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Sliding drops in the diffuse interface model coupled to hydrodynamics
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Using a film thickness evolution equation derived recently combining long-wave approximation and diffuse
interface theory@L. M. Pismen and Y. Pomeau, Phys. Rev. E62, 2480 ~2000!# we study one-dimensional
surface profiles for a thin film on an inclined plane. We discuss stationary flat film and periodic solutions
including their linear stability. Flat sliding drops are identified as universal profiles, whose main properties do
not depend on mean film thickness. The flat drops are analyzed in detail, especially how their velocity,
advancing and receeding dynamic contact angles and plateau thicknesses depend on the inclination of the
plane. A study of nonuniversal drops shows the existence of a dynamical wetting transition with hysteresis
between droplike solutions and a flat film with small amplitude nonlinear waves.
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I. INTRODUCTION

Much interest has focused recently on structure forma
in thin liquid films. Two especially well-investigated prob
lems are the rupture and dewetting of very thin liquid film
and the formation of waves and localized structures in a fi
flowing down an inclined plane@1#.

If a liquid is deposited on a surface where this situation
energetically unfavorable~non- or partially wetting!, after
some transient, the liquid is collected in drops on the surfa
The resulting contact angle formed by the solid-liquid a
the liquid-gas interface is determined by the various mole
lar interactions. For relatively large drops it is given by
combination of the various surface tensions~Young-Laplace
relation! @2#. However, for very small thicknesse
(,100 nm) distance-dependent molecular interactions h
to be introduced explicitly in the hydrodynamic formalism
This is achieved by an additional pressure term, the disjo
ing pressure@3,4#. Depending on the particular problem
treated, this disjoining pressure may incorporate long-ra
van-der-Waals and/or various types of short-range interac
terms@5–8#.

If the deposited liquid forms a thin film on the substra
the transition towards drops is initiated by film ruptu
caused by a surface instability~spinodal dewetting@9#! or by
nucleation at defects. Lateral growth of the resulting ho
yields a network of liquid rims that decays later into sm
drops @10#. The process and the resulting structures are
principle, well understood. The methods employed ran
from linear stability analysis@11# to fully nonlinear analysis
1063-651X/2001/64~6!/061601~12!/$20.00 64 0616
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by one- and two-dimensional numerical simulations of t
time evolution of the film thickness profile@12–14#. If the
liquid is already deposited in drop form it may relax towar
equilibrium by spreading or retracting@1,2,15,16#. Both the
spreading of a drop and the growth of a hole involve t
movement of a three-phase contact line. The classical no
boundary condition at the liquid-solid interface makes t
movement of the contact line impossible if the contact line
considered as a material line. This problem may be circu
vented by introducing a very thin precursor film or allowin
for a slip near the contact line@2,17#.

Experiments on liquid films that flow down an incline
plane ~falling films! studied the formation of waves@18#,
localized structures, and their interaction@19#. Linear stabil-
ity analysis@20,21#, weakly nonlinear analysis@22–24#, the
study of sideband instabilities@25#, and solitary waves@26#
already revealed many important features. However,
studies focus on structure formation caused by inertia m
sured by the Reynolds number. Thereby the molecular in
actions between film and substrate are neglected so that
type of description cannot apply to very thin films.

This is also the case for most works that focus on
evolution of falling sheets or ridges@27,28#, i.e., the advanc-
ing edge of a fluid film or long one-dimensional drops on
inclined ‘‘dry’’ substrate. As for the spreading drop, a precu
sor film or slip at the substrate@29–31# helps to avoid diver-
gence problems at the contact line, but introduces new
hoc parameters into the model. The additional paramet
namely, the slip length or the precursor film thickness ha
an influence on the base state profiles and on the transv
©2001 The American Physical Society01-1
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front instability ~growth rate and fastest growing wave num
ber! @31–34#. Also, the equilibrium and dynamic conta
angles remain to be fixed independently in this kind
theory@30,35,36#. In an alternative approach@37#, either the
vapor-liquid or fluid-solid interface, or both, are treated a
separate phase with properties that differ from the bulk flu
A droplet of nonwetting viscous liquid rolling along an in
clined plane was studied in@38,39#. They showed that the
classical stress singularity at the contact line is alleviated
this case. Recent experiments on drops sliding down an
clined plane showed the existence of stationary drops
slide down the plane without changing their shape@40#.

Recently, Pismen and Pomeau combined the long-w
approximation for thin films@1# with a diffuse interface de-
scription for the liquid-gas interface@41# and derived a film
thickness equation incorporating a disjoining pressure t
without divergence for vanishing film thickness@42#. First,
they discuss the vertical density profile for the liquid in a fl
horizontal layer of fluid incorporating the smooth but nev
theless relatively sharp density transition between fluid
gas, and the density variation close to the solid substrate
to molecular interactions that enter into the calculation
the boundary condition for the fluid density at the substr
@43#. Then they combine in a fully consistent theory the o
tained density profile with the Stokes equation in the lon
wave approximation to account for dynamical situations. T
resulting film thickness equation has the usual form of a th
film equation with disjoining pressure@1#, where the disjoin-
ing pressure now results from diffuse interface theory in
purely hydrodynamic derivation. It is not introduced ad h
into the hydrodynamic formalism and does not suffer from
divergence for vanishing film thickness as all the other d
joining pressures known to the authors. The theory is fu
consistent with Stokes equation of fluid mechanics and w
Young-Laplace equilibrium theory in its van der Waals fo
mulation.

The evolution equation was used to study the struct
formation in an unstable liquid film on a horizontal sol
substrate@44#. Below, the same equation is used to stu
structure formation in a flowing film on a slightly incline
plane. In contrast to the above-mentioned contributions
falling films inertia is irrelevant here and the structures res
from molecular interaction between film and substrate a
the viscous flow due to the inclination of the plane. O
advantage of this approach is the close resemblance o
governing equations for the horizontal and the inclined ca
which gives a good starting point for the interpretation
different types of stationary solutions. Furthermore, the st
gives an example of the effect of breaking the reflection sy
metry on structure formation.

In Sec. II, we discuss the evolution equation for the fi
thickness and introduce the scaling. Then, we derive a
tionary equation, discuss flat film solutions and their stabi
~Sec. III! and calculate the families of stationary period
solutions of finite amplitude~Sec. IV!. We identify solitary
wavelike solutions and nucleation solutions by means of
ear stability analysis and nonlinear analysis. Within the d
ferent solution families solutions with universal behavior a
identified. We call these solutions, that resembleflat sliding
06160
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drops, ‘‘universal’’ because their main properties~velocity,
amplitude, and dynamic contact angles! do not depend on the
choosen mean film thickness. The dependence of their p
erties on the inclination angle is investigated in detail~Sec.
IV B !. The limits of the flat-drop regime and the nonunive
sal solutions, whose properties depend also on mean
thickness, that prevail outside of this regime are discusse
Sec. IV C. In the conclusion~Sec. V!, the relation with ex-
periments and related theoretical work is discussed.

II. FILM THICKNESS EQUATION

We use the film evolution equation as derived byPISMEN

and POMEAU @42# to study the structure formation in a thi
liquid film flowing down an inclined plane. For a two
dimensional geometry as sketched in Fig. 1, the equa
writes

] th52]x~Q~h!$]x@g]xxh2]hf ~h,a!#1ārg%!, ~1!

whereh(x,t) denotes thex-dependent film thickness,g is the
gravitational acceleration,Q(h)5h3/3h is the mobility fac-
tor due to Poiseuille flow,ā is the small inclination angle
between the plane and the horizontal, andr, g, andh are the
respective density, surface tension, and viscosity of the
uid. x is the coordinate along the inclined plane increas
downwards. Subscriptst, x, andh denote the correspondin
partial derivatives. Furthermore,

]hf ~h,a!5kM ~h,a!1rgh5
2k

a
e2h/ l S 12

1

a
e2h/ l D1rgh

~2!

is the derivative of the free energyf (h,a) and has the di-
mension of pressure.P(h)52kM (h,a) is the disjoining
pressure derived from diffuse interface theory@42#, a is a
small positive parameter describing the wetting properties
the regime of partial wetting,l is the length scale of the
diffuse interface, andk is the strength of the molecular in
teraction. The disjoining pressure resembles qualitatively
disjoining pressures that combine destabilizing short-ra
and stabilizing long-range interactions, without sharing th
shortcomings as explained above in the Introduction.

Equation ~1! has the form of a mass conservation la
] th52]xG(x,t), whereG(x,t) is the flow composed of~1!
the flow due to the gradient of the Laplace or curvature pr

FIG. 1. Sketch of the geometry.
1-2
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SLIDING DROPS IN THE DIFFUSE INTERFACE . . . PHYSICAL REVIEW E 64 061601
sureg]xxh, ~2! the flow due to gradients of additional pre
sure terms~resulting from molecular interactionskM (h,a)
and hydrostatic pressurergh), ]hf (h,a), and~3! the gravi-
tationally driven flow down the inclined plane,ārg.

To use dimensionless quantities~with tilde!, suitable
scales are used

t5
3hg

k2l
t̃ ,

h5 l h̃, ~3!

x5Alg

k
x̃.

The ratiok l /g is O(a2) @42#, i.e., the scale in thex direction
is l /a. We find after dropping the tildes

] th52]x$h
3~]x@]xxh2M ~h,a!2Gh#1aG!%, ~4!

where

G5
lrg

k
and a5āS g

k l D
1/2

. ~5!

G gives the ratio between gravitation and molecular inter
tions. Here, its value is always taken positive. Note, thata is
no longer a small parameter. The form ofM (h,a) allows us
to transfer the constanta into the mobility factorQ by the
transformationh̄5h1 ln a. Using this shift enables us to d
rectly compare the given results with the study of the t
liquid film on a horizontal, noninclined substrate@44#.

After dropping the bar, the evolution Eq.~1! becomes

] th52]x$~h2 ln a!3~]x@]xxh2]hf ~h!#1aG!% ~6!

with

]hf ~h!52e2h~12e2h!1Gh. ~7!

In the following, we use only dimensionless quantities if n
otherwise stated.

III. STATIONARY SOLUTIONS

To study stationary solutions for the film thickness profi
h(x,t) that move with the dimensionless velocityv we use
the comoving coordinate systemxco5x2vt, implying ] th
52v]xh. Integration of Eq.~6! in the comoving frame
yields

05Q~h,a!~]xxxh2]hhf ]xh!1aGQ~h,a!2vh1C0 .
~8!

The mobility factor is nowQ(h,a)5(h2 ln a)3 andC0 is a
constant of integration. In contrast to the reflection symm
ric problem of film rupture on a horizontal plane@44#, here
we cannot setC050 and consequentely cannot integrate a
other time. Writing Eq.~8! in the form (G2vh)1C050
tells us that for all stationary solutions, the flow in the c
06160
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moving frameG2vh is constant with respect tox but not the
flow in the laboratory systemG. The choice of the constan
of integration,

C052~G02vh0!52Q~h0 ,a!aG1vh0 , ~9!

introduces a flat film or homogeneous solution of thickne
h0 and the corresponding flow in the laboratory systemG0
52Q(h0 ,a)aG in a natural way. This corresponds to pr
scribing the liquid volume.

A. Flat film solutions

Beside the flat-film solution given by the choice ofh0,
there may exist other film thicknesseshi with corresponding
flow in the laboratory systemG i that give the same flow in
the comoving frame,C05G i2vhi5G02vh0. Take note,
that flat film solutions correspond to the fixed points of E
~8!, seen as a dynamical system. Given the flowG0 by pre-
scribingh0 there exist two more fixed points of this dynam
cal system

h1,25~h02 ln a!S 2
1

2
6A v

Ga~h02 ln a!2
2

3

4D 1 ln a.

~10!

Because the physical film thicknessh2 ln a has to be posi-
tive everywhere, one has to choose the positive sign in
~10!. This solution gives a positive fixed point fo
v/Ga(h02 ln a)2.1, i.e., a second flat-film solution corre
sponding to the conjugate solution in, for instance,@45#. For
v/Ga(h02 ln a)2.3, its thickness is larger than the give
film thicknessh02 ln a. Note that the location of the fixed
points does not depend on the molecular interactionM (h).
However, it does depend on it for the limiting casea50
@44#. The consequences will be discussed below in S
IV B.

B. Linear stability of flat-film solutions

The linear stability of the flat-film solutions to harmon
perturbations is determined by using the ansatzh(x)5h0
1e exp(bt1ikx) to linearize the time-dependent Eq.~6!. This
yields for the dispersion relationb(k)

b52~h02 ln a!3k2~k21 f hhuh0
!2 i3aGk~h02 ln a!2,

~11!

where f hhuh0
is short for]hhf (h)uh5h0

. The real and imagi-

nary parts ofb(k) give the respective growth rate and dow
wards phase velocity of the mode with wave-numberk. The
flat film is unstable for Reb.0. Using Eq.~7! yields linear
instability for

f hh~h0!522e2h0~122e2h0!1G,0, ~12!

i.e., for an intermediate thickness range

h2,h0,h1 , ~13!

where
1-3
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h652 lnF1

2 S 1

2
7A1

4
2GD G . ~14!

In contrast to the existence of flat-film solutions, their stab
ity does not depend on the dynamical aspect of the prob
~tilt angle and velocity!, but only onf hh(h) as for a flat film
on a horizontal substrate@44#. In the limit of vanishing in-
fluence of the disjoining pressure, this corresponds to the
that we only regard Stokes flow~the Reynolds number is
zero in our scaling!, i.e., without the disjoining pressure th
flat film would be linearly stable for all inclination angle
The critical wave-number,kc given by b50 is kc

5A2 f hh(h0), whereas the fastest growing mode has
wave-number km5kc /A2 with growth rate bm5(h0
2 ln a)3fhh(h0)

2/4. For G!1, one findsh2'2 ln(G/2) and
h1' ln 21G. There is a critical point at (Gc51/4,hc5 ln 4)
where the lower- and the upper-linear instability lines me
For G.Gc , flat films are always linearly stable.

All linear modes propagate downwards with the veloc
v52Im b/k53aG(h02 ln a)2, corresponding to the fluid
velocity at the surface of the unperturbed flat film.

IV. PERIODIC AND LOCALIZED SOLUTIONS

Given a flat film in the linearly unstable thickness rang
it will start to evolve in time. This may lead to film rupture o
to a stationary film profile of finite amplitude, i.e., to nonlin
ear waves. These waves are stationary solutions of Eq.~6!,
i.e., solutions of Eq.~8!. Periodic waves are found numer
cally using continuation methods@46# starting from small
amplitude analytic solutions. The linear stability analysis
the periodic solutions will lead us to first conclusions abo
the physical meaning of the various occuring types. Dir
integration Eq.~6! in time supports the given physical inte
pretation. Details of the numerical methods may be found
Appendix A.

A. Short-period solutions

Small amplitude stationary solutions take the formh(x)
5h01eeikx, as seen by linearizing Eq.~8!. The resulting
condition 05k31 f hh(h0)k2 i @3aGk(h02 ln a)22vk# im-
plies k5kc5A2 f hh(h0) and v53aG(h02 ln a)2, corre-
sponding to the neutrally stable modes obtained in the lin
stability analysis in Sec. III B. Small-amplitude solutions e
ist only in the linearly unstable film thickness range.

We begin with a study of the stationary solutions at
fixed inclination anglea and given interaction parametersG
anda. We keep, if not otherwise stated,a50.1, G50.1, and
a50.1. We are interested in the solution amplitude and
locity as a function of the period (2p/k in the linear case!
for different given mean film thicknessesh̄. Depending onh̄,
qualitatively different families of solutions are found. The
velocity-period and amplitude-period dependencies
shown in Figs. 2 and 3, respectively. We call family the se
solutions for a given mean film thickness and classify th
by the number and type of their branches, where bra
stands for a part of a family that allows us to assign a uni
value of velocity and amplitude to a given period. Branch
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may show monotonic or nonmonotonic behavior of amp
tude or/and velocity with respect to period.

In the following, the various family types are listed wit
increasing mean film thickness. The value given toh̄ in the
parenthesis refers, as an example, to Figs. 2 and 3.

~1! For very smallh̄, no solution exists beside the trivia
h(x)5h0.

~2! There are two branches with different velocitiesv and
amplitudesA for the same periodL. Both continue towards
L→` and show a monotonic dependence ofv and A on
L (h̄50.7).

~3! There are two branches with differentv and A, but
only the branch with higher velocity continues towar
L→`. Both show a monotonic dependence ofv on L.
Considering the period as a bifurcation parameter,
endpoint of the branch with higher velocity and smal
amplitude corresponds to the locus of a subcritical bifur
tion from uniform solutions to solutions oscillating in spa
(h̄50.82).

FIG. 2. Characterization of stationary periodic solutions. Sho
is the dependence of the velocityv on periodL for different mean

film thicknesses,h̄ as given in the legend.G50.1, a50.1, and
a50.1.

FIG. 3. Shown is the dependence of the amplitude on perioL
for the solution branches from Fig. 2. The legends of~a! and ~b!
give the respective mean film thicknesses.
1-4



tio

ty
a

e

r

l

to
a

film
tio
s
s
a

ea
e
m
a

ur
e
au
o

e
n-

een
rly

the

he
ns
at
he
ays
he
olu-

-
olu-
ter
ing

ver,
ing
he
ly

re-

ions
ces

m-
-
an
ill

This

s

ly
s

lu-

SLIDING DROPS IN THE DIFFUSE INTERFACE . . . PHYSICAL REVIEW E 64 061601
~4! One branch exists that continues towardsL→`. Both
v andA increase monotonously withL. The endpoint of the
branch corresponds to the locus of a supercritical bifurca
(h̄51.0).

~5! The only branch continues towardsL→`, A increases
monotonously but notv ~supercritical bifurcation,h̄51.5).

~6! Again, two branches exist, but only the low veloci
branch continues towardsL→`. The ending branch shows
monotonic dependence ofv on L, but the infinite branch is
nonmonotonic~subcritical bifurcation,h̄52.0,h̄52.5 andh̄

52.86). For h̄52.5, some profiles for different period ar
shown in Fig. 4.

~7! Nearly the same as~2!, but here the branch with lowe
velocity corresponds to larger amplitude (h̄53.5).

~8! For very largeh̄ no solution exists beside the trivia
oneh(x)5h0.

The flat film is linearly stable for the cases~1!, ~2!, ~7!,
and ~8!, but is linearly unstable for cases~3!–~6!. Figures 2
and 3 show that for each family one branch converges
line common for all families. Solutions along this line have
velocity and amplitude that are independent of the mean
thickness, i.e., independent of liquid volume, an observa
that is explained later~Sec. IV B!. The convergence to thi
line occurs at a lower period for larger mean film thickne
than for small film thickness. For the linearly unstable me
film thicknesses, the branch that continues towardsL→` is
the converging branch whereas for the linearly stable m
film thicknesses~2! and ~7! the converging branch is th
high- and low-velocity branch, respectively. Also, the fil
profile converges to a common shape: a flat drop with
upper plateau of thicknesshu on a very thin~precursor! film
called here lower plateau of thicknesshd . At the downstream
front of the drop, the profile overshoots before relaxing f
ther upstream to the upper plateau thickness, and henc
capillary ridge forms. Only the length of the upper plate
depends on the mean film thickness. Before we embark

FIG. 4. Profiles for different periodsL as shown in the legend

of ~a! and ~b! at film thicknessh̄52.5. G50.1, a50.1, anda
50.1. Take note that in~a!, the period changes non-monotonical
with increasing amplitude. In~b!, one can see the transition toward
the flat drops.
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the study of these ‘‘universal’’ flat drops in Sec. IV B, w
will give an interpretation of the branches that do not co
verge to the common line.

As mentioned above in point~3!, the critical wavelength
lc where the flat film becomes linearly unstable can be s
as the locus of a bifurcation. Because the flat film is linea
stable forl,lc , the subcritical branch in~3! and ~6! start-
ing at lc should consist of unstable solutions, whereas
supercritical branch starting in~4! and~5! at lc should con-
sist of stable solutions. This is confirmed by calculating t
growth rate for a small disturbance to the periodic solutio
~see Appendix A! as shown in Fig. 5. The branches th
terminate atlc are always linearly unstable, whereas t
branches that continue towards an infinite period are alw
linearly stable taking one solution period as the unit of t
stability analysis. Take note that there is a most stable s
tion on every~linearly stable! branch. Its period is slightly
larger than the minimal period on the branch~Fig. 5! and is
not correlated withlc . However, the linearly stable solu
tions are linearly unstable if one takes more than one s
tion period as the unit of the stability analysis. The lat
corresponds to an instability with respect to coarse-grain
modes as known from the casea50 @44#, i.e., in the course
of time the length scale of the pattern increases. Howe
the process slows down exponentially with increas
lengthscale and is not discussed further in this work. T
coarse-graining instability was only checked for relative
small a. As discussed in Sec. V, at largera there may be a
crossover towards periodic solutions that are stable with
spect to coarse graining. For the casea50, it was shown
that the terminating branches represent nucleation solut
@44#, i.e., these solutions represent critical finite disturban
for linearly stable but not absolutly stable~i.e., metastable!
flat films. At constant shape, disturbances with smaller a
plitude than the critical disturbance will relax in time to
wards the flat film solution, whereas an amplitude larger th
critical leads to growth of the disturbance. The system w
then reach the solution on the other, the stable branch.
interpretation is also valid in the caseaÞ0 as illustrated in

FIG. 5. Linear stability results for the periodic stationary so

tions are given for different mean film thicknessesh̄ as shown in the
legends of~a! and ~b!. G50.1, a50.1, anda50.1. The thin and
thick lines represent unstable and stable profiles, respectively.
1-5
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Fig. 6. The interpretation holds also for the nonuniver
branches that continue towards infinity in the cases~2! and
~7!.

B. Flat drops

Before we focus on the dependence of the propertie
the flat drops on the system parameters, we want to iden
what limits their existence as solutions. For large periods,
volume of liquid ~mean film thickness! only influences the
ratio x between drop lengthl and the period of the solution
L. The ratio is given byx5(h̄2hd)/(hu2hd). Flat drops
cannot exist forx→0 because there is not enough matter
the system to form a flat drop. Forx→1, the downstream
end of the drop approaches the upstream end of its prede
sor and both ends start to interact: the profile then becom
moving hole in a flat film or small nonlinear waves on
otherwise flat film. These solutions depend strongly on
mean film thickness and will be discussed in Sec. IV C.

At this point, only situations are studied where these
strictions do not apply. The solutions in this parameter ra
are flat drops whose plateau thicknesses depend on the
rametersa, a, andG only. Choosing one of the two platea
thicknesses ash0, the other plateau thickness is given as t
second positive fixed point of Eq.~8!, i.e., by Eq.~10!. Only
the ratio of the length of the upper to the lower plateau
influenced by the given liquid volume. The velocity of th
flat drops is determined by the dynamic equilibrium betwe
the overall forces of gravity acting on the liquid and visco
friction. The equilibrium does not depend on the liquid vo
ume because both forces are proportional to the length o
flat drop.

Looking at Figs. 2 and 3, one observes that at periodL
5500, only the curves for relatively small mean film thic
nesses have not yet reached the universal curve. To stud
dependence of the plateau thicknesseshu andhd and velocity
v on the inclination angle and interaction parameters, we

FIG. 6. Time evolution of a finite disturbance. At timet50, a
disturbance is given ash01A0sin(2p/L) with h052.5, L532, G
50.1, a50.1, anda50.1. The disturbance withA050.2 shrinks
~dashed line! whereas the one withA050.29 ~solid line! grows.
Initial and final profiles are shown in~a! and ~b!, respectively.~c!
gives the time evolution of the amplitude of the profile.
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the period at the valueL52000 where all curvesv(L)
shown in Fig. 2 have reached the universal solution. Firsa
is fixed to study the dependence ofv, hu , andhd on a, for
differentG. Recall that the scaled inclination anglea is not a
small parameter contrary to the unscaled physical angleā.

The velocity increases monotonically witha ~Fig. 7! and
the flat drop becomes thinner by decreasing its upper-pla
thickness and increasing the lower-plateau or precursor
thickness~Fig. 8!. In the limiting casea and v→0 andG
!1 the ratiov/a, i.e., the slope of the functionv(a) at a
50 may be estimated because the plateau thicknesses
to coincide with the values obtained for a drop on a non
clined plane (a50) @44#. These values depend only on th
properties of the free energyf (h) and are given forG!1 by

hd5AG/21
3

8
G1O~G3/2!,

FIG. 7. The dependence of the velocity,v, on inclination angle
a, for different G as given in the legend. The thick lines are un
versal curves that are independent of the mean film thickn
within the limits discussed in the main text.a50.1 andL52000.
The thin lines represent the analytical results of Eq.~16!.

FIG. 8. Shown is the dependence of the two plate
thicknesses—the upper-plateau thicknesshu and the precursor film
thicknesshd—on inclination anglea for differentG as shown in the
legend. Plotted is the universal part of the curves that is indepen
of the mean film thicknesses within the limits discussed in the te
a50.1 andL52000.
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and

hu5A2/G2
A2

16
AG1

21

128
G1O~G3/2!. ~15!

Take note thathd'AG/2 is the ‘‘capillary length’’l C of the
problem. As in physical unitsl C5Alk/rg one sees thatlk
plays the role of surface tension in a description of a d
without precursor film.lk may be identified as the differenc
in the surface energies between lower- and upper-pla
thicknesses, precursor film, and drop surface fora50 @44#.
Inserting relations~15! in Eq. ~10! results in

v
a U

a→0

tending to 223A2G ln a1F3

4
13~ ln a!2GG

1O~G3/2!. ~16!

This gives already a good estimation for the slope of
curve v(a) at a50 as shown in Fig. 7. Note that for ver
small G, this slope approaches 2, i.e., in physical unitsv
5(2k l /3h)a. The velocity scale is given by the ratio of th
difference in surface energies and viscosityk l /h.

Furthermore, we study the dependence of the dyna
contact angles on drop velocities. We define the con
angle as the absolute value of the slope of the profile a
inflection point. The drop has two dynamic contact angl
the advancing angle at its downstream frontua and the re-
ceeding angle upstreamu r . The differences between thes
angles and the equilibrium or static contact angleuE , ob-
tained fora50 are shown in Fig. 9 and Fig. 10, respective
Let us first discuss Fig. 10. The receding angle is alw
smaller thanuE and in the velocity range studied here, t
absolute value of the difference between both angles
creases linearly with increasing velocity. The increase
comes steeper with smallerG. However, Fig. 9 shows tha
the difference between the advancing angle anduE changes
nonmonotonically with increasing velocityv. It increases for
small v, but decreases for largerv. For relatively large ve-
locities,ua may even become smaller thanuE . The increas-

FIG. 9. The difference of the advancing dynamical contact an
ua and the equilibrium contact angleuE as a function of the drop
velocity v for different G as shown in the legend.a50.1 and
L52000.
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ing part of the curve extends towards largerv with decreas-
ing G. It was checked that the decrease is neither an effec
leaving the universal branch~interaction between drops! nor
caused by further oscillations of the profile.

These further oscillations appear for even higher velo
ties: Increasinga enforces the overshooting at the front
the drop. The difference between upper plateau thickness
maximal height gets larger and secondary oscillations
‘‘wiggles’’ evolve behind the capillary ridge and also in fron
of the drop ~undershooting!. As the range of the wiggles
extends the back and the front of different drops start
interact. This is another way for the solutions to leave
universal branch. We conclude the analysis of the solut
families with a study of the nonuniversal part of th
branches.

C. Nonuniversal solutions

The solution families leave the universal curve of the fl
drops mainly because one of the plateau thicknesses
proaches the mean film thickness. Nonuniversal hole@drop#
solutions arise when the upper-@lower#-plateau thickness

comes close toh̄. Further away from the universal curve bo
cases give rise to solitary waves of relatively small amplitu
on an otherwise flat film. Let us follow, for instance, th
upper curve forG50.1 in Fig. 8. When increasinga for a

mean film thicknessh̄53.0, the upper-plateau thicknesshu

approachesh̄ at abouta50.5, x approaches 1~Sec. IV B!
and the solution family has to leave the universal flat-dr
branch. This is shown in Fig. 11 where the velocityv is

given as a function ofa for various h̄. This figure is the
equivalent of Fig. 7 for the nonuniversal solutions. As e
pected, the point of departure from the universal branch
pends strongly on the chosenh̄. With decreasingh̄, it shifts
towards larger inclination angles. Complementary inform
tion for the same situation, that is the dependence of solu
amplitudeA on a, is given in Fig. 12.

le FIG. 10. The difference of the receding dynamical contact an
u r and the equilibrium contact angleuE in dependence of the drop
velocity v for G as given in the legend.a50.1 andL52000.
1-7
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The nonuniversal part of the families consist of one, tw

or three branches. Decreasingh̄ we distinguish cases~a! to
~c!:

~a! Two branches exist, giving thev(a) curve a petallike
shape. This implies the existence of two smalla solutions

(h̄53.0 in Fig. 7!. The branch with higher velocity consis
of solutions with smaller amplitude than the solutions of t

other branch for identicala ~Fig. 12!. Solutions forh̄53.0
are shown in Fig. 13.

~b! Three branches exist, resulting in a broken-petal
S-like shape of thev(a) curve and aZ-like shape of the
A(a) curve. The high-velocity branch of thev(a) depen-

dence (h̄52.86 and 2.8 in Fig. 11! converges to the straigh

line v53aG(h̄2 ln a)2, i.e., the velocity of the small-
amplitude solutions obtained in Sec. III B. Solution profil

for h̄52.86 are shown in Fig. 14.
~c! Only one branch exists, which also departs from

universal branch (h̄51.0 and 2.0 in Figs. 11 and 12!.

FIG. 11. The dependence of the velocityv on inclination angle
a for different mean film thicknesses as given in the legenda
50.1, G50.1, andL52000.

FIG. 12. The dependence of the amplitude on inclination an

a for h̄ as given in the legend.a50.1, G50.1, andL52000.
06160
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Our interpretation of the nonuniversal branches re
upon the results for the families obtained when changing
period ~Sec. IV A!. In the range of mean film thickness th
corresponds roughly to metastable films fora50 @44#, we
encounter again the linearly unstable solutions, that w
identified as periodic nucleation solutions. In case~a!, the
upper branch in thev(a) plot represents such linearly un
stable solutions, whereas the lower branch is linearly sta
Taking thea→0 limit, the solutions of the upper branc
approach the respective solutions that represent peri
nucleation solution in the problem of film rupture on a ho
zontal plane@44#. Take note, that as in Sec. III we use on
period of the respective solutions as the unit of the stabi
analysis. Thus, we determine whether a solution is linea
stable for a fixed period. It may be unstable to coarse gra
ing as in@44#.

le

FIG. 13. Thickness profiles for different inclination anglea as

given in the legends forh̄53.0, G50.1, a50.1, andL52000.~a!
and ~b! show profils for the upper and lower branch of the cur

with h̄53.0 in Fig. 11, respectively.

FIG. 14. Thickness profiles for different inclination anglea as

given in the legends forh̄52.86, G50.1, a50.1, andL5500.~a!,
~b!, and~c! show profils for the upper, medium, and lower branch

the curve withh̄52.86 in Fig. 11, respectively.
1-8
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The middle branch in case~b! consists also of nucleatio
solutions. This is confirmed by the results of the linear s
bility analysis of the found periodic solutions, performed
outlined in the Appendix. For each branch, the real part
the largest eigenvalue, i.e., the growth rate of disturban
determines the stability of the solutions. For~b!, the middle
branch has a positive growth rate as expected, whereas
two other branches are linearely stable because the la
nontrivial eigenvalue is negative. Besides the linearly sta
large-amplitude branch already known from case~a!, there
also exist linearly stable small-amplitude solutions, identifi
as nonlinear surface waves. In the range ofa where both
stable branches exist they are separated by the uns
branch that acts as a nucleation solution: it has to be o
come from either side in order to jump to the other bran
This has two important effects:~I! An apparent stability of
the flat film and~II ! some hysteresis.

~I! Because the surface waves have very small amplit
@see Figs. 12 and 14~c!# they may be missed in an exper
ment focused on drop formation and the linearly unstable
film may appear stable, because no evolution towards d
like large-amplitude structures would take place.

~II ! The existence of two linearly stable branches betw
inclination anglesad andau gives rise to hysteresis: Chang
ing a, one may jump from one linearly stable branch to t
other. However, whereas the transition from the large- to
small-amplitude branch occurs atau , the transition from the
small- to the large-amplitude branch occurs atad . The tran-

FIG. 15. Shown are~a! the amplitudeA and~b! the velocityv as
a function of the inclination anglea for the different steps of a time
simulation for the hysteresis effect~open circles!. The dashed lines
show the families of stationary solutions as obtained by contin
tion. The arrows indicate the sequence in time that is further
plained in the main text.
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sition between the two branches may be called adynamical
wetting transition with hysteresis. Such a dynamical wetting
transition is now reasonably well understood@40,47–49#: at
the macro scale, it would occur when the contact angle v
ishes at finite velocity. However, as far as we know, no h
teresis has been predicted and/or observed although it
not seem to be excluded at all from first principles.

To show the hysteresis, we perform a numerical exp
ment as follows~see Fig. 15!. A slightly disturbed, linearly
unstable flat film flows on a plane with a relatively sma
inclination a0,ad . Integrating Eq.~6! in time for the fixed
periodL5100 shows that the disturbance grows and the
lution settles on the stable flat-drop branch as indicated
arrow ~1! in @Fig. 15~a!#. Now, the inclination angle is in-
creased slowly. After every~small! step, the flat drop reache
a dynamic equilibrium. Only some of them are shown
open circles in Fig. 15. The obtained series of profils follo
the curve of the stationary solutions@arrow ~2!#. Reaching
the end of the linearely stable large-amplitude branch,
solution jumps to the small-amplitude solution branch wh
a passesau @arrow ~3!#. Some snapshots of film thicknes
profiles during this jump are shown in Fig. 16.

When increasing@arrow ~4!# or decreasing@arrow ~5!# a
the solution follows the branch of small amplitude nonline
surface waves. Decreasinga, one has to wait until passing
ad to jump back to the flat drop branch indicated by arro
~6!. Decreasinga further leaves the solution on the flat dro
branch@Fig. 15~a!, arrow~7!#. Take note that the return to th
flat drop branch occurs at aad

num,ad . This is probably due
to the fact that the growth rate for the small-amplitude so
tions approaches zero where the two solutions meet imply
a critical slowing down of the dynamics of relaxation t
wards the stationary solution for the next value ofa. Accord-
ingly, the jump may only be seen when the system is
enough away from the end point of the branches. The lo
of this jump depends slightly on the spacial grid resoluti
employed in the time integration.

-
-

FIG. 16. Film thickness profiles are shown for different times
indicated in the legends for the jump from the large amplitu
branch to the small amplitude branch symbolized by arrow~3! in
Fig. 15. Take note of the large difference of the amplitude betw
the first curve and the last curve.
1-9
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V. CONCLUSION

We have analyzed the evolution of a thin liquid film flow
ing down an inclined plane taking into account the inter
tion with the substrate. The latter is modeled by a disjoin
pressure arising in a recent theory derived from coupled
der Waals equations and thin-film hydrodynamics@42#. We
have studied the flat film solutions and their linear stabil
As a result we found, that although the thickness of the
film solutions depends on velocity and inclination ang
their linear stability is independent of these dynamical
pects. The linear stability of the flat film is determined on
by the first derivative of the disjoining pressure as for fi
rupture on a horizontal substrate@44#.

Using small-amplitude stationary solutions as a start
point, continuation techniques allowed to calculate famil
of finite-amplitude stationary solutions. Depending on me
film thickness, different types of solution families we
found and classified. Linear stability analysis showed the
istence of linearly stable solutions and linearly unsta
nucleation solutions. Although for small inclination angl
there are solution families that correspond to the family ty
found on the horizontal plane@44#, there are significant dif-
ferences. First the solutions are asymmetric and slide d
the inclined plane. Secondly, the dependence of the velo
on solution period also varies strongly with mean film thic
ness, a behavior that clearly has no counterpart in the no
clined case. Beside the families that have a counterpart in
casea50, there exist stationary nonlinear surface wav
that are specific foraÞ0. They do only exist if both molecu
lar interaction and viscous flow driven by gravitation a
present and depend strongly on the ratio of mean film th
ness and length scale of the diffuse interface.

The study of the solutions as a function of the peri
revealed the existence of universal flat drop solutions. Th
velocity and plateau thicknesses do not depend on period
mean film thickness. They have the form of flat liquid she
of different length and end downstream with a capilla
ridge. The dependence of the properties of the flat drops
inclination angle and interaction parameters was determin
With increasing inclination angle, the upper-@lower-#-plateau
thickness decreases@increases#, the velocity increases, an
the receeding dynamic contact angle decreases. The adv
ing dynamic contact angle shows a nonmonotonic beha
as a function of the velocity, it increases first then decrea
even below its static equilibrium value. The effect is mo
pronounced for largerG.

The universal regime breaks down if one of the plate
thicknesses approaches the mean film thickness. The stu
the nonuniversal families has revealed an hysteresis ef
when jumps between a small- and a large-amplitude solu
occur that both exist for a certain range of inclination ang
for some mean film thicknesses. The existence of the bra
of stable small-amplitude solutions may in an experim
lead to the impression of stable flat film flow in the linear
unstable mean thickness range, because no large ampl
solutions can be seen without overcoming a nucleation s
tion. The occurring surface wave may go unnoticed beca
of its very small amplitude.
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We have investigated the main effects occuring in a s
tem where viscous stress and molecular interactions
dominant. The overall picture may be well understood a
visualized for small but not very smallG, a parameter de-
scribing the ratio of gravitation to molecular interactions.
real physical situations, this ratio is normally very sma
implying that the results shown here do only qualitative
resemble drop profiles or velocities occuring in nature. N
merical calculations showed that all qualitative features
also found for very smallG. In order not to confuse the
reader we normally did not change the interaction param
a in this paper. It has an influence on the time scale of
dynamics of the system and also shifts borders in param
space between the occurrence of different family typ
However, the study of these details is not the scope of
paper.

Most works@27,35,50# on liquid sheets or ridges flowing
down an inclined plane analyze separately the three regi
~1! upstream end,~2! central part, and~3! downstream end of
the ridge. Similarity solutions in the regions~1!, ~2!, and~3!
are determined and matched together. The power depend
on time in these models is due to the fact that the situati
studied are a superposition of spreading and sliding going
forever although we look at sliding droplets of consta
shape in a moving frame as observed by Podgorski@40#.
Because of the continuing time dependence the stab
analysis for the leading edge~1! depends nontrivially on time
through changing matching conditions, i.e., the changing
tio of upstream film thickness and precursor film thickness
slip length as happens in@31,50#. In slip models, the dynamic
contact angle is explicitly fixed at the contact line@31,36# or
varies in a prescribed way with velocity@35#. In the precur-
sor film models, however, the contact angle is zero with
motion although with motion a dynamic contact angle d
pends on the velocity of the advancing front.

Here, we do not study the superposition of spreading
sliding, but the stationary movement of drops, i.e., we stu
drops that do not change their shape and move with a c
stant velocity. When the inclination angle vanishes, the sh
of our droplets converges to the equilibrium shape on a h
zontal plane. All the ad hoc parameters in the above
proach~static and dynamic contact angle, drop velocity, dr
and precursor film thickness! are deduced within our theor
from the two parameters describing wetting properties a
ratio of molecular interaction to gravitation, respectively. F
small liquid volume in an individual drop also the volum
influences the drop properties.

An analysis similar to the one performed here could a
be used to analyze liquid films on an inclined plane under
influence of other disjoining pressures, as for instance u
in Refs.@1,5#. We think that the main qualitative results wi
be very similar for other disjoining pressures also combin
destabilizing short-range and stabilizing long-range inter
tions. However, as was shown for liquid films on a horizon
plane@44,51#, results may differ in important details, due
the different behavior of the various disjoining pressures
vanishing film thickness. Different behavior is to be expec
for other types of disjoining pressure, as for instance
1-10
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SLIDING DROPS IN THE DIFFUSE INTERFACE . . . PHYSICAL REVIEW E 64 061601
combination of stabilizing short-range and destabilizi
long-range interactions.

The rupture of a thin-liquid film on a horizontal substra
is closely related to the decomposition of a binary mixture
described by the Cahn-Hilliard Eq.@9,44,52#. Thus, the prob-
lem treated here has a close relation to convective Ca
Hilliard models @53#. Close to the critical point (Gc
51/4,hc5 ln 4) ~Sec. III B! the disjoining pressure may b
expressed as a cubic@44# and Eq.~6! takes the form

] te52]xH ~hc2 ln a1e!3F]xS ]xxe2
f 4

6
e32ge D1agG J ,

~17!

where we introduced the small deviationse and g by h(x)
5hc1e(x) andG5Gc1g; and f 4 stands for]hhhhf uhc

. As-

suming e!1, g5O(e), f 45O(e21), x5O(e21/2), a
5O(e21/2), andt5O(e22), Eq. ~17! reduces to

] te52]xxF]xxe2
f 4

6
e32geG1

6ag

hc
2

e]xe. ~18!

The usual Cahn-Hilliard equation is Eq.~18! without the
last term. Equation~18! may further be transformed by an
other scaling oft, x, andh into the convective Cahn-Hilliard
equation studied in@53#, which itself is related to the
Kuramoto-Sivashinsky equation used to describe forma
of small-amplitude structures on falling liquid films@1#. So,
it is expected that an analog of the described dynamical w
ting transition with hysteresis may be found in the conv
tive Cahn-Hilliard model and that further studies of Eqs.~18!
and ~6! will reveal periodic drop structures stable again
coarse graining.
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APPENDIX A: NUMERICAL METHODS

Finite-amplitude periodic solutions of Eq.~8! are calcu-
lated by continuation@46#. The small-amplitude solutions ob
tained in Sec. IV A are used as starting solutions and
continued through the parameter space. One may vary
period of the solutionsL, their mean film thicknessh̄, the
inclination angle of the planea, or the interaction parameter
G anda. Studying solutions with large periods, we get go
approximations for localized solutions, such as sliding ho
and drops or moving fronts or kinks~hydraulic jumps!.

We fix, for example,h̄, G, anda, use periodic boundary
conditions forh, ]xh, and]xxh and look for solutions with
different period. To break the translational symmetry of t
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solutions and therefore to eliminate the trivial dimension
the solution space we have to pin the solution demanding
example]xh(0)50. The resulting four boundary condition
and the integral condition of fixed mean film thickness allo
us to determine the two missing parametersv and C0 for
every period,L.

The stationary solutions are further studied by determ
ing their linear stability. This is done by adding a small tim
dependent disturbanceeh1(x)expbt to the stationary solu-
tion h0(x). Linearizing Eq. ~6! transformed into the
comoving frame ine results in an eigenvalue problem for th
growth rate,b, and disturbance,h1(x),

bh15$@3q2~h0xf hh2h0xxx!#x1~q3h0xf hhh!x%h1

1@2q3h0xf hhh13q2~2h0xf hh2h0xxx!#h1x

1q3f hhh1xx23q2h0xh1xxx2q3h1xxxx

2~3aGq2h1!x1vh1x , ~A1!

whereq5h0(x)2 ln a and all derivatives off are functions
of the periodic solutionh0(x). For a disturbed flat film Eq.
~A1! reduces to Eq.~11!.

To solve numerically Eq.~A1!, we discretize it by ex-
pressing the derivatives ofh1@ i # at a pointi as a linear com-
bination of h1@n# where i 22<n< i 12. Using periodic
boundary conditions, this yields the algebraic eigenva
problem:

bh11S~h0 ,h0x ,h0xx ,h0xxx ,h0xxxx, f h , f hh , f hhh!h150,
~A2!

whereS is a linear operator determined by the periodic s
lution, h0. We search for the largest eigenvalues~i.e., growth
rates! b and the corresponding eigenvectorsh1. In the prob-
lem studied, the largest eigenvalue is always real. In
stability analysis, one cannot use solutions with large peri
such asL52000 because of the necessary equidistant
cretization in space. Therefore, the stability calculation
Sec. IV C is done for the relatively small periodL5100.
This is feasible in a range of film thicknesses and perio
where the characteristics of the branches, especially, b
and end point of the middle branch for the broken-pe
curves depend only slightly onL.

Numerical integration of the time-dependent Eq.~6! is
used to confirm the interpretation of the stationary solutio
We used a semi-implicit pseudospectral code and integr
Eq. ~6! on a grid of 1024~for L5100) or 512~for L532)
mesh points. To avoid numerical instabilities for large amp
tudes, we had to choose a small timestep ofdt51.e24. The
code was implemented on a Alpha Workstation XP1000. T
simulation took a couple of hours of CPU time to reach
stationary state, moving with a constant velocity as sho
for instance, in Fig. 6.

For the hysteresis part~Sec. IV C!, we started with the
small inclination anglea50.2 and increased it adiabaticall
using normally steps ofDa50.05, and steps ofDa50.01
near the transitions pointsau and ad . After reachinga
51.4, we decreaseda again and returned stepwise as befo
until reaching the initial value.
1-11
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