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Molecular dynamics simulations of hard sphere solidification at constant pressure
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Molecular dynamics simulations in tHéPT ensemble are used to study the dynamics of crystallization
processes in hard sphere systems. The simulation method used permits us to follow the dynamics after a
sudden pressure or temperature quench in a one-step process without the need of extra densification methods.
During the quench a strong correlation between the system density and the crystalline order p&ariseter
found. The growth of fcc order in the system over time is observed in detail and compa€ggitlo We
compare results for the equation of state on the metastable fluid branch with previous results from constant
volume molecular dynamics simulations. Some results for the crystallization of binary hard sphere mixtures are
also presented for a number of different size ratios.
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[. INTRODUCTION Much recent attention has been paid to the dense packed
metastable fluid states and the crystallization processes initi-
The hard sphere potential is one of the most frequenthated from then{13-16,18—-238
and thoroughly investigated model potentials for molecular For volume fractionsp<<0.57, metastable states are de-
interactions. In spite of its simplicity it mimics surprisingly scribed quite well by the Carnahan-Starling equation. How-
well the properties of simple fluids and colloidal suspen-ever, for volume fractions in the range 05%<0.58 the
sions. This is especially true at high densities, where theystem easily starts to freeze and does not stay very long in a
behavior of real fluids is mainly dictated by short range re-metastable fluid stat¢15,19,23. With high compression
pulsive forces rather than longer ranged attractions. Since thates metastable fluid states with volume fractions higher
first molecular dynamicgMD) simulations in the 1950’s than 0.58 can be reached. Metastable states ¥tl0.57 can
[1,2] the hard sphere potential has raised a number of intetse fitted nicely by a phenomenological equation of state
esting questions, some of which now appear to be answered
while for others definitive conclusions are still lacking. First
of all, the hard sphere system analysis revealed strong evi-
dence for the existence of a first-order transition from a dis-
ordered to an ordered phase simply from short range reputvith A=2.67 andzy=0.648 proposed by Speedg4]. He
sions[3—6]. Although it is quite clear that hard spheres havesuggests that a#~0.57 a second-order phase transition oc-
an ordered phase it took a long time and very careful inveseurs from a metastable fluid to a glassy state. However the
tigations to estimate the most stable crystalline structure ofegion aroundy~0.57 is difficult to analyze. Slow compres-
hard spheres. A number of independent recent studies seegibns lead to crystallization while for high compression rates
to show that the fcc structure has a slightly lower Helmholtza number of glasses with individual branches were observed
free energy than the hcp crystalline structlire-11]. [19]. A quickly compressed system might get stuck at a non-
The various equilibrium states of one-component harddeal glassy state, i.e., on a fluidlike state that does not have
sphere systems can be depicted in a phase diagram showittge lowest possible pressure for the respective volume frac-
Peo®/KT versus the volume fractiom. A branch of fluid  tion. Rintoul and Torquato dispute the existence of a thermo-
equilibrium states starts from low densities and goes to alynamic glass transitiof.5—17. They propose that crystal-
volume fraction ofy~0.494 whilePzo®/KT increases from lization can start from any metastable state though for high
Pea®/kT=0 to Pgo’/kT~11.59, well described by the densities it might take a very long time and especially small
Carnahan-Starling equati¢f?2]. A phase coexistence region systems might get frustrated by finite size effects. They claim
with constantPzo®/kT~11.59 connects the freezing point that signs of crystallization are found for all densities if the
at the end of the fluid branch with the melting pointzat  system is chosen large enough. This is in contradiction with
~0.545 where the fcc solid branch stai8s4]. On the solid other observations that find that small systems crystallize
branch thePzo*/kT value increases with increasing density faster than large onefl8,21,23. Further analysis of the
and diverges at the close packed volume fractionzof crystallization process was done by Richatdl.[21] while
=m/2/6. If a fluid hard sphere system is compressed bespecial attention to the time development of different types
yond the freezing point it may follow a fourth branch con- of crystalline order was paid by Kendadt al. [23].
sisting of metastable dense packed fluid states. It is assumed Computer simulation studies of the thermodynamics of
that the metastable branch ends at a volume fraction hard sphere solids have been extended to mix{ités-27.
~0.64 where the correspondim@go>/kT value diverges. In addition to the formation of binary alloys without substi-
This limit is often denoted as “random close packing,” al- tutional order, substitutionally ordered solid phases A&,
though the existence of a well defined state of random clos&B, or AB,3 can form, depending on the chosen size ratio
packing has been called into question in recent Wa. a=rglr, of the componenté andB. The stability of those

PeVINKT=A/(1-7/7y), 057=n<n, (1.1
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phases has recently been investigated in computer simulaally studied by a method originally introduced by Andersen
tions[25—-27]. Quantitatively accurate theoretical predictions[35]. In 1986 de Smedtt al.[36] described an adaptation of
have also been madgs]. the Andersen algorithm to hard sphere systems @limen-
Much less attention has been devoted to the crystallizatiofions. In a recent papg87] we presented an implementation
process in binary hard sphere mixtures. Jacksbal. [29] of the de Smedt analysis and demonstrated its accuracy. One
provided evidence of crystallization from Monte Carlo andfinds that for a hard sphere system in tiEH ensemble a
MD simulations for several size ratios, but at the time ofone-step crystallization process starting from a low density
their work there had yet to be accurate calculations of thdluid is impossible[37]. Thus we modified the de Smedt
solid-fluid phase diagrams. Eldridgs al. [25] have com- method to enabl&lPT ensemble simulations which are more
pared the phase diagrams obtained from computer simulguitable for crystallization. Accuracy tests of tNé® T algo-
tions with experimental results. They find that in experimentgithm were also presented in R¢87].
for size ratios between 0s5a=<0.625AB,; is found more The purpose of this paper is to describe the application of
often than expected from the phase diagrams. They argugonstant pressure molecular dynamics to crystallization in
that during the crystallization process in the fluid phase thdard sphere systems, including the case of binary mixtures.
formation of icosahedral order is strongly favored so that it isFor single component systems, simulations are performed for
likely that a metastabl&B,; phase forms in the experiment various values ofPg/T starting from a low density fluid
since the small spheres in tAeB,; phase show icosahedral state. During the simulation run the system increases in den-
order. In a MD simulation where the volume is continuouslysity. Depending on the chosen value BE/T the system
reduced, they find that fcc and icosahedral order increasg®ight end up in a metastable fluid state or crystallization
but they do not see crystallization at the compression rate@ay set in. The fluctuating volume allows changes of the
they used. Trizac and coworkers describe a simulation thagystem’s state that may otherwise be strongly hindered by
starts from a metastabl&B structure at a phase point where free energy barriers or that may be prevented if the phase
an A crystal coexists with a fluidhB mixture [27]. As pre-  space is really divided into isolated glasses. During the crys-
dicted from theory, they observe a phase separation: In sontallization process, the time development of the system den-
parts of the system tH& component escapes from the crystal Sity, the degree of crystalline order, and the degree of fcc
structure that becomes a pukecrystal while the rest of the order is analyzed at constant pressure. The mutual depen-
simulation box is filled with a mixture of th& andB com-  dence of these quantities is investigated and used to identify
ponents. the metastable fluid states at a given pressure. The results are
Up to now molecular dynamics simulations of crystalliza- compared to those from previol$VE ensemble simula-
tion processes in hard sphere systems have been restrictedti@ns. We apply a similar procedure to study the crystalliza-
the NVE ensemble, where the number of molecuisthe  tion of several binary mixtures for several size ratios and
volumeV, and the total energ§ is kept fixed. Crystalliza- Ccompositions.
tion is induced by a density quenching process for which a The remainder of this paper is organized as follows. In
number of sophisticated densification meth¢#ld, 30-32  Sec. Il a short description of the algorithm is given together
have been developed. They all perform a series of smalvith an introduction of the used order parameters. Technical
density increments while the spheres are moved such thaketails of the simulation are given in Sec. Ill. Section IV is
overlaps are avoided. The methods are typically optimized télevoted to the presentation of the results and in Sec. V sum-
produce rather high densities with rather low degree of ordefary and conclusions are given.
in a rather low amount of CPU time and are not basically
intended to simulate the dynamics that might be found in real
systems. Structural properties of the resulting dense meta-
stable fluids depend on the densification method. It is unclear The algorithm used in the present work is described in
how much the behavior of a subsequéh¥ E simulation is  detail in Ref.[37]. In general, molecular dynamics simula-
influenced by the artificial compression methods used to gertions of hard sphere systems consist of three fundamental
erate the high density fluid states. In this paper we present asteps:(i) estimation of collision timegji) propagation of the
application to this problem of a molecular dynamics simula-system towards the next collision event; djid) calculation
tion method for hard sphere systems in P T ensemble, of the impact of the collision upon the system. For conve-
where the external pressuf®:, the number of sphered  nience we review the essential aspects of how these three
and the temperaturgis kept fixed. This method allows us to steps are implemented in the constant pressure algorithm.
replace the two-step process of densifying a low density sys-
tem and then applyiny VE molecular dynamics by one con-
tinuous NPT simulation that traces the development of a
highly ordered dense state from a low density fluid state. We consider a system &f hard sphereswith massesn,
Molecular dynamics simulations at a constant pressur@nd coordinates; . The system is situated in a cubic simu-
have become a standard method for the computational invetation box with periodic boundary conditions. In tiNPH
tigation of soft potential model systerfi33,34]. Soft poten- and theNPT ensembles the volum¥ of the cube is a dy-
tial fluids in the NPH ensemble, in which a system &f namical variable and the coordinates are expressed in re-
molecules in a fluctuating volumé is exposed to a constant duced form,V¥3q;=r, .
pressurePg at a constant enthalp =U + PgV, are typi- Following Anderserj35], we use the Lagrangian

Il. THEORETICAL BACKGROUND

A. The algorithm
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wherePg is the external pressure ailis a system param-

eter, which determines the dynamics of the volume chang
The spheres interact with each other via the hard sphere p
tential that assumes that molecules perform hard elastic ¢

lisions at a distance that for mixtures is typically chosen to

1. Motion between two collisions

Between two collisions the potential( ... VY3, ...)
in Eq. (2.1) is zero. From the Lagrangian equations

Y

mid=— 2m;Gizy; (2.2

> mg?-

Pe, (2.3

3vl/3

which form a set of 8l+1 coupled differential equations,
one differential equation for the volume can be extracted,

PE

V(t)= ;C RO-r (2.4

Here the constant

V4/32

0)2

(2.9

depends oV,=V/(t,) andq’=q;(t,) at the beginning, of
the considered time interval.

Since there is no closed form expression for the analytical

solution of Eq.(2.4) we integrate Eq(2.4) numerically by
using a velocity-Verlet-like approximatiof33] for small

time stepst=t—t,,

V(t)~V(to)+V(ty)t+ %V(tO)TZ

. . 1 . .
V(t)=~V(tg)+ Et[V(tO)JrV(t)]. (2.6
Here the second derivative dfis given by Eq.(2.4).
From Eq.(2.2) one has
ai(H) =Vt with i=0i(te) V(to).  (2.7)

For smalit the unscaled coordinates(t) themselves can be
estimated by a Taylor expansion
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~ . Vo~
=+ Gt T+ it 2= (o= ai(to),,
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2. Estimating the next collision time

If the next collision between two hard spheres occurs at a
time t, that is not too far fromt, the system can be propa-

€lation

?ated directly td,. A pair of molecules andj collides if the

o_

VA (to)llgijl|?(te) = o (2.9
with g;;=qg;—q; is fulfilled. A second-order Taylor approxi-
mation for the left hand side of EqR.9) leads to a quadratic
function fort. in which all parameters are determined from
the discretized equations of motion.

3. Collision behavior

The hard sphere collision behavior in tNe®H ensemble
can be taken from Ref36]. For two colliding spheresand
j with reduced coordinateg; andq; and reduced velocities
g, andg; one gets

t

- d
q=0;—dj Aq,:mq,
~b_— 1V1/3 b A'__t__
qQ’=o (q, g)-q Agi= miaq,
\'/b
1/3; _ _
_ Y Wrogy Ly Ot
td__ = T 3MV°
1+
IM V2

B. Hard spheres in theNPT ensemble

The algorithm described above correctly yields the hard
sphere system dynamics in th¢PH ensemble(see Ref.
[37]). However, in experiments typically the temperature is
kept constant rather than the enthalpy so thalN&ir simu-
lation is closer to the typical conditions in a freezing process.
Moreover, the constant enthalgy in the NPH ensemble
leads to the equation

3N—-2
consEH=E+PgV= TkTJr PeV,

(2.10
which for largeN leads to a hyperbolic relation between the
fluctuating quantitie® /T andp,

H 3(Pg\~
NPz 2\ kT

1
+p_1

(N—0). (2.12

For the melting point with Peo®/kT~11.59 and po?®

~1.041 one has
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H 109 1 . 212 TABLE I. Values of Qg for different cluster types.

= ~1. ~_—0 . .

NPg 0.92 Cluster type Qs
Since the left hand side remains constant in BheéH en-  |cosaeder 0.66332
semble neither the melting point nor any other solid statg-c¢ 0.57452
point can be reached from an initial fluid state with a densityHCIO 0.48476
lower thanpa®<0.92. This is a big disadvantage for the g 0.51059
investigation of crystallization processes, becayse® Simple cubic 0.35355
=0.92 corresponds to a very dense fluid state with a highanqom order 0.00000

degree of local order.
For all these reaso$P T ensemble simulations are pref-

erable toNPH simulations for the study of quenching pro- 5.5nd a molecule in the systdi38,39. Unfortunately, this
cesses. If one starts with the Lagrangian equations intfOyehod is not very helpful for the important case of fcc or-
duced by Noseone can easily derive equations of motion for yer \yhere small fiuctuations of the local order lead to strong
the NPT ensemble of hard spheres but the implementation '$opological changes in the Voronoi polyhedra.

very CPU time consuming so that appropriate system Sizes apqther approach is based on the correlation of bond vec-
and sufficiently long simulation runs become impractical.;o s v petween a molecule of choice and its neighbors

Therefore, we used the same algorithm as derived for they 411 The set of neighbor molecules can be defined as all
NPH ensemble and added a velocity rescaling step aftef,glecyles within a cut-off radius around the central mol-

each time propagation so that ecule, or theK closest molecules or molecules whose
N Voronoi polyhedron shares a polygon with the polyhedron of
constkT= 2 2 ﬂvm- 2. M\-/z the central molecule. In the following a cut-off radius was
3(IN-1)+1\i&1 2 2 ' used to determine the neighbors. Crystalline order param-
(2.13  eters can then be defined with the help of spherical harmon-
ics
Tests that demonstrate the accuracy of #ushocalgorithm
are reported in Ref37]. Qim(r) =Y m(8(r), p(r)). (2.14
C. Crystalline order parameters These quantities are dependent on the choice of the coordi-

Although the interpretations of the metastable fluig"at€ frame. One can form second-order invariants
branch may vary, the observed simulation results from dif-
ferent research groups appear to match very well over the
investigated density region. Generally one could describe the Q=
metastable fluid branch as the set of state poipt$] each
having the following propertieg1a The volume fractiony
is larger than the freezing volume fraction,,s;; (1b) Fora  Where the bar denotes the average over all neighbors of the
given 7 the pressurd is the lowest pressure for which the considered molecule. It was found ti@¢ is a very sensitive
system does not show crystalline order. Equivalently theparameter for overall crystalline ordgt5,16,2]. For an in-
state points can be characterized by the properti&s:The finite and perfectly disordered fluid syste&pg=_0. For finite
pressure® is larger than the freezing pressiRér,,ysy; (2b) systemdQg gives a small finite value due to thermal fluctua-
For the given pressure the volume fractigris the highest tions. For fcc, bee, hep, and simple cubic crystal is
volume fraction for which the system does not show crystaldistinctly larger than zero as shown in Table I.
line order. These characterizations imply that there is a cri- More detailed information about the local crystalline or-
terion for the existence of crystalline order in the system. Ader can be extracted from the third-order invarigd]
macroscopic crystalline state is characterized by a three-

4 | 1/2
11 > |le|2) : (2.19

m=—I|

dimensional long range spatial order. During the crystalliza- L 1,

tion process, however, parts of the system might show local Qi1 = ( )Y,lle|2m2Y,3m3.
crystalline order while others are still fluid. The principal my+mytmg=0 \ My My M3

axes of the developing crystalline order are generally ori- (2.16

ented randomly. Several methods have been developed to

detect crystalline order in a system and to quantify the deAn extremely useful indicator for fcc clusters @@6. In a
gree of crystalline order for a cluster of molecules. Somehistogram of Q¢ fcc clusters form a peak arounQguss
information can be extracted from the radial distribution=2.5x10"2 that is well separated from a second peak
function g(r). The appearance of crystalline order is re-aroundQ4=0 formed by all other symmetries of clusters.
flected in characteristic peaks and shouldersg{n), but As suggested in Ref42] one can declare a cluster to be
these indicators may not be clear if the degree of crystallindcc-like if its value of Q¢ IS larger thanQ,46>0.0007
order is low[15]. The local crystalline order can also be which approximately corresponds to the minimum between
specified by analyzing thémodified Voronoi polyhedron the two peaks.
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I1l. SIMULATION PROCEDURE 1.2 T T T T .
Ouir first goal is the analysis of the dynamical behavior of
one-component hard sphere systems subjected to a sudden 1.15 1
guench caused by an abrupt increase of the external pressure
Pe.

. . 11 J
In most cases one-component systems were investigated

with N=2048 spheres. Comparative simulations with
=864 spheres did not show essential size effects beside a = 105} T
faster crystallization of the latter systems. A number of bi-
nary mixture simulations were then performed wil- 864
spheres. A maximum time propagation stefpf,= 10" in
units of oym/kT was set to ensure that the calculation error

for the next collision time of spheres remains acceptably 0.95 | ]
small.

At the beginning of each one-component system run, a 09 L . . . s
random fluid state is created by relaxing an fcc ordered sys- 500 600 700 800 900 1000
tem with an external pressure Bto>/kT=2.0 over a time t

period of t,e)ax=4X 10°t4x during which about 1.4 10°
collisions took place. After the relaxation time the system ST . e
has reached the equilibrium densjty2=0.285 in accord dens;typ :’ws as a function of timet™=t/(eym/kT) for
with the Carnahan-Starling equation and the radial distribu"e?/(KT)=22.0.
tion function matches the results from a corresponding |n NPT molecular dynamics simulations the pressBge
Monte Carlo simulation in th&lVT ensemble. The crystal- is an external parameter. If the external pressure for a low
line order parameter levels off to a finite value between 0.0Yensity fluid hard sphere system is increased in a one-step
and 0.02 which is a size effect of the finite system wWith  rgcess, the system responds with a rapid increase of the
=2048 particles. After the relaxation process the pressure igensity. Afterwards the time dependence of the density varies
increased to the value of interest and the time developmen{om each individual run to the next, but qualitative similari-
of the system is investigated. . _ties are found for the differeni(t) obtained in various runs

For the binary mixtures simulations were started with ¢ systems withN=2048, 864, and 128. In Fid. a typical
Pecaa/kT=2.0 whereoa, is the contact distance of two A example for the time dependence of the density of an ini-
component spheres. Accordinglyag and ogg denote the tjally dilute fluid state is shown foPgo®/kT=22. There is a
contact distance of a® and aB sphere and the contact steep increase of the density until a value of abpuf
distance of twoB spheres, respectively. At the beginning of ~1 06 is reached. From there the average density increases
the simulations the two species were distributed randomly oRery slowly before another rapid increase of the density sets
fcc lattice sites. After the initial equilibration time with jn that ends apo3~1.155. At this value the density remains
Peoan/kT=2.0 the fluid character of the system was ynil the end of the simulation run. The intermediate time

FIG. 1. Typical example of the time dependence of the reduced

checked as described for the one-component systems.  interval with the slowly rising density(t) is reminiscent of
the decrease iRg(t) in NVE simulations around the meta-
IV. RESULTS stable state. In some simulation runs the increase(bf
after the first plateau took place in two or more steps.
A. One-component systems For a more detailed picture, it is helpful to consider the

As we mentioned in the Introduction, in previous work crystalline order parameter. A plot @g(t) as a function of
crystallization processes and the metastable branch of hattine is given in Fig. 2. It starts with a slow increase from
sphere one-component systems were investigated in tH@e~0.02 toQg~0.07 spanning the time interval where also
NVE ensemble where the total energy and the density of the(t) has a small slope. Then abruptly a fast increas®gf
system is constarifl5,16,22,23 To set up such simulations sets in that ends &¢~0.46 beyond which the crystalline
a densification algorithm is applied on a low density fluid order increases only slightly.
state(see Ref[30-32,14). These algorithms typically pro- Though the functiong(t) and Qg(t) were varying with
duce high density states with a pressure higher than that gfach simulation run there was always a striking correlation
the metastable branch. As the MD simulation is started, abetween the time behavior of the two quantities in each in-
equilibration process sets in. At constant density the pressumdividual run. Thus it is worthwhile to plaQg as a function of
diminishes as the system approaches the metastable brangh.This is done in Fig. 3 for three independent runs with
This relaxation process may have superimposed upon it Rea®/kT=22. Evidently the three curves match well within
crystallization process that drives the system from the metathe statistical fluctuations. Apparently there is a well defined
stable branch towards the stable solid branch. If relaxatiowvalue forp beyond which the order parameter abruptly be-
and crystallization times are of the same order of magnitudegins to grow. This value op coincides with the metastable
the determination of the pressure value for the metastablstate at the given pressuf&4,16,21. If we reconsider the
branch becomes difficult. time dependence ¢f(t) andQg(t) it turns out that the meta-
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FIG. 2. Time dependence of the crystalline order parant@ter FIG. 4. Reduced pressur@(kT)* =Pc®/kT versus the re-
as a function of time* =t/(o/m/kT) for the same simulation run duced densityp* =po™ for dense metastable fluid states. Results
as was used for Fig. 1 witRgo®/(kT)=22.0. from NPT simulations (+) are extracted from individual runs at
constant pressure. For comparison the figure shows results from

stable state corresponds to the starting point of the slow inNVE ensemble simulationsi6] ( ¢), the Carnahan-Starling equa-

crease ip shown in Fig. 1. tion [12_] contlnugd beyond the freezing poif), and a phenom-
Itis an open question whether crystallization sets in for all€n°lcgical equation proposed by Speddy-) [see Eq(1.1)].

densities below the random close packing valug of0.64

or if beyond a certain density the metastable branch consistarger thanz=0.6. In other words in theiNVE ensemble

of glassy states at which crystallization processes are consimulations they observe crystallization for volume fractions

pletely absent. Rintoul and Torqudtb5,16 observed small  0.56< »=<0.6. Speedy reports that crystallization takes place

signs of crystallization even for high densities while Richardjn the region 0.5% 7=<0.58[19]. It is interesting to note that

etal. [21] present a curve oQg values over the volume Richardet al. as well as Speedy observe crystallization for

fraction » after 10 collisions, which is almost zero not only yolume fractions above the putative thermodynamic glass
for small volume fractions but also for volume fractions ;ansition n~0.57 since a crystallization of a real glass

0.5 T T T T T

0.45

0.4

0.35

0.3

Qo

0.25
0.2
0.15

0.1

0.05

1.1

FIG. 3. Crystalline order paramet&g as a function of the
reduced densityp* =pa® taken from three individual simulation
runs with Pea®/(kT)=22.0. Substantial crystalline order is found
for densities higher thapj, ..~ 1.076 that coincides with the dense
fluid metastable state. The finite value Qf for densities below
PretalS caused by finite size effects.

should, in principle, be impossible. One may argue, however,
that crystallization has already set in during the densification
process. In ouNPT ensemble simulations crystallization
was frequently found in the interval 26s0Pz0°/kT<30.0.

The corresponding volume fractions for the metastable states
lie in the interval 0.55 »=<0.58. In some cases crystalliza-
tion was found for pressures up ®:0°/kT=50.0 corre-
sponding to the metastable staje-0.6.

In Fig. 4 metastable states obtained NPT ensemble
simulations are presented. In the crystallization region the
values were obtained by determining the valugdfeyond
which Qg increases rapidly witlp (see Fig. 3. For pressure
values for which no crystallization occurred, an average of
the density was taken after the equilibration of the system
has come to an end, that is after systematic drifts of the
density have stopped. Our data is in good agreement with
results published by other groups, although it does show a
somewhat larger scatter. For comparison, results of Rintoul
and Torquato[16] are also shown in Fig. 4. For volume
fractions up ton<<0.57 and for 0.5% »=<1.18 the simula-
tion data are described well by the Carnahan-Starling equa-
tion and the phenomenological expression #ql), respec-
tively. As mentioned by Speedy, this on its own is not
necessarily a proof of the existence of a second-order transi-
tion since the data can be described equally well by a con-
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FIG. 5. F_iedlic_ed %ressur@,(kT) = Peo/kT Versus the re- to the crystalline order parametéy (—) as a function of time*
duced densityp* =po®, for dense metastable fluid states from —t/(oJm/kT) for the same simulation run wittPeo®/(kT)
NPT simulations with a linearly increasing pressure. Results are_ 220 E
shown for pressure increment ratesiP(dt)*=0.5(+) and e
(dP/dt)*=2.0 (¢). Further the Carnahan-Starling equat[dr2]
(—), the Eq.(1.1) by Speedy for metastable fluid staies-), and
the stable branch beyond the freezing pdint) are shown.

(Pe/kT)*~24 up to a value ofQgz~0.26 at Pg/kT)*
~46 where it gets an additional increase to a valu&gf
~0.34. Systems staying close to the metastable branch with
tinuous functior 14]. For large pressures the observed pack-SIOWly growing crystalline order were found in several indi-
ing fractions are lower than those from E@L.1). It is  vidual runs. However, for very low compression rates
possible that this discrepancy is due to an unfinished relaXdPe/d?)* =0.2 substantial crystallization already sets in at
pressuresRg/kT)* ~20 and the state points deviate imme-

ation process. X
Wephave also made some studies where the pressure wdiately from the metastable branch. Generally, the observed
increased steadily in the simulations rather than in a singl@"€nomena are in qualitative agreement with observations

quench. Studies were performed for various compressioff@de with densification algorithms fbFVE ensemble simu-

rates betweendP/dt)* =0.1 and (Pg/dt)* =2.0. Results lations[14].
for the pressure versus density for two compression rates
(dPc/dt)* =0.5 and @P¢/dt)*=2.0 are shown in Fig. 5. Development of fcc order
In the preceding section the typical crystallization dynam-

For (dPg/dt)* =2.0 no crystalline order was found up to a
pressure of Pg/kT)* =500.0. As the pressure increases theics in the NPT ensemble was described. As soon as the

density approximately follows the metastable branch alsystem approaches the metastable branch there is a slow
though a small systematic deviation towards lower densitiesteady increase of the crystalline ord®g before, rather
is noticeable. This is expected for high compression rategbruptly, a strong increase of crystalline order sets in, which
where the equilibration process lags behind the compressidypically ends as abruptly as it begins. As mentioned above,
process. For Pg/dt)*=2.0 the deviation from the Qg is an indicator for any sort of crystalline order without
Carnahan-Starling equation or E@L.1) is always smaller regard to the particular symmetry. With the help ©@f4s
than 1.5%. The highest deviation is found for pressure valuebistograms one can determine the quaritity./N that gives
around Pg/kT)* =20.0 while for 50.8<(Pz/kT)*<500.0 the fraction of spheres that are within an fcc cluster. Figure 6
the density deviation is smaller than 0.6%. With lower com-shows a typical example of the time dependenc®gfand
pression rates the noncrystallized states get closer to tHbat of Ni../N for Pgo/kT=22. It is evident that the
metastable branch, while the crystallization probability foramount of fcc order in the system increases more gradually
20.0<(Pg/kT)*=50.0 increases. The dynamics of the crys-with time than doesQg. At the point where the sudden
tallization depends individually on the starting conditions butgrowth of Qg(t*) terminates, ../N)(t*) is still increas-
some characteristics can be extracted. The results in Fig. iBg. Thus, in theNPT ensemble, the system, starting from a
with (dPg/dt)*=0.5 are a good example of the behavior. metastable fluid state, begins to crystallize in a rather sudden
The values are close to the metastable branch up to a pregrocess in which the density and the overall crystalline order
sure of Pe/kT)* ~46 where a distinct additional densifica- parameteQg increase rapidly. At the same time a process of
tion takes place. It is inviting to assume that the crystallizafcc cluster development sets in. When the densification of the
tion process starts spontaneously at that pressure value bgstem has come to an end the amount of fcc order continues
we find that Qg increases steadily fromQg~0.06 at to increase. This motivates the following picture of the crys-
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TABLE Il. Reduced equilibrium densitpos, obtained from ' T T T
NPT simulations of binary hard sphere mixtures with the given size AA ;:(1)9 o
ratio a, mole fractionx,, and reduced pressul%EoiA/(kT). Re- AB x=0.7 -
sults are compared with the extended Carnahan-Starling equation BB x=0.7 -
by Mansoori and coworkerg3].

PO'iA PU'iA @
a Xa PEaiA/(kT) NPT simulation  Mansoori eq. §
0.6 0.25 3.0 1.108 1.109 é
0.6 0.25 6.0 1.482 1.486 *
0.6 0.25 9.0 1.713 1.715
06 05 3.0 0.887 0.889
06 05 6.0 1.151 1.149
06 05 9.0 1.306 1.303
0.6 0.75 3.0 0.741 0.741 v
0.6 0.75 6.0 0.937 0.939 1
0.6 0.75 9.0 1.054 1.054 0 05 1 15 2 25 3 35 4 45
0.8 0.25 3.0 0.845 0.846 r/oa
82 8;: Sg igg? 122; FIG. 7. Pair distribution functiongaa(r), 9as(r), andggg(r)

for the speciesA and B in a system witha=0.95 andx,=0.7
crystallized from a fluid phase by applying a pressure of
o PEaiA/(kT):26.O. Also shown in this figure is the pair distribu-
tallization process. Due to the pressure the sygtem @Rjon function of a single component system=(1.0) at the same
proaches the metastable state, where, for a certain time goqgyre.

further densification is hindered. The system rearranges its

configuration until a further densification is possible. As S00N 45 , is close to 1. As an example we present the results for
as parts of the_system become more compact _the w_hole SYa'low density binary mixture fluid witlv=0.95 and a mole
tem starts to give way to approach a new configuration Wlﬂ’f

o . . . action x,=0.7 that is quenched to a pressure of
a distinctly higher density. The new state includes clusters oé A d P

. 4 . ) "PeoankT=26 in comparison with results from a corre-
high density and a correspondingly high degree of crystalli-_E_ A% ]
zation order, while the crystal type of each cluster dependSpondmg one-component system guench for the A spheres at

on the individual initial configuration. Now, with a distinctly the same pressure. The radial distribution functigpg(r),

slower dynamics fcc clusters rearrange and aggregate to fongﬁB.(r)’ .anq gB.B(r)’ which are shown in Fig. 7, are very
. : similar indicating that the two components form a shared
larger fcc clusters. Interestingly this process does not lead to . o . .
. . . .Crystal with substitutional disorder. The locations of the
a further noticeable increase of the density nor to an essentig

) . . maxima of the respective plots never deviate more than
increase of theQg order parameter. This mechanism was . .

e . Lo .~ 0.0257 4 up to the eighth maximum. All these agree closely
gualitatively reproduced in several individual runs for vari-

ous system sizes. However, the final value Nf../N with the g(r) function of the quenched and crystallized one-
y ) " ST ce component systertFig. 7). However, for the one-component
strongly varied with each individual run. : ] . ;
g(r) maxima are shifted slightly but systematically towards

_ higher values ofr. At the eighth peak the discrepancy be-
B. Mixtures comes 0.06, . Interestingly, for large the peaks in the pair

The algorithm we are usinfB7] is already suited to run distribution function for the mixture are slightly more pro-
NPT molecular dynamics simulations for systems of hardnounced than those for the one-component system although
sphere mixtures. However, to check the accuracy, a numbéhe mixture ends up with a lower degree of order than the
of fluid equilibrium states were simulated and compared withpure hard sphere system as is shown in Fig. 8.
predictions of the accurate equation of state for hard sphere For a size ratio ofa=0.85 crystallization is more hin-
systemg43]. A comparison of results is shown in Table IIl. dered. We did not observe crystallization for pressure values
The discrepancy is never larger than 0.3%. below the pressure of the eutectic point &t=0.26,

As mentioned in the Introduction, there is only a small Peoas/kT~23.0 [24]. Crystallization was observed for a
number of papers in which crystallization processes of hargystem with a mole fraction ok,=0.8 and a pressure of
sphere mixture systems have been investigated. This is n&z=24.0. Thus the point for which we found crystallization
too surprising since the crystallization process is stronghfies within the coexistence region of crystallideand crys-
hindered by the presence of more than one component. ltalline B but we did not see any sign of phase separation. The
fact mixtures have been used to study the metastable staggr) functions for the crystalline system are shown in Fig. 9.
just because of their tendency to stay fluidlike at conditionsThe sharpness of the peak structure is distinctly reduced
where a one-component system would crystalfiz€]. compared to that of the pure component system. Moreover,

It is reasonable to expect that the crystallization behaviothe functionsgaa(r), gag(r), and ggg(r) show mutually
is not too different from the pure component case if the sizalifferent structures, proving that now the two species are
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0.5 T T T T T T 40
0.45 ] 35t B+ Fluid ° o o o o
0.4 4
0.35 1 30 o o o o oo+
A+ Fluid MR
0.3 1 PU%A 2%k o
© kT
<@ 025 1
0.2 | 20F Fluid
0.15 1 15F
0.1 4
10
0.05 1 0.0 02 04 06 08 10
A
0 0 200 400 600 800 1000 1200 1400 FIG. 10. Pressure versus composition phase diagram of binary

hard sphere mixtures with=0.73[28]. The (¢) symbols denote
state points where no crystallization has been observed within the

FIG. 8. Time dependence of the crystalline order paran@ger simulation runs. Crystallization was found for a systems of 864
as a function of time* =t/(om/kT) for the binary mixture with  spheres at the point denoted by Y and for small size systems with
a=0.95,x,=0.7, andPzoa/(kT)=26.0( - - -) together with the 256 spheres at the points denoted bg)(

one-component results at the same pressure Wigo>/(kT) . . . e
=26.0(—), already used for the results in Fig. 7. the (crystal A + fluid) coexistence region that is distinctly

more extended in the phase diagram than (trgstalB +
included in different ways in the crystallized structure. Thefluid) phase coexistence region. In Fig. 10 the success of the
system ends up in a partly crystallized metastable alloy ofrystallization attempts at different points in the phase dia-
the two components, which is not demixing within the simu-gram is noted. The only time we saw signs of crystallization
lation time. for a system of 864 particles was fétzo3 ,/(kT)=28.0,

The phase diagram of the hard sphere system with Xo=0.9, where there are only 10% of the speciedeft.
=0.73 shows a eutectic point at=0.15, Pgos //kT~32.6  Apparently, the mismatch of sphere sizes is so large that a
[28]. For pressures betweenPgos,/kT~11.2 and Jointcrystallization is prevented, while, on the other hand, no

PEaiA/kT~32.6 phase regions are found where a fluid mix-Phase separatjon sets in within t_he quenched sy;tem. So the
ture coexists with a purd or pureB crystal. We focused on systems remain in metastable fluid states. The fluid states are
very well predicted by the equation of state of Mansoori

t*

. ———————— et al.[43].
x=1.0 — If « is decreased further the phase diagrams become more
Q’B\ i:gjg o complex as crystalline phases with substitutional order such
BB x=0.8 - asAB, AB,, andAB,3; become stable. The hard sphere phase

diagram fora=0.43 includes stable crystal crystalB, and
crystal AB, phases[28,27. For pressures lower than
PEof\A/sz 72.8 only a fluid phase region and a coexistence
region of crystalA and fluid exist. In the coexistence region
a phase separation process starting fromA&ncrystal was
observed in a previous work by Trizat al. [27]. We have
performed someN-P-T simulation runs for this size ratio
with x=0.8 andPgo3 ,/kT=28.0. In all simulation runs the
crystalline order parameter increases until it reaches a value
of Qg~0.28. If we consider that due to the lever rule the
system should consist of a crystal fraction and a fluid frac-
tion in a mole ratio of abouR:5, thecrystalline order pa-
0 05 1 15 2 25 3 35 4 45 rameterQq~0.28 is surprisingly high. From the theory it is
expected that the crystallind phase and the mixed fluid
phase should phase separate. At the end of the simulation run
FIG. 9. Pair correlation functiongaa(r), gag(r), andgas(r) no distinct separation could be observed. However, a certain
for the speciesA and B in a system witha=0.85 andx,=0.8  coagulation of thd3 species was found. Spheres of speéies
crystallized from a fluid phase by applying a pressure ofand B form regions with low crystalline order that enclose
Peos A/ (KT)=24.0. Also shown in this figure is the pair correlation regions of pureA crystals. The effect is rather weak but the
function of a single-component system, & 1.0) at the same pres- coagulation can be detected indirectly. By taking the distance
sure. of randomly included test points in the simulation volume to

g(r)+const

r/O’A

061703-9



T. GRUHN AND P. A. MONSON PHYSICAL REVIEW B4 061703

gram of one-component systems could be reproduced in the
NPT ensemble proving that the metastability is not caused
by theNVE ensemble in which any fluctuations of the over-
] all density are omitted. The metastable branch as obtained in
previousNVE ensemble simulations could be reproduced
within the accuracy of the method. However, no additional
] evidence was found for the existence of a thermodynamic
glass transition within the metastable fluid branch.
For one-component systems crystallization was frequently
1 observed in the pressure region 2~QJBEcriA/kTs30.O. As
the system crosses the metastable branch, density and order
parameter increases are correlated showing a small increase
. in the region of the metastable state followed by one or sev-
eral sudden increases ending up at a value that stays rather
constant during the rest of the simulation run. The process
confirms the dynamics in thidVE ensemble, where it is the
25 pressure that changes slowly in the vicinity of the metastable
r branch and then drops rather quickly towards a final value.
FIG. 11. The functionP;(r) at three stages during a pressure At the sam_e Fime as crystallization set; in, the amoupt of fcc
quench of a binary system withe=0.43, x,=0.8, and clu_sters within the system starts to increase continuously.
PEof’\A/(k'D=28.O. Thethree curves correspond to reduced times:ThIS process, however, goes on fifter the growtiQgthas
*=30.0 (—), t*=600.0 (- - -), and* =1200.0 (- -). come to an end. The fcc order arises from an already dense
system. The growth of fcc order typically starts from small
fce cluster seeds transferring their fcc order on neighboring
non-fcc clusters without changing the overall density of the
the center of mass of the near@&tomponent sphere, one System.
can characterize the space not occupied by the spécies  The degree to which it is possible to observe crystalliza-
Figure 11 shows the probability;(r) that the distance be- tion in mixtures of hard spheres depends on the size tatio
tween a random|y inserted point and the nearest B Compdgor a greater than about 0.73, CryStallization becomes more
nent sphere is larger thanThis is equivalent to the function difficult as the size ratio decreases from unity. This is asso-
E,(r) defined by Torquato and coworke4] in their for- ~ Ciated V\.IIFh the fact that crystallllzatlon involves a change in
mal treatment of nearest neighbor distributions in assembliegomposition as well as translational order. As would be ex-
of spherical particles. A tendency toward coagulation of the?ected, for size ratios close to unity, where the stable solid
B particles is detected sensitively by a shiftR{r) towards ~ State is a substitutionally disordered solid solution the behav-
higher values of. In Fig. 11 functionsP;(r) are shown for i0r is similar to that seen for single component systems. For
configurations taken in the fluid state*&30.0), for a state «=0-85 we also found crystallization into a substitutionally
shortly afterQg has approached its final value*=600.0) ~ disordered solid solution for a state where this is metastable
and for a state at the end of the simulatioh+ 1200.0). The ~ With respect to solid-solid phase separat@d]. Once the
latter curve is shifted towards higher valuesrpindicating ~ S°lid phase has formed the process of equilibrating, the com-
that, to some extent, a phase separation process is initiatd@@Sition distribution becomes too slow to be observed on the
after the crystallization has set in. This effect was reproduce§me scale of these simulations. If the size ratio is as small as
in several independent runs but an ongoing phase separatiéfi~ 0-43, crystallization takes place more easily again. In the
process beyond the effect shown in Fig. 11 could not béoexistence region of tha crystal and a fluid thé\ species

found on the time scales accessible in the current simulastarts to form crystalline structures. The small spheres of the
tions. B species are now small enough to escape from the crystal

formation and show a tendency to coagulate in fluid regions
V. CONCLUSIONS toggther with a part o_f tha component. In between the _ﬂuid
regions, well crystallized fractions of pu#e crystals exist.

In this paper we have presented a study of the crystallizaFhis result is in accordance with simulation results by Trizac
tion dynamics in hard sphere systems. THET ensemble et al. [27] and gives additional insights into the mechanism
simulation technique enables us to mimic the response of and the sequence of the crystallization and the phase separa-
low density system on a quenching process. This can bgon processes. At first, formation of crystalline order takes
performed in a one-step process without the need of artificigblace between the large spheres, which is accompanied by a
preparations of high density fluid states. It proves to be amlistinct increase in the density. Then the system tends to
excellent tool to investigate the dynamics of crystal orderinitiate a phase separation process as the development of
formation in hard sphere systems. crystalline order between th& component spheres contin-

The metastable fluid branch in the hard sphere phase diakes. Our results for mixtures give an idea of the kind of
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