make_ only order of magnitude N=41 /Dchp—uz: 300 Cm—l/zp—llzl (54)
numerical comparison with experiments. Here we use the ak ©M m

values of the coefficients for bacteria in a liquid mediUmh

bacterial diffusion coefficienD,=7x10"% cn? sec’!; at-  where we have used values of the coefficients from above.
tractant diffusion coefficientD.=10"° cn? sec’* [46];  Thus, varying the maximum attainable density of the bacteria
chemotactic coefficienk=10" 1 cn® sec !; and attractant should cause the aggregate spacing to change according to
production ratex=10° sec ! bacteria *. this scaling law. In Ref[7], a formula for how the maximum

An important prediction of this theory is the critical mass density in a collapsed aggregate depends on the initial oxy-
of bacteria for cylindrical collapse. With the chosen param-gen concentratiorCp,, was derived and shown to kg,
eter values, the formation of a collapsing cylinder requires a~e®ox, This implies that the wavelength of the pattern
minimum number of bacteria per unit lengtiv should decrease exponentially with the oxygen concentra-
=4D,D./(ka)=3%x10*/cm. The existence of a critical tion; systematic experiments could test this prediction.
number of bacteria for cylindrical collapse has been inferred One prediction that can be compared with published ex-
from experimentd 7], but this number has never been di- periments is théower boundon the aggregate spacing that
rectly measured. We emphasize thaith experimental mea- follows from the hard-packing density of bacteria. Using the
surements for the parameteds,, k, and «) the theory rig-  characteristic size 1@m of E. coli, the maximum density is
orously and precisely predicts this critical mass, allowing aapproximately 1&cm?. Thus the measured aggregate spac-
direct test of the theory. ing should always be above the lower bound

VI. CONNECTION TO EXPERIMENTS
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Nmin=0.1 mm. (55
10° © Mesh point
Although admittedly a crude prediction, this lower bound
agrees with experiments, where spacings are typically mea- > 0
sured in millimeters. 'z 10
a
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Fund Interfaces Program. Two spatial dimensiongn two dimensions, the equations
were solved with a position grid by using standard operator
APPENDIX A: REMARKS ON NUMERICAL METHODS splitting techniques. The mesh is rectangular, and described

) ) ) ) ) ) ) by two functions, thex coordinatex; and they coordinatey; .

The partial differential equations described in this papeigecause the one-dimensional algorithm described above can
were solved using second-order in space finite-differencgchjeve good resolution with a few hundred mesh points, it is
methods, supplemented with adaptive mesh refinement. The,ssible to resolve density changes in two spatial directions
time discretization used a-vv_elghted Crank-Nicolson-type by using of order 1 mesh points. The algorithm for these
schemeli.e., in the equatiorf=Lf the right-hand side is simulations is analogous to that for the one-dimensional case
evaluated at time n(+ 6)At, where At is the time step  described above: every 50 time steps, Xtggid (or y grid) is
Typically, in the simulations with one spatial dimensigh, remeshed, in accordance with the criteria outlined above.
=0.6. For the simulations in two spatial dimensions, we usedypically we stagger the remeshing between the two direc-
an ADI operator splitting method, which requires usifig tions by 25 time steps.
=1. Because these methods are implicit, at each time step a Both the one- and two-dimensional codes were tested ex-
matrix inversion was necessary. This is the most expensiveensively by checking the solutions against known analytical
part of the numerical method. results. For the one-dimensional code, significant problems

The most subtle aspect of the numerical simulations rewere found when simulating cylindrical collapse, as dis-
ported in this paper is the mesh refinement. Without goodtussed in the next section. All of the results presented in this
mesh refinement it is impossible to get close enough to theaper follow the philosophy that numerical results are only
singularity to resolve the collapse; without good mesh refinebelievable if they can be replicated by asymptotic solutions
ment in the two-dimensional simulations it would be impos-of the equations. For the two-dimensional code, one might
sible to acquire enough decades of data to test the phasemorry that the operator splitting coupled with the remeshing
equation theory presented in Sec. IV. The philosophy ofnduces artificial biases in the numerics; we also tested the
mesh refinement employed in this pagfnst explained to us  two-dimensional code by checking that it can reproduce the
by Egger$ is to frequently implement gradual changes in thescalings and the similarity solution for spherically symmetric
mesh, as opposed to infrequently implementing largecollapse, where the solution is well known.
changes.

CyIind_ricaI .coIIapse (one spatia! djmensiorWe used a APPENDIX B: NUMERICAL DIEEICULTIES
scheme in which me_sh_refmement is |mplemer_1ted every _tlme FOR CYLINDRICAL COLLAPSE
the maximum density increases by 1%. During the refine-
ment, the characteristic scale over which the solution varies Our attempts to capture numerically the logarithmic cor-
is determined, and a mesh is constructed to resolve this scalesctions to the cylindrical collapse encountered difficulties.
typically, this involves making sure there are at least 100Here we describe our results and pose this problem as an
mesh points across the region where the solution varies sigpen question. We begin by recalling a theorem concerning
nificantly. The solution on the new mesh is constructed bythe cylindrical collapse of Eq$3), (4): self-similar solutions
cubic spline interpolation of the old mesh. Because the meshatisfying the boundary conditiofistationarity at infinity do
is refined frequently, the changes to the solution occurringuot exist.
during refinement are small, and there are no convergence Our numerical calculations identified discrete solutions
difficulties after refinement. The algorithm allows us to find that violate this theorem even as the mesh spacing tends to
solutions over essentially arbitrary changes in the bacteriatero. Our simulations showed very high resolution of the
density with as few as 200 mesh points. density and concentration profiles, as shown in Figs. 3 and 4;
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FIG. 11. Spurious logarithmic corrections in the radial grid
simulation. Plot of the length scaledivided by 72 for the simu-
lation shown in Figs. 3 and 4. The apparent constant value close to =
the singularity is a result of the remeshing and interpolation ”
scheme, which does not conserve mass. L
-5
we have replotted one density profile from Fig. 3 showing 10
the mesh points used in the simulati@fig. 10. This high
resolution is maintained uniformly throughout the simula- P
tions by our remeshing procedure: if we plot the profile at 10 = 107° 10° 10°

any time in similarity variables, the profile resembles that of T

Fig. 10. Our numerical method is putatively second-order

accurate. Although the remeshing complicates the error pre- FIG. 12. Cylindrical collapse with a mass grid. Top, mass as a
diction, we would naively guess that by maintaining a well- function of radius. Bottom, the length scaledivided by 7 This
resolved profile in similarity variables, we achieve second-Simulation has a total masst.5 and an 1®initial grid points.

order accuracy in similarity variables.

The apparent logarithmic correction we find is shown incode used the same type of integratidiscussed in Appen-
Fig. 11, where we plot./ /7 vs 7. The simulation, in fact, dixA) as the radial-grid code. _ o
shows that ag—0, there is no correction. After an initial !N addition, we add mesh points to the simulation in re-
transient phase, we find that\/7 is constant, as expected in 9i0ns where the mass changes slowly with the radius. We
the absence of a logarithmic correction. Initially, we thoughtfind this type of behavior just outside the collapsed region,
that plots like Fig. 11 were evidence for very slow (log g Whe_zre the mass is nearl_y equal t0_4 over s_everal decades in
corrections, as observed for the nonlinear Sdhrger equa- radius. We add mesh.pomts to aV(_)ld nur_nerlca_l errors caused
tion [47]. However, we realized that these results may bePy the loss of resolution when neighboring grid points have
biased by our remeshing and interpolation procedures, whickery different radii. We used different criteria, for example,
are not mass-conserving. As a result, the remeshing reducé§ added more points whenever the radial spacing between
the total mass of the system in a roughly self-similar fashionn€ighboring mesh points was larger than some threshold, or
We therefore wondered if remeshing affects the features OWhenever th_e fractional density difference between neighbor-
Fig. 11. We found that changing the frequency of remeshing"d mesh points was above some threshold. ,

(which changes the rate of “numerical mass lgsshanges C_)ur rgsults showed S|m|larly weII—resoI.ved.proﬁIes as t_he
Fig. 11, indicating that the result is an artifact. radial-grid results. In partlcular, we show in Fig. 12 a profile

After discovering this problem, we switched to a numeri- Of the mass vs radl_us for a time near the singularity. Note
cal scheme based on a mass grid. Here, the initial grid i§1at the plotted points are dense over the many decades
uniformly spaced in mass increments, and the density antyhere the mass changes slowly with radius, confirming the
the radius are solved as functions of the mass. We tok Success of the procedure described above.

=0 in Eq. (4), so the radius is related to the mass by The scaling ofL/+/7 in the mass-grid simulation is qlso
shown in Fig. 12. The plot shows no logarithmic corrections;
a1 after an initial transient./ /7 is constant.
rom P’ (B1) Despite the high resolution shown in our plots, we were

suspicious of the results of the mass-grid simulation because
The boundary conditions used were=0 at the origin, re- the L/\/z curve is time-independent over 20 decades, sug-
flection symmetry of the density about=0, and constant gesting the existence of a similarity solutién violation of
density at the outer boundary. The code based on a mass gtide aforementioned theorenWe looked for numerical arti-
does not necessarily require remeshing. The initial gridacts by changing the number of mesh poiNtsand found
points betweerm=0 andm=4 track the inner collapsing changes in our results. For example, the singular time—the
region automatically. Apart from the change of variables, thigime at which the density becomes infinite—varies logarith-
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100 , , : To evaluate the solvability condition, we need to find the
zero mode of the adjoint to the operatbrfound by linear-
o 80 izing the original equations. In this cask,is the matrix
£
5 ® V2-V.(VCy) —V-(Ro")
& 40 2 . (C4)
£ 1 \Y%
7]
20. All of the terms in A are self-adjoint except those of the
form V- (VCy-). Under the definitior{for a cylinder of bac-

0 g

10 100 10 10 10° teria) of the inner productf,g)=frdrfdzfg we find the
Number of points adjoint
FIG. 13. The singular time in the simulation vs number of grid [V.(VCy)]T=—3,Coo (C5)
. 0" - r~0Yr»

points. The solid line shows a logarithmic fit to the points. The
simulations used a mass grid with total m&ss-4.5 and boundary . . S
" . . which gives the adjoint linear operator
conditions as described in the text.
2
mically with the number of point& (Fig. 13. We do not A= ViAViCeV, 1 _ (C6)
understand why the singular time found by our supposedly ~V-(RV:) V?

second-order method varies asNn o .
It is noteworthy that these results disagree with the theoryrhis linear operator possesses a simple zero madél,0)

of Herrero and Velazquef26], who predict that the form of =0. The coefficients of the phase equation thus become
the logarithmic correction is

¢1=(1F(Ro,Co)), (C7)

L
TT~exp(—\/§/2\/|In 7). (B2) ¢,=(1,G(Ry,Co)), (C8)
This form is a strong log correction that we thought would be c3=(1H(Ry,Cp)). (C9

observable in our simulations. We do not know if the dis- .

agreement is because of the inadequacies of our numerics; A subtlety comes when we evaluate the inner products:

this is an interesting problem for future research. we must integratein similarity variables to the limit of
validity of the similarity solution. For a cylinder, this upper

limit is 7, , the radius at which the solution matches onto
the outer solution. From the asymptotics discussed earlier,
we use thaty, ~A~ 2= (7). Evaluating the inner products,

In this section, we fill in the details of the calculation of and taking the limitr— 0, we arrive at the result
the phase equation. Evaluating the coefficients in 28),

APPENDIX C: PHASE EQUATION FOR A BACTERIAL
CYLINDER

we find [48] —4
C1=— (C10

’ f2

7R,
F(Rg,Co)=Rp+ R (Cy
c,=4, (C11)
7Ry MRyC
G(RO,C0)=RO+TO— 20 o (C2) Co=—4 (€12
1 The resulting phase equation is
H(Ro.,Co) =2Ro+ 7 [77Rg+ 7°Rg—57RoCy
i+l 7'5 c13
1AV =Tz
= 7*(RoCq)'1. (C3 f2 “
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