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Sliding drops in the diffuse interface model coupled to hydrodynamics
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Using a film thickness evolution equation derived recently combining long-wave approximation and diffuse
interface theonfL. M. Pismen and Y. Pomeau, Phys. Rev.6E 2480 (2000] we study one-dimensional
surface profiles for a thin film on an inclined plane. We discuss stationary flat film and periodic solutions
including their linear stability. Flat sliding drops are identified as universal profiles, whose main properties do
not depend on mean film thickness. The flat drops are analyzed in detail, especially how their velocity,
advancing and receeding dynamic contact angles and plateau thicknesses depend on the inclination of the
plane. A study of nonuniversal drops shows the existence of a dynamical wetting transition with hysteresis
between droplike solutions and a flat film with small amplitude nonlinear waves.
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I. INTRODUCTION by one- and two-dimensional numerical simulations of the
time evolution of the film thickness profilel2—14. If the
Much interest has focused recently on structure formationiquid is already deposited in drop form it may relax towards
in thin liquid films. Two especially well-investigated prob- equilibrium by spreading or retractifd,2,15,18. Both the
lems are the rupture and dewetting of very thin liquid filmsspreading of a drop and the growth of a hole involve the
and the formation of waves and localized structures in a flnmovement of a three-phase contact line. The classical no-slip
flowing down an inclined plangl]. boundary condition at the liquid-solid interface makes the
If a liquid is deposited on a surface where this situation ismovement of the contact line impossible if the contact line is
energetically unfavorablénon- or partially wetting, after  considered as a material line. This problem may be circum-
some transient, the liquid is collected in drops on the surfacevented by introducing a very thin precursor film or allowing
The resulting contact angle formed by the solid-liquid andfor a slip near the contact ling,17].
the liquid-gas interface is determined by the various molecu- Experiments on liquid films that flow down an inclined
lar interactions. For relatively large drops it is given by aplane (falling films) studied the formation of wavell§],
combination of the various surface tensidiyeung-Laplace localized structures, and their interactid®]. Linear stabil-
relation [2]. However, for very small thicknesses ity analysis[20,21], weakly nonlinear analysig22-24, the
(<100 nm) distance-dependent molecular interactions havstudy of sideband instabilitid®5], and solitary wave$26]
to be introduced explicitly in the hydrodynamic formalism. already revealed many important features. However, the
This is achieved by an additional pressure term, the disjoinstudies focus on structure formation caused by inertia mea-
ing pressure[3,4]. Depending on the particular problem sured by the Reynolds number. Thereby the molecular inter-
treated, this disjoining pressure may incorporate long-rangactions between film and substrate are neglected so that this
van-der-Waals and/or various types of short-range interactiotype of description cannot apply to very thin films.
terms[5-8]. This is also the case for most works that focus on the
If the deposited liquid forms a thin film on the substrate, evolution of falling sheets or ridgd&7,28, i.e., the advanc-
the transition towards drops is initiated by film rupture ing edge of a fluid film or long one-dimensional drops on an
caused by a surface instabilitgpinodal dewetting9]) or by inclined “dry” substrate. As for the spreading drop, a precur-
nucleation at defects. Lateral growth of the resulting holessor film or slip at the substraf@9—31 helps to avoid diver-
yields a network of liquid rims that decays later into smallgence problems at the contact line, but introduces new ad
drops[10]. The process and the resulting structures are irhoc parameters into the model. The additional parameters,
principle, well understood. The methods employed rangaamely, the slip length or the precursor film thickness have
from linear stability analysi§11] to fully nonlinear analysis an influence on the base state profiles and on the transverse
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front instability (growth rate and fastest growing wave num- gas

ben [31-34. Also, the equilibrium and dynamic contact g
angles remain to be fixed independently in this kind of
theory[30,35,38. In an alternative approadB37], either the
vapor-liquid or fluid-solid interface, or both, are treated as a
separate phase with properties that differ from the bulk fluid.
A droplet of nonwetting viscous liquid rolling along an in-
clined plane was studied if88,39. They showed that the
classical stress singularity at the contact line is alleviated in X
this case. Recent experiments on drops sliding down an in-
clined plane showed the existence of stationary drops that

slide down the plane without changing their shaf@]. FIG. 1. Sketch of the geometry.

Recently, Pismen and Pomeau combined the long-wave _ ) ) ) )
approximation for thin filmg1] with a diffuse interface de- drops “universal” because their main properti¢gelocity,
scription for the liquid-gas interfadel1] and derived a film a@mplitude, and dynamic contact anglels not depend on the
thickness equation incorporating a disjoining pressure terr§hoosen mean film thickness. The dependence of their prop-
without divergence for vanishing film thickneg42). First, ~ €rties on the inclination angle is investigated in det&ic.
they discuss the vertical density profile for the liquid in a flat!V B). The limits of the flat-drop regime and the nonuniver-
horizontal layer of fluid incorporating the smooth but never-Sal solutions, whose properties depend also on mean film
theless relatively sharp density transition between fluid andhickness, that prevail outside of this regime are discussed in
gas, and the density variation close to the solid substrate du2eC- IV C. In the conclusioSec. V), the relation with ex-
to molecular interactions that enter into the calculation viaP€riments and related theoretical work is discussed.
the boundary condition for the fluid density at the substrate
[43]. Then they combine in a fully consistent theory the ob- Il. FILM THICKNESS EQUATION
tained density profile with the Stokes equation in the long- i . . .
wave approximation to account for dynamical situations. The Ve use the film evolution equation as derivedmgmeN
resulting film thickness equation has the usual form of athin—"?md_PoMEAU [42.] to study the structure formation in a thin
film equation with disjoining pressufd], where the disjoin- 19uid film flowing down an inclined plane. For a two-
ing pressure now results from diffuse interface theory in alimensional geometry as sketched in Fig. 1, the equation
purely hydrodynamic derivation. It is not introduced ad hocWrites
into the hydrodynamic formalism and does not suffer from a —
divergence for vanishing film thickness as all the other dis-  %h=—(Q(M{d ydxh—dnf(h,a)]+ apg}), (1)
joining pressures known to the authors. The theory is fully } i )
consistent with Stokes equation of fluid mechanics and wit¥hereh(x,t) denotes thex—dependsent film thicknesg,is the
Young-Laplace equilibrium theory in its van der Waals for- 9ravitational acceleratiorQ(h) =h"/37 is the mobility fac-
mulation. tor due to Poiseuille flowg is the small inclination angle

The evolution equation was used to study the structur@etween the plane and the horizontal, @and, and# are the
formation in an unstable liquid film on a horizontal solid respective density, surface tension, and viscosity of the lig-
substrate[44]. Below, the same equation is used to studyuid. x is the coordinate along the inclined plane increasing
structure formation in a flowing film on a slightly inclined downwards. Subscripts x, andh denote the corresponding
plane. In contrast to the above-mentioned contributions opartial derivatives. Furthermore,
falling films inertia is irrelevant here and the structures result
from molecular interaction between film and substrate and _ 2k 1 .
the viscous flow due to the inclination of the plane. One dnf(h,a)=«M(h,a)+pgh= 2 ¢ 1-3¢ +pgh
advantage of this approach is the close resemblance of the 2)
governing equations for the horizontal and the inclined case,
which gives a good starting point for the interpretation ofis the derivative of the free enerdgy(h,a) and has the di-
different types of stationary solutions. Furthermore, the studynension of pressurdl(h)=—«M(h,a) is the disjoining
gives an example of the effect of breaking the reflection sympressure derived from diffuse interface the¢#42], a is a
metry on structure formation. small positive parameter describing the wetting properties in

In Sec. Il, we discuss the evolution equation for the filmthe regime of partial wettingl is the length scale of the
thickness and introduce the scaling. Then, we derive a stadiffuse interface, andk is the strength of the molecular in-
tionary equation, discuss flat film solutions and their stabilityteraction. The disjoining pressure resembles qualitatively the
(Sec. lll) and calculate the families of stationary periodic disjoining pressures that combine destabilizing short-range
solutions of finite amplitudéSec. IV). We identify solitary  and stabilizing long-range interactions, without sharing their
wavelike solutions and nucleation solutions by means of linshortcomings as explained above in the Introduction.
ear stability analysis and nonlinear analysis. Within the dif- Equation(1) has the form of a mass conservation law
ferent solution families solutions with universal behavior ared;h= —a,I'(x,t), whereI'(x,t) is the flow composed ofl)
identified. We call these solutions, that resentitdé sliding  the flow due to the gradient of the Laplace or curvature pres-

z

substrate
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sure ydy,h, (2) the flow due to gradients of additional pres- moving framel” —vh is constant with respect tobut not the

sure termgresulting from molecular interactionsM (h,a)
and hydrostatic pressuggh), d,f(h,a), and(3) the gravi-
tationally driven flow down the inclined plane,pg.

To use dimensionless quantitigsvith tilde), suitable
scales are used

h=lh, ()

The ratiox!/y is O(a®) [42], i.e., the scale in the direction
is I/a. We find after dropping the tildes

dth=—o{h3(a[dsh—M(h,2)=Gh]+aG)},  (4)

and azg(l
kl

where

B ng 1/2

G=-— 5

flow in the laboratory systerhi. The choice of the constant
of integration,

COZ_(FO_Uho):_Q(ho,a)aG+Uho, (9)

introduces a flat film or homogeneous solution of thickness
hy and the corresponding flow in the laboratory systEm
=—Q(hg,a)aG in a natural way. This corresponds to pre-
scribing the liquid volume.

A. Flat film solutions

Beside the flat-film solution given by the choice lof,
there may exist other film thicknesskeswith corresponding
flow in the laboratory systerh; that give the same flow in
the comoving frameCy=1j—vh;=I'yj—vhy. Take note,
that flat film solutions correspond to the fixed points of Eq.
(8), seen as a dynamical system. Given the floyby pre-
scribinghg there exist two more fixed points of this dynami-
cal system

v

1 3
h1Y2=(h0—|n a)( - Ei \/m—z) +Ina.
(10

G gives the ratio between gravitation and molecular interacBecause the physical film thicknebs-Ina has to be posi-

tions. Here, its value is always taken positive. Note, thé
no longer a small parameter. The formMi(h,a) allows us
to transfer the constarat into the mobility factorQ by the

tive everywhere, one has to choose the positive sign in Eq.
(10). This solution gives a positive fixed point for
v/Ga(hy—Ina)®>>1, i.e., a second flat-film solution corre-

transformatiorh=h-+Ina. Using this shift enables us to di- sponding to the conjugate solution in, for instane]. For
rectly compare the given results with the study of the thinu/Ga(hy—Ina)>>3, its thickness is larger than the given

liquid film on a horizontal, noninclined substrdi4].
After dropping the bar, the evolution E¢L) becomes

dth=—d{(h—Ina)*(d,[ dxh—anf(h)]+aG)}  (6)
with

dnf(hy=2e " "(1—e M +Gh. 7)

film thicknesshy—Ina. Note that the location of the fixed
points does not depend on the molecular interachibfh).
However, it does depend on it for the limiting caae=0
[44]. The consequences will be discussed below in Sec.
IV B.

B. Linear stability of flat-film solutions

The linear stability of the flat-film solutions to harmonic

In the following, we use only dimensionless quantities if NOtperturbations is determined by using the angafx)=h,

otherwise stated.

Ill. STATIONARY SOLUTIONS

To study stationary solutions for the film thickness profile

h(x,t) that move with the dimensionless velocitywe use
the comoving coordinate systery,=x—uvt, implying é;h
= —vdyh. Integration of Eq.(6) in the comoving frame
yields

0=Q(h,a)(dxx— dnnfdxh) + @G Q(h,a) —vh+Cy.
(®)

The mobility factor is nowQ(h,a)=(h—Ina)® andC, is a

constant of integration. In contrast to the reflection symmet

ric problem of film rupture on a horizontal plafé4], here

we cannot se€,=0 and consequentely cannot integrate an-

other time. Writing Eq.(8) in the form "—vh)+Cy=0

+ € exp(Bt+ikx) to linearize the time-dependent E). This
yields for the dispersion relatiof(k)

B=—(ho—In2)3k2(K?+ fyyn ) —13aGk(hy—Ina)?,
(13)

Wherefhh|h0 is short foro?hhf(h)|h:ho. The real and imagi-

nary parts of3(k) give the respective growth rate and down-
wards phase velocity of the mode with wave-numkefrhe
flat film is unstable for RB>0. Using Eq.(7) yields linear
instability for

fan(hg) = —2e No(1—2e M)+ G<0, (12
i.e., for an intermediate thickness range
h_<hy<h,, (13

tells us that for all stationary solutions, the flow in the co-where
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h.=—In §(§+ Z_G) . (14) 0,8-— ___________ _
In contrast to the existence of flat-film solutions, their stabil- 0.7
ity does not depend on the dynamical aspect of the problem I :
(tilt angle and velocity, but only onf,,(h) as for a flat film 0'6__ e el - —
on a horizontal substraf@4]. In the limit of vanishing in-  » S RNt S . 32 |
fluence of the disjoining pressure, this corresponds to the fact 0 L ./,/’ ----- 2.86
that we only regard Stokes flothe Reynolds number is 04l /'//// -
zero in our scaling i.e., without the disjoining pressure the l ; / {/ -=- i(s)
flat film would be linearly stable for all inclination angles. 03L NS - 082
The critical wave-number,k. given by B=0 is k. Tl == 07
= —fun(hy), whereas the fastest growing mode has the o100 200 00400 ]
wave-number k,=k./\2 with growth rate B,=(h, L
—Ina)®f(ho)?/4. For G<1, one findsh_~—In(G/2) and
h,~In2+G. There is a critical point atG,=1/4h.=1In4) FIG. 2. Characterization of stationary periodic solutions. Shown
where the lower- and the upper-linear instability lines meetis the dependence of the velocityon periodL for different mean
For G>G,, flat films are always linearly stable. film thicknessesh as given in the legend5=0.1, @=0.1, and

All linear modes propagate downwards with the velocitya=0.1.
v=—1Im B/k=3aG(hy—Ina)?, corresponding to the fluid
velocity at the surface of the unperturbed flat film. may show monotonic or nonmonotonic behavior of ampli-
tude or/and velocity with respect to period.
IV. PERIODIC AND LOCALIZED SOLUTIONS In the following, the various family types are listed with

) o ) ) increasing mean film thickness. The value giverhtin the
Given a flat film in the linearly unstable thickness range,parenthesis refers, as an example, to Figs. 2 and 3.

it will start to evolve in time. This may lead to film rupture or
to a stationary film profile of finite amplitude, i.e., to nonlin-
ear waves. These waves are stationary solutions of@&g.
i.e., solutions of Eq(8). Periodic waves are found numeri-
cally using continuation method#6] starting from small
amplitude analytic solutions. The linear stability analysis of = —
the periodic solutions will lead us to first conclusions aboutt (h=0.7). ) )

the physical meaning of the various occuring types. Direct (3) There are two branches with differentand A, but
integration Eq(6) in time supports the given physical inter- only the branch with higher velocity continues towards

pretation. Details of the numerical methods may be found i-—*- Both show a monotonic dependence wfon L.
Appendix A. Considering the period as a bifurcation parameter, the

endpoint of the branch with higher velocity and smaller

amplitude corresponds to the locus of a subcritical bifurca-

tion from uniform solutions to solutions oscillating in space
Small amplitude stationary solutions take the fonfx)  (h=0.82).

=hy+ e, as seen by linearizing Eq8). The resulting

(1) For very smallh, no solution exists beside the trivial
h(x) = hg.

(2) There are two branches with different velocitiesind
amplitudesA for the same periodl. Both continue towards
L—o and show a monotonic dependencevofand A on

A. Short-period solutions

condition 0=k3+ f,n(ho)k—i[3aGk(hg—Ina)®—vk] im- 5 . . . ——
plies k=k.=\—fnn(hy) and v=3aG(hy—Ina)? corre- sLa ’_______-;_—_-.:—._:—:-._-_;-._-_3:._4-!._,2-_-54
sponding to the neutrally stable modes obtained in the linear | R Al Pttt —-— 07
stability analysis in Sec. lll B. Small-amplitude solutions ex- of S, ’,"/// oo
ist only in the linearly unstable film thickness range. 3 e 17 ‘~’ . -=-15
We begin with a study of the stationary solutions at a 2 ok hoN o 7“7‘7".“.“."‘.“."4
fixed inclination anglex and given interaction parametegs | 0 50 100 150 200 250 300
anda. We keep, if not otherwise stated=0.1, G=0.1, and g 3T b ' T ' T
a=0.1. We are interested in the solution amplitude and ve- ar
locity as a function of the period @2k in the linear case S R P - 20
for different given mean film thicknessbs Depending orh, 2r T %ﬁgs
qualitatively different families of solutions are found. Their 1 - 3‘51
velocity-period and amplitude-period dependencies are 0 el

' | ) | '
shown in Figs. 2 and 3, respectively. We call family the set of 0 lff) 200 250 300
solutions for a given mean film thickness and classify them
by the number and type of their branches, where branch FIG. 3. Shown is the dependence of the amplitude on périod
stands for a part of a family that allows us to assign a uniquéor the solution branches from Fig. 2. The legends@fand (b)
value of velocity and amplitude to a given period. Branchegyive the respective mean film thicknesses.

061601-4



SLIDING DROPS IN THE DIFFUSE INTERFAE . .. PHYSICAL REVIEW E 64 061601

5 T T T
e mmemmes aj Oy T o g
4:, \‘/"\"'" ,’/‘/\:.t Pty 02- |\. "-/—’f
\ ’ X %] 0.2+ -, —
3f CON 7NN /0N . h ]
v-: :(‘.\ 32" q '{"lm\.\:\-_ .r‘” nw 04+ 1] // -_—— 082_
2H 3% \ W 1 \ c=e10 ]
1-=-2"% v o qa ——15
1H-=-- 50 |- N \9/ - 0.6 . I . 1 . n
H=-= 100 \._'II\ | IM._/— = Q. 90 50 100 150
% 40 20 0 20 40 02— ' ' ' '
5_ T 0
4r X - 0.2
3 i
= 0.4_
2r 0.6
1 0
F— 1~ 1 : 1 — T P— Period
%0 s 10 50 0 50 , - o
X FIG. 5. Linear stability results for the periodic stationary solu-

i ) . ) tions are given for different mean film thicknesseas shown in the

FIG. 4. Profiles for different periods as shown in the legends legends of(a) and (b). G=0.1, «=0.1, anda=0.1. The thin and

of (@) and (b) at film thicknessh=2.5. G=0.1, «=0.1, anda  tnjck lines represent unstable and stable profiles, respectively.
=0.1. Take note that ifa), the period changes non-monotonically
with increasing amplitude. Ifb), one can see the transition towards

the flat drops. the study of these “universal” flat drops in Sec. IV B, we

_ _ will give an interpretation of the branches that do not con-
(4) One branch exists that continues towakds «. Both verge to the common line.

v andA increase monotonously with. The endpoint of the  As mentioned above in poir{8), the critical wavelength
branch corresponds to the locus of a supercritical bifurcation . where the flat film becomes linearly unstable can be seen
(h=1.0). as the locus of a bifurcation. Because the flat film is linearly
(5) The only branch continues towarts-«, Aincreases stable forh<\., the subcritical branch i{3) and (6) start-
monotonously but nat (supercritical bifurcationn= 1.5). ing at A\ should consist of unstable solutions, whereas the

(6) Again, two branches exist, but only the low velocity Supercritical branch starting i#) and(5) at A should con-
branch continues towards— . The ending branch shows a Sist of stable solutions. This is confirmed by calculating the
monotonic dependence of on L, but the infinite branch is 9rowth rate for a small disturbance to the periodic solutions

nonmonotonic(subcritical bifurcationh=2.0h=2.5 andh (see Appendix A as shown in Fig. 5. The branches that
terminate atA. are always linearly unstable, whereas the

—2.86). Forh=2.5, some profiles for different period are panches that continue towards an infinite period are always
shown in Fig. 4. ) linearly stable taking one solution period as the unit of the

(7) Nearly the same &), but here the branch with lower  gapijity analysis. Take note that there is a most stable solu-
velocity corresponds to larger amplitude= 3.5). tion on every(linearly stabl¢ branch. Its period is slightly

(8) For very largeh no solution exists beside the trivial larger than the minimal period on the branghg. 5 and is
oneh(x)=h,. not correlated with\ .. However, the linearly stable solu-

The flat film is linearly stable for the casé¥), (2), (7), tions are linearly unstable if one takes more than one solu-
and(8), but is linearly unstable for cas€3)—(6). Figures 2  tion period as the unit of the stability analysis. The latter
and 3 show that for each family one branch converges to aorresponds to an instability with respect to coarse-graining
line common for all families. Solutions along this line have amodes as known from the caae=0 [44], i.e., in the course
velocity and amplitude that are independent of the mean filnof time the length scale of the pattern increases. However,
thickness, i.e., independent of liquid volume, an observationhe process slows down exponentially with increasing
that is explained latetSec. IV B). The convergence to this lengthscale and is not discussed further in this work. The
line occurs at a lower period for larger mean film thicknesscoarse-graining instability was only checked for relatively
than for small film thickness. For the linearly unstable mearsmall «. As discussed in Sec. V, at largarthere may be a
film thicknesses, the branch that continues towards~ is  crossover towards periodic solutions that are stable with re-
the converging branch whereas for the linearly stable measpect to coarse graining. For the case0, it was shown
film thicknesses(2) and (7) the converging branch is the that the terminating branches represent nucleation solutions
high- and low-velocity branch, respectively. Also, the film [44], i.e., these solutions represent critical finite disturbances
profile converges to a common shape: a flat drop with aror linearly stable but not absolutly stablee., metastable
upper plateau of thickneds, on a very thin(precursoy film  flat films. At constant shape, disturbances with smaller am-
called here lower plateau of thicknesg. At the downstream  plitude than the critical disturbance will relax in time to-
front of the drop, the profile overshoots before relaxing fur-wards the flat film solution, whereas an amplitude larger than
ther upstream to the upper plateau thickness, and hence,cdtical leads to growth of the disturbance. The system will
capillary ridge forms. Only the length of the upper plateauthen reach the solution on the other, the stable branch. This
depends on the mean film thickness. Before we embark oimterpretation is also valid in the caser 0 as illustrated in
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FIG. 7. The dependence of the velocity,on inclination angle
«a, for different G as given in the legend. The thick lines are uni-
versal curves that are independent of the mean film thickness,
within the limits discussed in the main text=0.1 andL =2000.
The thin lines represent the analytical results of Ed).

FIG. 6. Time evolution of a finite disturbance. At tinte 0, a
disturbance is given alsy+ Agsin(2a/L) with hy=2.5, L=32, G
=0.1, a=0.1, anda=0.1. The disturbance with,=0.2 shrinks
(dashed ling whereas the one withh;=0.29 (solid line) grows.
Initial and final profiles are shown ita) and (b), respectively(c)

gives the time evolution of the amplitude of the profile. the period at the valud=2000 where all curves(L)

) ) ) . shown in Fig. 2 have reached the universal solution. Farst,
Flg. 6. The |nterpretat|0n holds also for the nonUnNersaliS fixed to Study the dependencemf hua and hd on a, for
branches that continue towards infinity in the caé®sand  gifferentG. Recall that the scaled inclination angtes not a

(7). small parameter contrary to the unscaled physical aagle
The velocity increases monotonically with(Fig. 7) and
B. Flat drops the flat drop becomes thinner by decreasing its upper-plateau

Before we focus on the dependence of the properties dhickness and increasing the lower-plateau or precursor film
the flat drops on the system parameters, we want to identif{hickness(Fig. 8). In the limiting casea andv—0 andG
what limits their existence as solutions. For large periods, the<1 the ratiov/«, i.e., the slope of the function(a) at «
volume of liquid (mean film thicknessonly influences the =0 may be estimated because the plateau thicknesses have
ratio y between drop lengthand the period of the solution to coincide with the values obtained for a drop on a nonin-
L. The ratio is given byy=(h—hg)/(h,—hy). Flat drops clined plane &=0) [44]. These values d(_epend only on the
cannot exist fory— 0 because there is not enough matter inProperties of the free enerdyh) and are given foG<1 by
the system to form a flat drop. Far— 1, the downstream 3
end of the drop approaches the upstream end of its predeces- hd= @+ —G+0(G%),
sor and both ends start to interact: the profile then becomes a 8
moving hole in a flat film or small nonlinear waves on an
otherwise flat film. These solutions depend strongly on the
mean film thickness and will be discussed in Sec. IV C.

At this point, only situations are studied where these re-
strictions do not apply. The solutions in this parameter range
are flat drops whose plateau thicknesses depend on the pa-f,
rameterse, a, andG only. Choosing one of the two plateau -
thicknesses als, the other plateau thickness is given as the
second positive fixed point of EB), i.e., by Eq.(10). Only
the ratio of the length of the upper to the lower plateau is
influenced by the given liquid volume. The velocity of the
flat drops is determined by the dynamic equilibrium between
the overall forces of gravity acting on the liquid and viscous
friction. The equilibrium does not depend on the liquid vol-
ume because both forces are proportional to the length of the

flat drop. . . FIG. 8. Shown is the dependence of the two plateau

Looking at Figs. 2 and 3, one observes that at petiod  hjcknesses—the upper-plateau thicknigsnd the precursor film
=500, only the curves for relatively small mean film thick- thicknesshy—on inclination anglex for differentG as shown in the
nesses have not yet reached the universal curve. To study thgend. Plotted is the universal part of the curves that is independent
dependence of the plateau thicknedsgandhy and velocity  of the mean film thicknesses within the limits discussed in the text.
v on the inclination angle and interaction parameters, we fixa=0.1 andL =2000.

ness

Plateau th
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0 05 1 15 2 25 3

FIG. 9. The difference of the advancing dynamical contact angle FIG. 10. The difference of the receding dynamical contact angle
6, and the equilibrium contact anglg: as a function of the drop ¢, and the equilibrium contact angh in dependence of the drop
velocity v for different G as shown in the legenca=0.1 and  velocity v for G as given in the legench=0.1 andL = 2000.
L=2000.

ing part of the curve extends towards largewith decreas-

and
ing G. It was checked that the decrease is neither an effect of
J2 21 leaving the universal brandlinteraction between dropsor
h'=2/G— E\/EJr 1288+ O(G*). (19  caused by further oscillations of the profile.

These further oscillations appear for even higher veloci-
Take note thah~\/G/2 is the “capillary length”| - of the ties: Increasingx enforces the overshooting at the front of
problem. As in physical unitsc=\l«/pg one sees thatx  the drop. The difference between upper plateau thickness and
plays the role of surface tension in a description of a dropnaximal height gets larger and secondary oscillations or
without precursor filml k may be identified as the difference “wiggles” evolve behind the capillary ridge and also in front
in the surface energies between lower- and upper-plateanf the drop (undershooting As the range of the wiggles
thicknesses, precursor film, and drop surfaceder0 [44]. extends the back and the front of different drops start to

Inserting relationg15) in Eq. (10) results in interact. This is another way for the solutions to leave the
universal branch. We conclude the analysis of the solution
~ tendingto 2-32GIna+ §+3(In a)2|G families with a study of the nonuniversal part of the
w0 4 branches.
+0(G*?). (16)

This gives already a good estimation for the slope of the C. Nonuniversal solutions

curvev(«) at =0 as shown in Fig. 7. Note that for very
small G, this slope approaches 2, i.e., in physical units

;éfg;(elrﬁz)iﬁ.;r;i?a\c/glgﬂtta):gsi’gzlzrz ?/'I\;ig sk;i;;;he ratio of the proaches the mean film thickness. Nonuniversal fidtep]

Furthermore, we study the dependence of the dynamigoutions arise when the uppefower]-plateau thickness

contact angles on drop velocities. We define the contacgomes close tb. Further away from the universal curve both

angle as the absolute value of the slope of the profile at it§ases give rise to solitary waves of relatively small amplitude
inflection point. The drop has two dynamic contact angleson an otherwise flat film. Let us follow, for instance, the

the advancing angle at its downstream fregtand the re- upper curve forG=0.1 in Fig. 8. When increasing for a

ceeding angle upstreaf}. The differences between these mean film thicknes$i=3.0, the upper-plateau thicknelg

angles and the equilibrium or static contact angle ob- approachest_lat abouta=0.5, y approaches 1Sec. IV B

tained fora =0 are shown in Fig. 9 and Fig. 10, respectively. j . o sojytion family has to leave the universal flat-drop
Let us first discuss Fig. 10. The receding angle is alway%ranch. This is shown in Fig. 11 where the velocityis

smaller thanfg and in the velocity range studied here, the i T .
absolute value of the difference between both angles ingiven as a function ofx for varioush. This figure is the
creases linearly with increasing velocity. The increase beeduivalent of Fig. 7 for the nonuniversal solutions. As ex-
comes steeper with small&@. However, Fig. 9 shows that Pected, the point of departure from the universal branch de-
the difference between the advancing angle 8pdhanges pends strongly on the chosén With decreasindy, it shifts
nonmonotonically with increasing velocity. It increases for towards larger inclination angles. Complementary informa-
small v, but decreases for larger. For relatively large ve- tion for the same situation, that is the dependence of solution
locities, 8, may even become smaller th@p. The increas- amplitudeA on «, is given in Fig. 12.

The solution families leave the universal curve of the flat
drops mainly because one of the plateau thicknesses ap-
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FIG. 11. The dependence of the velocityon inclination angle FIG. 13. Thickness profiles for different inclination angteas

« for different mean film thicknesses as given in the legemd. given in the legends fon=3.0,G=0.1,a=0.1, andL = 2000.(a)
=0.1,G=0.1, andL =2000. and (b) show profils for the upper and lower branch of the curve
with h=3.0 in Fig. 11, respectively.
The nonuniversal part of the families consist of one, two,

or three branches. Decreasihgwve distinguish case®@) to Our interpretation of the nonuniversal branches rests
(c): upon the results for the families obtained when changing the

(a) Two branches exist, giving the(«) curve a petallike period(Sec. IV A). In the range of mean film thickness that

shape. This implies the existence of two smalolutions ~ COTresponds roughly to metastable films for0 [44], we
h=3.0in Ei The b h with high loci . encounter again the linearly unstable solutions, that were
(h=3.0 in Fig. 7. The branch with higher velocity consists jeyified as periodic nucleation solutions. In cdsg the

of solutions with smaller amplitude than the solutigns of theupper branch in the («) plot represents such linearly un-
other branch for identicak (Fig. 12. Solutions forh=3.0  stable solutions, whereas the lower branch is linearly stable.
are shown in Fig. 13. Taking the a—0 limit, the solutions of the upper branch
(b) Three branches exist, resulting in a broken-petal ompproach the respective solutions that represent periodic
Slike shape of thev(«) curve and aZ-like shape of the nucleation solution in the problem of film rupture on a hori-
A(a) curve. The high-velocity branch of the(a) depen- zontal plang44]. Take note, that as in Sec. Ill we use one

dence 5:2.86 and 2.8 in Fig. Dlconverges to the straight period of the respective solutions as the unit of the stability
. — 5 . analysis. Thus, we determine whether a solution is linearly
line v=3aG(h—1Ina)%, i.e., the velocity of the small-

) . ; - . . stable for a fixed period. It may be unstable to coarse grain-
amplitude solutions obtained in Sec. Il B. Solution profiles P y g

b ing as in[44].
for h=2.86 are shown in Fig. 14.
(c) Only one branch exists, which also departs from the

universal brancthl.O and 2.0 in Figs. 11 and 12

amplitude

FIG. 14. Thickness profiles for different inclination angteas
given in the legends de:2.86, G=0.1,a=0.1, andL=500.(a),

FIG. 12. The dependence of the amplitude on inclination anglgb), and(c) show profils for the upper, medium, and lower branch of
a for h as given in the legenca=0.1, G=0.1, andL=2000. the curve withh=2.86 in Fig. 11, respectively.
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‘d y.2 . . .
> o,o'g o® 1 branch to the small amplitude branch symbolized by ar(8win
4 o°° 940"’ - Fig. 15. Take note of the large difference of the amplitude between
L 6V e,g&'e J the first curve and the last curve.
2k ee.o”e 2 -
I ,/ﬁ 1 sition between the two branches may be calledi/aamical
G/ " | " 1 ‘ 1 " 1 N 1 " | . s . . . .
0 0.2 04 06 08 1 1.2 wetting transition with hysteresiSuch a dynamical wetting
o transition is now reasonably well understgei,47—49: at

FIG. 15. Shown aréa) the amplitudeA and(b) the velocityy as the macro scale, it would occur when the contact angle van-

a function of the inclination angle for the different steps of a time |shes. at finite velocity. .However, as far as we know, no. hys-
simulation for the hysteresis effeipen circles The dashed lines teresis has been predicted and/or observed although it does
show the families of stationary solutions as obtained by continualot seem to be excluded at all from first principles.
tion. The arrows indicate the sequence in time that is further ex- To show the hysteresis, we perform a numerical experi-
plained in the main text. ment as follows(see Fig. 15 A slightly disturbed, linearly
) ) . ~unstable flat film flows on a plane with a relatively small

The middle branch in cas@) consists also of nucleation nclination ay<ay. Integrating Eq(6) in time for the fixed

solutions. This is confirmed by the results of the linear Sta'perioszloo shows that the disturbance grows and the so-

bility analysis of the found periodic solutions, performed as) sion settles on the stable flat-drop branch as indicated by

outlined in the Appendix. For each branch, the real part Ofarrow (1) in [Fig. 15a)]. Now, the inclination angle is in-

the largest eigenvalue, i.e., the growth rate of disturbance%reased slowlv. After eversmall step. the flat drop reaches
determines the stability of the solutions. Fb), the middle a_dynamic equ.JiIibrium. gf\ly sDomep’of them arepshown as

branch has a positive growth rate as expected, whereas ”%e?en circles in Fig. 15. The obtained series of profils follows
&

two other branches are linearely stable because the large ) . .
y g e curve of the stationary solutiofiarrow (2)]. Reaching

nontrivial eigenvalue is negative. Besides the linearly stabl h d of the i | ble | litude b h th
large-amplitude branch already known from cdag there the end of the linearely stable large-amplitude branch, the

also exist linearly stable small-amplitude solutions, identifiegSC!ution jumps to the small-amplitude solution branch when
as nonlinear surface waves. In the rangeaofvhere both ~ @ Passesw, [arrow (3)]. Some snapshots of film thickness
stable branches exist they are separated by the unstadiofiles during this jump are shown in Fig. 16.

branch that acts as a nucleation solution: it has to be over- When increasingarrow (4)] or decreasingarrow (5)] o
come from either side in order to jump to the other branchthe solution follows the branch of small amplitude nonlinear
This has two important effect§l) An apparent stability of surface waves. Decreasing one has to wait until passing
the flat film and(Il) some hysteresis. aq to jump back to the flat drop branch indicated by arrow
é6). Decreasingr further leaves the solution on the flat drop

(I) Because the surface waves have very small amplitud )
. : : - branch Fig. 15a), arrow(7)]. Take note that the return to the
[see Figs. 12 and 1¢)] they may be missed in an experi- [Fig. 15a) (] num

ment focused on drop formation and the linearly unstable flaflat drop branch occurs ata;” "< aq. This is probably due
film may appear stable, because no evolution towards drog? the fact that the growth rate for the small-amplitude solu-
like large-amplitude structures would take place. tions approaches zero where the two solutions meet implying
(I) The existence of two linearly stable branches betweer@ critical slowing down of the dynamics of relaxation to-
inclination anglesyy anda,, gives rise to hysteresis: Chang- wards the stationary solution for the next valuexofAccord-
ing @, one may jump from one linearly stable branch to theingly, the jump may only be seen when the system is far
other. However, whereas the transition from the large- to the€nough away from the end point of the branches. The locus
small-amplitude branch occurs a,, the transition from the of this jump depends slightly on the spacial grid resolution
small- to the large-amplitude branch occursygt The tran-  employed in the time integration.
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V. CONCLUSION We have investigated the main effects occuring in a sys-
We have analyzed the evolution of a thin liquid film flow- tem .where viscous strgss and molecular interactions are
. L L . dominant. The overall picture may be well understood and
ing down an inclined plane taking into account the interac- . .
. : ‘ ... -~ visualized for small but not very smals, a parameter de-
tion with the substrate. The latter is modeled by a disjoining_ " . . o . i
o . scribing the ratio of gravitation to molecular interactions. In
pressure arising in a recent theory derived from coupled van : o . L
. o real physical situations, this ratio is normally very small,
der Waals equations and thin-film hydrodynamidg]. We . : o
) . . S .. implying that the results shown here do only qualitatively
have studied the flat film solutions and their linear stability. . o 2
: esemble drop profiles or velocities occuring in nature. Nu-
As a result we found, that although the thickness of the flat =~ : L
. . 7 e merical calculations showed that all qualitative features are
film solutions depends on velocity and inclination angle,

their linear stability is independent of these dynamical as_also found for very smalG. In order not to confuse the

pects. The linear stability of the flat film is determined only reader we normally did not change the interaction parameter

\ o L . > a in this paper. It has an influence on the time scale of the
by the first derivative of the disjoining pressure as for film ; . .
. dynamics of the system and also shifts borders in parameter
rupture on a horizontal substrdié4].

: . ) . . space between the occurrence of different family types.
Using small-amplitude stationary solutions as a Startlnq—|owever the study of these details is not the scope of this
point, continuation techniques allowed to calculate families '

L . : . . aper.
of finite-amplitude stationary solutions. Depending on mea - . .
film thickness, different types of solution families were Most works[27,35,50 on liquid sheets or ridges flowing

found and classified. Linear stability analysis showed the ex?l(;vnn ;?e:r(:lgigigit?:;azzrf ;ﬁg;rzts\:{ngfe?n:esnrg%;ons;
istence of linearly stable solutions and linearly unstable P part,

nucleation solutions. Although for small inclination anglesthe ridge. Slmllar|ty solutions in the regioKd), (2), and(3)
there are solution families that correspond to the family type?re fjete_rmmed and matc_hed together. The power depenQence
found on the horizontal plan@4], there are significant dif- on t|me in these model_s. is due to the_ fact that_the snugtlons
ferences. First the solutions are asymmetric and slide dowptudied are a superposition of sp.re.admg and sliding going on
the inclined plane. Secondly, the dependence of the velocitiPreéver although we look at sliding droplets of constant
on solution period also varies strongly with mean film thick- Shape in a moving frame as observed by Podgoi4gi.
ness, a behavior that clearly has no counterpart in the noniffecause of the continuing time dependence the stability
clined case. Beside the families that have a counterpart in thanalysis for the leading edg#) depends nontrivially on time
casea=0, there exist stationary nonlinear surface waveghrough changing matching conditions, i.e., the changing ra-
that are specific for# 0. They do only exist if both molecu- tio of upstream film thickness and precursor film thickness or
lar interaction and viscous flow driven by gravitation areslip length as happens [81,50. In slip models, the dynamic
present and depend strongly on the ratio of mean film thickeontact angle is explicitly fixed at the contact lif8L,36 or
ness and length scale of the diffuse interface. varies in a prescribed way with velocifg5]. In the precur-
The study of the solutions as a function of the periodsor film models, however, the contact angle is zero without
revealed the existence of universal flat drop solutions. Theimotion although with motion a dynamic contact angle de-
velocity and plateau thicknesses do not depend on period amgends on the velocity of the advancing front.
mean film thickness. They have the form of flat liquid sheets Here, we do not study the superposition of spreading and
of different length and end downstream with a capillarysliding, but the stationary movement of drops, i.e., we study
ridge. The dependence of the properties of the flat drops odrops that do not change their shape and move with a con-
inclination angle and interaction parameters was determinedtant velocity. When the inclination angle vanishes, the shape
With increasing inclination angle, the upp@lewer-]-plateau  of our droplets converges to the equilibrium shape on a hori-
thickness decreasgdcreasel the velocity increases, and zontal plane. All the ad hoc parameters in the above ap-
the receeding dynamic contact angle decreases. The advarproach(static and dynamic contact angle, drop velocity, drop
ing dynamic contact angle shows a nonmonotonic behavioand precursor film thicknessire deduced within our theory
as a function of the velocity, it increases first then decreasefsom the two parameters describing wetting properties and
even below its static equilibrium value. The effect is moreratio of molecular interaction to gravitation, respectively. For
pronounced for large®. small liquid volume in an individual drop also the volume
The universal regime breaks down if one of the plateatnfluences the drop properties.
thicknesses approaches the mean film thickness. The study of An analysis similar to the one performed here could also
the nonuniversal families has revealed an hysteresis effedbe used to analyze liquid films on an inclined plane under the
when jumps between a small- and a large-amplitude solutiomfluence of other disjoining pressures, as for instance used
occur that both exist for a certain range of inclination anglesn Refs.[1,5]. We think that the main qualitative results will
for some mean film thicknesses. The existence of the brandbe very similar for other disjoining pressures also combining
of stable small-amplitude solutions may in an experimentdestabilizing short-range and stabilizing long-range interac-
lead to the impression of stable flat film flow in the linearly tions. However, as was shown for liquid films on a horizontal
unstable mean thickness range, because no large amplitugiane[44,51], results may differ in important details, due to
solutions can be seen without overcoming a nucleation soluthe different behavior of the various disjoining pressures at
tion. The occurring surface wave may go unnoticed becauseanishing film thickness. Different behavior is to be expected
of its very small amplitude. for other types of disjoining pressure, as for instance the
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combination of stabilizing short-range and destabilizingsolutions and therefore to eliminate the trivial dimension of

long-range interactions. the solution space we have to pin the solution demanding for
The rupture of a thin-liquid film on a horizontal substrate exampled,h(0)=0. The resulting four boundary conditions

is closely related to the decomposition of a binary mixture asand the integral condition of fixed mean film thickness allow

described by the Cahn-Hilliard EfP,44,52. Thus, the prob- us to determine the two missing parameterand C, for

lem treated here has a close relation to convective Cahrevery periodL.

Hilliard models [53]. Close to the critical point G, The stationary solutions are further studied by determin-
=1/4h.=In4) (Sec. lll B) the disjoining pressure may be ing their linear stability. This is done by adding a small time-
expressed as a cubji¢4] and Eq.(6) takes the form dependent disturbanceh,(x)exppt to the stationary solu-

tion hg(x). Linearizing Eg. (6) transformed into the

fa ing frame i Its i i | blem for th
__ CInate)? EEREE T I comoving frame ire results in an eigenvalue problem for the
e ax[(hc nate) ﬁx( Ixx€T g € T9€|Tag)[, growth rate,3, and disturbancey,(x),
17
. L Bhl:{[sqz(hOthh_ hOxxx)]x+(q3h0xfhhh)x}hl
where we introduced the small deviatioasand g by h(x) 3 5
=he+e(x) andG=G+g; andf, stands f0rdypnyf | . As- +[20%hoxfrnnt397(2hoxfhn—Noxxd) Jhix
suming e<1, g=0(¢), f;=0(e™"), x=0(e 9, « + 43 N1 — 3920y 10— 05N 1o
=0(e 9, andt=0(e ?), Eq. (17) reduces to
—(3aGq?hy) +uvhyy, (A1)
6
O €= — Dyy Oyx€— 563—95 + izgeaxe_ (18  whereg=hgy(x)—Ina and all derivatives of are functions
he of the periodic solutiorhg(x). For a disturbed flat film Eq.

. L ) (A1) reduces to Eq(11).
The usual Cahn-Hilliard equation is E(.8) without the To solve numerically Eq(A1), we discretize it by ex-

last term. Equationi18) may further be transformed by an- , oqging the derivatives [i] at a pointi as a linear com-
other scaling of, x, andh into the convective Cahn-Hilliard bination of hy[n] where i—2<n=i+2. Using periodic

equation stgdled. in[53], Wh.'Ch itself is relatgd to the. boundary conditions, this yields the algebraic eigenvalue
Kuramoto-Sivashinsky equation used to describe format'o'broblem:
of small-amplitude structures on falling liquid filni&]. So,
it is expected that an analog of the described dynamical wet- gh, + S(hg,hoy , hoxx s Noxse: Noxsxses T T Frnnd =0,
ting transition with hysteresis may be found in the convec- (A2)
tive Cahn-Hilliard model and that further studies of E4)
and (6) will reveal periodic drop structures stable againstwhereS is a linear operator determined by the periodic so-
coarse graining. lution, hy. We search for the largest eigenvalyes., growth
rates B and the corresponding eigenvectbss In the prob-
ACKNOWLEDGMENTS lem studied, the largest eigenvalue is always real. In this
stability analysis, one cannot use solutions with large periods
This research was supported by the European Union unsuch asL=2000 because of the necessary equidistant dis-
der ICOPAC Grant No. HPRN-CT-2000-00136, by the Ger-cretization in space. Therefore, the stability calculation in
man Academic Exchange Boat®AAD) under Grant No. Sec. |V C is done for the relatively small peridd=100.
D/98/14745, by the Deutsche Forschungsgemeinschaft undehis is feasible in a range of film thicknesses and periods

Grant No. TH781/1, and by the Spanish Ministry of Educa-where the characteristics of the branches, especially, begin
tion and Culture under Grant No. PB 96-599. We would |Ikeand end point of the middle branch for the broken-petaj
to thank U. Bahr, G. Diener, and E. Knobloch for helpful curves depend only slightly oh.

discussions. Numerical integration of the time-dependent H@) is
used to confirm the interpretation of the stationary solutions.
APPENDIX A: NUMERICAL METHODS We used a semi-implicit pseudospectral code and integrated

Eq. (6) on a grid of 1024(for L=100) or 512(for L=232)
mesh points. To avoid numerical instabilities for large ampli-
lated by continuatiof46]. The small-amplitude solutions ob- tudes F:/ve had to choose a small timestepof 1 e_4g The P
tained in Sec. IVA are used as starting solutions and Ar€ode was implemented on a Alpha Workstation XP1000. The

continued through the parameter space. One may vary trEefmulation took a couple of hours of CPU time to reach a

period of the solutiond., their mean film thicknes§, the  stationary state, moving with a constant velocity as shown,
inclination angle of the plane, or the interaction parameters for instance, in Fig. 6.
G anda. Studying solutions with large periods, we get good  For the hysteresis patSec. IV O, we started with the
approximations for localized solutions, such as sliding holesmall inclination anglex=0.2 and increased it adiabatically
and drops or moving fronts or kink$ydraulic jumps. using normally steps oA @=0.05, and steps oh a=0.01

We fix, for exampleh, G, anda, use periodic boundary near the transitions pointa, and ay. After reachinga
conditions forh, d,h, andd,,h and look for solutions with =1.4, we decreased again and returned stepwise as before
different period. To break the translational symmetry of theuntil reaching the initial value.

Finite-amplitude periodic solutions of E¢B) are calcu-
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