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Jamming, hysteresis, and oscillation in scalar models for shear thickening
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We investigate shear thickening and jamming within the framework of a family of spatially homogeneous,
scalar rheological models. These are based on the “soft glassy rheology” model of ®tlatHPhys. Rev.
Lett. 78, 2020(1997], but with an effective temperaturethat is a decreasing function of either the global
stresso or the local straid. For appropriatex=x(o), it is shown that the flow curves include a region of
negative slope, around which the stress exhibits hysteresis under a cyclically varying imposed straif rate
subclass of these( o) have flow curves that touch the=0 axis for a finite range of stresses; imposing a stress
from this ranggamsthe system, in the sense that the straioreeps only logarithmically with timég, y(t)
~Int. These same systems may produce a finite asymptotic yield stress under an imposed strain, in a manner
that depends on the entire stress history of the sample, a phenomenon we refehistosdependent
jamming In contrast, wherx=x(l) the flow curves are always monotonic, but we show that safhg
generate an oscillatory strain response for a range of steady imposed stresses. Similar spontaneous oscillations
are observed in a simplified model with fewer degrees of freedom. We discuss this result in relation to the
temporal instabilities observed in rheological experiments and stick-slip behavior found in other contexts, and
comment on the possible relationship with “delay differential equations” that are known to produce oscilla-
tions and chaos.
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I. INTRODUCTION transitions to or from jammed configurations that have, as
their control parameter, the imposed shear stresgve do

A wide variety of materials can be driven into a non- this by providing concrete examples of models that exhibit
equilibrium state that is either solidlike and static, or fluid- jamming transitions withr, including instances of the reen-
like but only relaxes on time scales that far exceed the extrant jamming scenario described above. These models are
perimental time frame, if at all. Such states are often referretbased on the “soft glassy rheologySGR model of Sollich
to as “jammed,” and are realizable in molecular liquids hav-et al. [6—8], which was originally devised to highlight the
ing undergone a rapid quench to low temperatures, or colpossible existence of glassy relaxation in a range of soft ma-
loids at a high volume fraction, to cite just two examplesterials, such as foams, emulsions, pastes, etc. It is param-
[1,2]. It has recently been postulated by Liu and Nagel thagetrized by an effective temperatuxgwhich in the context of
the nature of the jammed state may be independent of theoft matter is thought to represent some form of mechanical
manner in which it was formef3]. For example, a stress- noise, but may refer to the true thermal temperature in other
induced jamming transition may produce a qualitatively@pplications. _ N
similar state to a temperature-induced transition. This was AS it was originally defined, the SGR model only exhibits
expressed in the form of a “jamming phase diagram,” in shear thinning, which is clearly unsuitable for our purposes.

which jammed configurations occupy a compact region nea]l’herefore, we consider variants of the model in which the

to the origin of a phase space comprised of three axes: th%ﬂticmle t(:'rrt]perfa:lﬁrex IS :10 IorI:/?er const_ant, _butt catndvary
temperatureT, the volumeV, and the loadr [3,4]. wi e state of the system. More precisetys treated a

In its simplest form, the Liu-Nagel jamming phase dia- function of both the global stregsand the local straih i.e.,

ram suggests that increasing the applied load can onl in)SZX(U’I)' By choosing suitable forms of(al), systems
9 ggests 9 pplie Y can be constructed that become “colder” as they become
crease the likelihood of flow. However, it is equally feasible

. ; . . ore stressed, which allows for the system to shear thicken
for an applied load to induce a jammed state. For instance, nd even “jam.”

a pile of sand is formed and then gravity is switched off, the £ ¢jarity, we restrict our attention to two limiting forms
system unjams without any significant variation in volume.ofX(UJ)' namelyx(o) andx(1). In the former case, certain

Th_us the Ioac{here contrqlled by graviyyjams the system. classes ofk(o) are shown to exhibit a flow curv@.e., the
This concurs with the earlier claim that jammed systems may fthe st the strain rate und diti
be classified as “fragile”—that is, they can support only cer- cUrve Of the SITess Versus the strain ratg under conditions

tain, compatibleloads, and will rearrange or flow under an Of steady flow that is nonmonotonic, and can touch tie

incompatible load5]. Furthermore, one could also envisage =0 axis for range of finite values af. Thus a “jammed”

a class of loadings that can alternately induce and destroy state with y=0" can be reached for some but not for

jammed state as the magnitude of the load increases, a sitathers. Furthermore, it is also shown that, for systems driven

ation that could be referred to as “reentrant jamming.” by an imposedy(t), whether or not a jammed configuration
The purpose of this paper is to investigate the nature ofs approached at late times depends on the entire strain his-
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tory of the system, and not just the behavior wft) ast outstanding issues raised by this work, before summarizing
—oo. We refer to this phenomenon as “history-dependentour results in Sec. VIII.
jamming.”

The behavior of systems with=x(l) is somewhat differ- Il. MODELS OF THE SGR TYPE

ent, but no less remarkable. When driven by an impased e .
y pase All of the models studied in this paper represent generali-

certain forms ofx(l) exhibit a regime in which the viscosity zations of the SGR model of Solliat al.[6—8]. It is, there-

never reaches its steady flow value but oscillates in tlmefore prudent, to first describe those features that are common

with awave form thatis apprqximate!y sinusoidal near to the[o this class of models, before considering each of the differ-
transition point, but becomes increasingly sharp deep into thg, oneralizations in turn. This is the purpose of the current

oscillatory regime. The models considered here are spatiallye tion. since the various assumptions that lie behind the
homogeneous, and so this oscillation is purely temporal, havsonstruction of the SGR model have already been discussed
ing no spatial component. It is tempting to associate thesgt |ength elsewhere, we shall here give just a brief overview
oscillations with the stick-slip behavior observed in granulargf the derivation and refer the reader to RE65-8] for more
systems and plate tectoni&-12], but we shall give reasons detailed physical arguments. Only those aspects that differ
why we believe that the underlying physics might be rathefrom the SGR model will be discussed in full.
different. We cannot rule out the possibility of more complex  Our goal is to construct deliberately simplified models
oscillatory behavior, maybe even chaotic, arising in as-of-yethat exhibit shear thickening and jamming, but whose inter-
unobserved regions of parameter space. pretation is more transparent than that of a detailed micro-
The finding of a bifurcation to oscillatory behavior far ~ scopic model. In this spirit, the models in this class all share
=x(1) is all the more remarkable because the flow caee @ number of simplifications. Only single shear components
already definepis everywhere monotonic increasing for this of the strain and stress tensors are considered, which will be
class ofx. By contrast, instances of rheological instabilities denoted byy and o, respectively. This is, therefore, a class
that have been found experimentally have tended to occur fg¥f Scalar models. _
ranges of parameters in which the flow curve has a negative 'tis further assumed that the system can be coarse grained
gradient[13—19. This suggests that mechanism behind thento a collecnqn of mesoscopic subs_ystems, each of which
instability observed here may be qualitatively different to@r€ fully described by two scalar variables, namely, a local
those cited above, and may be realizable in some range rain| and_ a stability parametdt. These mesoscopic sub-
materials that has yet to be identified. systems will be referred to _aa_iem_entsWe_ simply assume
This paper is arranged as follows. In Sec. I the class o ere that such a coarse graining is possible, notwithstanding

models to be studied is defined, with particular attention be—he significant pra_cucal qhallenggs in constructing a suitable
: d 1o th ts that differ f the SGR d Ischeme for any given microscopic model.
INg paid to those aspects that difier from the MOCEL At any given instant, each element has a probability of

The known results of the SGR model that are relevant to th?/ielding per unit time that is denoted Hy=T'(E,l). When

subsequent discussion are then briefly summarized in Seg, glement yields, it is assumed that its microscopic constitu-
IIl. Systems withx=x(¢) are described in Sec. IV, where it gnis are rearranged to such a degree that it loses all memory
explained how the flow curves can be graphically interpreteg jts former configuration. Its strain returns to zero, and it is
as mappings from the SGR flow curves. The time-dependenissigned a new value & that is drawn from arior distri-
behavior of the system has been found by numerical integrasution p(E). Suitable functional forms fof (E,|) andp(E)

tion of the governing master equation. An example ofwill be discussed below. The value Bfremains fixed until
history-dependent jamming is presented, and explained ithe element yields again, buitfollows the global strainy

terms of the stability of the steady flow solutions. according tol = y. Thus the elements are affinely deformed
In Sec. V we turn to consider the case x(l), and ana-  py the flow field, which is assumed to be homogeneous.
lytically prove that the rovy curve is everywhere monotonic. [ et ys defineP(E, |,t) to be the probability density func-
Nonetheless, the simulations results presented here cleafyn of elements that have a local straiand a barrieE at
show thaty(t) can oscillate in time for a range of imposed time t. ThenP(E,|,t) evolves in time according to two dis-

stressegr. A qualitative explanation of the emergence of thetjnct mechanisms: the homogeneous shearing at ayaed

oscillatory phase is also given, in terms of the model's interne yielding of elements at a rate {E,|) per unit time.
nal degrees of freedom. The intensive nature of the simularpys the master equation f&(E,|,t) is

tions has meant that only a small range of functional forms

for x(I) have been investigated, and hence it has not been 9 .0
possible to fully characterize this range of models. Therefore, —P(E,l,t) + y=P(E,l,t)=—T(E,)P(E,I,1)
. L | . at dl
we consider a simplified model in Sec. VI, for which the
simulation times are significantly shorter and a more com- +w(t)é(1)p(E). (]

plete picture has been realized. Some results of this model

have also been presented elsewha®. This reduced model The second term on the left-hand side represents the increase
clearly shows that the mean value pfiuring the oscillatory i_n local strainsl according to the uniform global strain rate
motion deviates from the steady flow value by as much as ary. The right-hand side describes the yielding of elements.
order of magnitude. Finally, in Sec. VIl we discuss someThe first term, which is negative, accounts for the loss
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of elements as they yield at a raf€E,l). Conversely, the fuller discussion on this point. To avoid possible confusion,
second term represents these same elenadteisthey have this effective temperature is denoted by the symbaodther
yielded, which have a strair=0 and a value of drawn thanT.
from p(E). The total rate of yieldingo(t) is defined by Although the energy barrier of an element is initidilyas

it becomes strained it will gain an elastic energy of (ki2)

% o and thus will have a smaller effective energy barreE
o(t)= JO dEwadIF(E,I)P(E,I,t) (20 =E—(1/2)kl2 Thus the vield rate will take the form
1 2
—(I(E.I). (3) E- ok
T(E)=Toexp ————|, ®)

Here we have introduced the notation that the angular brack-

ets “(...)" represents the instantaneous average of thgyhere the attempt ratg, sets the time scale of the yielding.

given function ovelP(E,l,t). This will be used frequently in - The effective temperature is constant in the SGR model,

what follows. , , . and essentially acts as a parameter of the model. However,
The master equatiofl) only describes the evolution of gincex may be generated in part by internal couplings be-

the strain degrees of freedom. To characterize the rheologicgleen the ‘elements, it should be allowed to vary with the

response of the system, some relation must be found betwegi,ie of the system, i.ex=x({P(E,l,0)}).

the local strains*.land th.e global stress. This involves two In this paper, we shall not consider the most general pos-

further assumptions. First, the elements are supposed to bgp|e form forx, but shall instead focus on a more restricted

have elastically between yield events, so that the local stres§ass for whichx=x(or,1). This corresponds to the realiza-

is justkl, wherek>0 is a uniform elastic constant. Second, {5 that, as an element is strained, it may become more or

o is the arithmetic mean of the local stressesoo#(kl)  |ess susceptible to the noise, and hence its “temperatxre”

=k(I). Other averaging procedures could be empld&d,  nay change. Allowing to also depend o reflects that this

but we focus here on the simplest nontrivial oonn.AIthoughChange in susceptibility to noise may in part beglabal

the local stress-strain relationship is elastic, the global stre§shenomenon, i.e., the of a given element may depend on

also incorporates the yielding of elements and, as will b&ne state of all of the elements around it. Clearly, deriving the

seen below, ther-y relationship is not a linear one. actualx(o,1) for any given material would be a highly com-

We have been unable to find an analytic solution to the,|icated task, of comparable difficulty to the original coarse-
master equatiofil) for any nontriviall'(E, ). Instead it has  graining procedure described above.

been numerically integrated using the procedure summarized gqor further simplicity, we shall not consider=x(a,!)

in Appendix A. However, it will sometimes b_e necessary top,t shall instead focus on two limiting cases=x(c) is

refer to the steady state solution for a consta#t0, which  described in Sec. IV, and=x(l) is assumed in Sec. V and

can be found exactly, Sec. VI. The relevant results for the SGR model, which cor-
responds to the case &f=(const), are also summarized in
Sec. lll.

. (4)

We, [{ 1!
P.(E,l)=—p(E)ex —.—f diI'T'(E,l")
Y Lo B. Natural units and the p(E) distribution

This is derived by setting,P=0 in Eq. (1) and integrating We have yet to specify(E), the distribution of energy
the resulting first-order ordinary differential equation with barrierst for elements that have just yielded. In the SGR
respect td. The asymptotic yield rate,,=lim, ..w(t) can Model, p(E) is assumed to have an exponential ta{F)
be found by requiring that the integral B%.(E,|) is unity. =~ ~€ = ¢ asE—, which gives rise to a finite yield stress
and diverging viscosity for some values xfbut not others
[7]. Although it is possible to justify the occurrence of an
exponential tail in some contexfg2], we prefer instead to

In the SGR model, the yield raté(E,l) was assigned a treat this choice op(E), combined with the Arrhenius form
functional form similar to that of an activated procd3s. of I'(E,l) (5), as a recipe for generating a yield stress within
This was based on the idea that each element can be reptiis simple picture of activated yielding. This may seath
sented by a single particle moving on a free energy landhog but it should be realized that jamming is in reality a
scape, which remains confined within a well of defthntil many body effect, involving collective behavior between a
random fluctuations allow it to cross over this barrier into alarge number of degrees of freedom. It should, therefore,
different well, with a new barrieE’. Thus yielding can be come as no surprise that assumptions are required to describe
identified with barrier crossing. This description is similar to jamming within this single-particle picture.
that of activated processes in thermodynamic systems; how- For much of this paper, we shall assume thé) has an
ever, the random fluctuations here a necessarilylue to  exponential tail, just as in the SGR model. In fact, for the
the true thermodynamic temperature. They may arise rathetumerics the definite formp(E)=(1/Eo)e F/Eo has been
from a form of homogeneous mechanical noise generated hysed, although it is not expected that the precise shape of
nonlinear couplings between the elements; see [Réfora  p(E) for small E will alter the long time or steady state

A. Yielding modeled as an activated process
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behavior of the system. This is because small valuek of 1.0
correspond to elements with short expected lifetimes. Fur-
thermore, it turns out that the oscillatory motion described in

o /’/ 7
Sec. V doesotdepend on the choice p{E), and in Sec. VI 08
the simpler formp(E) = 6(E— E,) is used, with qualitatively
similar results. 06 1
There remain three constants in the problem. These are ¢
the elastic constark, the attempt raté’y in Eq. (5), and the [ ]

constante, in the definition ofp(E) given above. However, 04
these can all be scaled out of the model. For instaksets
the scale of the stress, and, therefore, can be removed by 02
rescalingo to a/k. Similarly, I'y gives the only intrinsic time

scale in the system, and can be scaled out thrauayid 7 0.0 . . . .
Finally, E, sets the scale of the energy barriers, and can be 0.0 0.1 02 03 0.4 0.5
scaled out through(o,l). Y

In what follows, we have adoptathtural units in which

= . FIG. 1. Flow curves for a system with a constanite., the SGR
k=T'g=Eo=1. This means that the actual values fory, odel. From top to bottom, each line corresponds to a value of

ando given below should not be compared to experiment""(r?creasing from 0.25 to 2.5 in steps of 0.25. The limesl andx
values without first rescaling with the appropri&teEg, and  _5 pave been highlighted. A finite yield stress=lim:, o(c)

I’y for the material in question. For example, the typical gyists only forx<1. The prior distribution is»(E)=eE. 7

yield strain according to thé'(E,I) given in Eq. (5) is

V2Eq/k, which is when the effective energy barrier van- reached at all, for which it must both exist and be stable. For
ishes. In natural units, this is d(1); however, for soft the standard SGR model, the steady state solution is stable as
materials it will typically be of only a few percent, and will long as it existg7,8], but this does not hold for akt(c,!)

be even smaller for hard materials. Thus the scale of the IOCQInder an imposed stress, as will be discussed in later
strainsl, and, therefore, the scale of the global straiit), sections.

will generally be significantly smaller in real materials than

. . The behavior ofr as %yﬁo+ depends upon the choice of
with natural units.

x[7]. For instance, fok>2 the stress scales as- y and the
system is Newtonian, whereas there is a power law fluid

regimeo~ y*~! for 1<x<2. However, the most important
As discussed in the previous section, the standard SGRegime for our purposes <1, for which o approaches a

model is realized wherfusing natural unitsthe yield rate finite value. The yield stressy, defined by

I'(E,l) is chosen to take an Arrhenius form with an energy

barrier E—(1/2)1? and a constant effective temperatuge ov=lim o(¥) (6)

and p(E) has an exponential taji(E)~e™E. Many results : '

for this case are already knowW6—8]. The purpose of this

section is to br|eﬂy describe those results that will be referre%moothw tends to zero as—1~ and remains zero for all

to in later sections. x=1. If a system witlx<1 has a stress < oy applied to it,

Let us assume th.at the system is d.r|ven by.a given straif, . - it will never reach a steady state with a firfjl,&imply
(1), and thaty(t)~ yt ast—oo, wherey#0. Without loss  pecause.,(E,|) for these parameters does not exist. Instead
of generality we take/>0 hereafter. Under these conditions, the strain will logarithmically creep according tg(t) ~Int
the system will reach the steady state solutiy(E,l) al- [8]. There may be a crossover to a different behavior at late
ready given in Eq(4). The asymptotic stress is found by  times if o is close tooy, but it must always be true that
averaging the local strainoverP..(E,l), i.e.,oc=(l), which  _ g+,
defines the flow curver(y). Example flow curves for differ- The logarithmic creep iny(t) under an imposed stress
ent values ofk are shown in Fig. 1. In all cases the gradientoc<oy is an important result. If it is realized in an experi-

do/dy decreases with increasing indicating that the ap- mental situation, then when the strain rate 1/t drops be-

parent ViSCOSityY]E 0'/’)/ decreases Wlth’ and that the sys- |OW the_ res.olution of the apparatus, which it must do at Iong
tem is everywhere shear thinning. times, it might be erroneously deduced that the system has

It should also be noted that therea a one-to-one corre- stopped flowing altogether, i.ey~0. This is in accord with

spondence betweepando. This means that every point on OUr intuitive notions about jamming: the sample initially

the curve can be reached in one of two ways: either by apflows when pushed, but later stops flowing, or “jams.” One

plying a known strainy(t)~'yt, as described above, or by r_night argue that, technically, a jammed system should have

imposing a constant stress The uniqueness of the steady ¥=0 exactly, but itis not possible for any model in this class
state solution ensures that the safgE,|) will be reached to sustain a finite stress without a finiie(unless the sample
in both cases. Of course, this assumes that the steady statddsallowed to age for an arbitrarily long period of time before

IIl. SUMMARY OF THE STANDARD SGR MODEL

y—o0t
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being sheared; see R¢8]). This is because each individual stress. However, for this situation to be realized, the applied

element has a finite relaxation time until it yields and re-stress must be simultaneously large enough ifat)<1,

leases its stress, which can only be balanced by an increasimgd also small enough that< o . Since the yield stressy

strain. also depends or, the precise criterion for the upper yield
With this insight, we nowdefinea “jammed” state for this  stress to be attainable is that there is a range &dr which

class of systems to be a configuration that has a finite limit-

ing stressoy when it is driven by an arbitrarily small strain o<oy[X(0)]. (7)

rate y=0". For the SGR model, this correspondsxta 1;

however, forx=x() it may also depend on the history of This corresponds to the region in which thir) curve falls
the sample, as will now be discussed. below theoy(x) curve when they are both plotted on the

same axes, as in Fig. 3. For example, of the flow curves
. B already presented in Fig. 2, only the third example obeys the
IV. JAMMING MODEL  A: x=x(o) criterion (7) for a finite range obr. Imposing a stress from

It is useful to recall the physical picture that underlies anWwithin this range will result in a system that is jammed in the
x=x(c). As the system becomes sheared, either by an imsense that the strain logarithmically creepgt)~Int and
posed strainy or an imposed stress, it will become dis-  y(t—%)=0.
torted, and this may affect its susceptibility to noise. The Two additional complications arise when the system is

precise manner in which this happens will depend on thejriven by an imposed strain rate rather than an imposed

microscopic composition of the material in question. For thegyass First, ify is increased at a sufficiently slow rate that

systems we are interested in, i.e., those that can shear thickgfy, oy stem is always arbitrarily close to its steady state, the
or jam, the lestorted conf|gurat|onIrssgsusceptlble tc_) NOISE * stress may undergo a discontinuous jump from one branch of
that the undistorted one. One way to incorporate this effect i, fiow curve to another. as marked in Figb)2and 20). If

to regard the system as becoming “colder” as its shear stress i decreased in a simillar fashion, thet) will follow t.he
increases, which corresponds to a decreas{iog. Thus set- Z er branch until it a0ain iumps d’iscontinuousl alitéer-

ting x=x(o) provides a mechanism for allowing the effec- PP gain jump y

tive temperaturex to evolve with the global state of the €ntvalue ofy. Thus the system exhibitsysteresisHyster-
system. esis due to nonmonotonic flow curves has also been observed
In this section we shall consider(o’) that takes values €xperimentally[15-17,19. The complementary form of
greater than 1 for some ranges of and less than 1 for nonmMonotonicity, which would allow a discontinuous jump
others. According to the results of the previous section, thign y for a small change i, cannot be realized in this class
should allow the system to change from a jammed to a flowof models. This is because there is only one valua(af),
ing state in response to the driving, or more precisely, irand hence one steady state solution, for any given valge of
response to changesdr(t). Thus we may be able to observe  The second complication concerns the stability of the
a shear-induced jamming transitidgeomething that is not jammed state. In Fig. 3, the yield stresg(x) and anx(o)
possible in the SGR model, for which the existence of a yieldhat obeys Eq(7) for a range ofo have been plotted on the
stress depends purely on the choice of the external parametgaime axes. Also plotted is the line @fthat can be reached
X). For clarity, we shall restrict our attention to the simplestfor a small but finitey>0, which converges to-y(x) as y
choice ofx(o) that has the potential to shear thicken and_.0. These are the that can be realized in practice, since
jam, namelyx(c)>1 for smallo andx(o) <1 for largeo, g gteady state solutidd) is not defined fory=0. For this
with a _monotonlc(possmly discontinuoysbehavior for in- example there are three roots: a “flowing” root with
termediates. =07, and two “jammed” roots with finiteoy>0. The ar-
rows in this diagram point in the direction in which the stress
A. Steady state behavior will be varying for a given point on the lin&(o). This
Although allowing x to vary in time according tox  direction is based on the assumption that, for time scales

=x[o(t)] can complicate the transient behavior of the sys-0Ve€r Whichx can be treated as a constant, which will cer-
tem, as described below, the steady state is easy to analyZ@nly include the asymptotic regime, the system will behave
This is because the very definition of a steady state mear]&® the SGR model and will evolve towardsoy . It is clear
thato asymptotically approaches a constant value, andxhus from this that all points tend to flow away from the middle
also becomes constant. There is, therefore a straightforwaf@0b Which is, therefore, unstable. If the system is initially
procedure for generating the=x(o) flow curves from those  Placed near to this root, it will undergo a transient and con-
of constanix: for any given value ofr, one simply finds the V€T9e to either the higher root, or to the “flowing root” with
SGR flow curve for the corresponding value xffe) and 7~

. . . . Figure 3 can also be used to predict the stability of the
reads off the required value of. This amounts to interpo- - - .
lating between the various SGR flow curves. Some example&€ady state for finitg. As y increases, the asymptotic stress

are given in Fig. 2 for various(«) that change from 1.5 for (%) for the SGR model will move away from the yield
small o to 0.5 for largeo. stress curve, but will always remain a monotonic decreasing

If x(o) takes values greater than 1 for small but  function ofy [7]. Thus a smoothly decreasingo) will only
smaller than 1 for larges, then it may jam under an applied intersect with it one or three times; when there are three
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FIG. 2. Flow curves fox(o)=1— 0.5 tanlia(oc—0.4)] (thick lines, wherea= 3.5 (a), 4.5 (b) and 10(c). For comparison, the thin lines
are the constant curves from Fig. 1. In(b) and (c), the vertical dashed line represents the discontinuous jump in stress for a slowly
increasingy, and the region markedA” denotes the range of that is unstable under an imposedbut is stable under an imposed In
(c), the range ofr for which the system is “jammed,” i.eg(0%)>0, has also been marked. Tkéo) for different « are plotted in(d),
where it can clearly be seen that only for the= 10 case doex(o) drop below the yield stress curve.

roots, the middle one is always unstable, for precisely thehe final stress reached, and hence whether or not the system
same reasons as given in the previous paragraph. The ranggammed, will in general depend on the entire history of the
of o that are unstable and cannot be realized under an insystem.

posed'y have been labeledA” in Figs. 2(b) and (c). Note A concrete example of the history dependence of a yield
that the unstable roots correspond to regions of the flovptress is given in Fig. 4. Here, the system is first subjected to
curve with a negative gradient, as in experiments and fron? Step shear of magnitudg,, and is then continuously
other theoretical consideratiofs3—18§. There are no stabil- sheared at a ratg, i.e., y(t)=y,+ yt. As y tends to zero,
ity issues for an imposed, for which there is always a the stress approaches an asymptotic vaitye however,
single, stable root. whether or notoy is finite depends ony,. For yo=1 the
stress is seen to be converging to a finite value0.65, but
_ for y,=0.1 it rather tends to a “flowing” state witr=0"
B. Transient behavior under an imposedy (more preciselygo '7,0.5 as -y—>0+). The system can be said
There are in principle no difficulties in extending the re- to exhibit strong long-term memory, where the use of the
sults described above to a system that is driven by a timeword “strong” means that the memory of an earlier pertur-
dependent imposed stres$t). As long aso(t) tends to a bation of finite duration does not decay to zero with time
constant valuer, at long times, then the same steady statd 8,23-23.
behavior as previously discussed will apply, withreplaced The choice ok(o) used in the previous example is in fact
by o,. The transient behavior does not affect the final statethe same as that plotted in the stability diagram, Fig. 3. This
However, this is not the case when the system is insteadllows for a striking illustration of the instability of the
driven by an imposed strain ratgt). In this caseg(t) can ~ Middle root that lies near the point~0.3 on the stability
vary in a manner that is difficult to predict in advance, so thatdiagram. Plotted in Fig. 5 are the(t) curves for a fixedy
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FIG. 3. Plot of the yield stressy(x) from the SGR model, Y- %

overlayed with a particular choice &f o) that changes value from
1.5 to 0.5 with increasing streqshe actual functional form is
X(o)= —%tani[ZS(U—O.ZS)]). The dashed line is a schematic
representation of the asymptotic strasgt—) for a small but
finite y, which is what is actually attainable for these models. The
arrows represent the direction in which the stress will vary for a

constantx, and explain the given stability of the roots. omin becomes arbitrarily small a'$—>0+. Since this corre-
sponds to a state with a high effective temperatuie i,
=10°° and a range of values Gslyo<1.Itis clear thatthe _o+)>1 in which the stress is rapidly dissipated, thery if
sftress will always dlverge away from the unstable root at lateg sufficiently small,o(t) will remain low and the system
times, no matter how finely; is tuned. Thus only the roots il crossover to the flowing root, irrespective gf,. How-

—o+ ~ : : ; : -~ .
ato=0" ando~0.65 are stable, as previously claimed.  gyer, this effect can be reversed if the initial step shear is

There are many other complications that can arise du?e laced by a smoothly varying(t), such as one that expo-
transient behavior in a strain-controlled system. For instance, P i y y ] y ) ' . o P
tially decays towards its final value of which is more

all of the o(t) curves plotted in Fig. 4 reach their global N€N 1SS _
. . . like what could be attained in an actual rheometer. We will
minimum o, at a time Xt<1/y. It can be shown that

not pursue these complications any further here.

In summary, the SGR model generalized to allow the ef-
10° : - , fective temperature to vary with the global stress can
V exhibit, for suitable choices of(o): hysteresisn o(t) for

slowly varying y as seen from the flow curves in Fig. 2;
shear inducegamming as in Fig. 4; andstrong history de-
pendenceof the existence of a yield stress.

FIG. 5. The variation in stress for the system of Fig. 4 driven by
the imposed strain(t) = y,+ yt with y=10"3, demonstrating the
inability to reach the root at~0.3. From bottom to top on the
left-hand side, the “initial condition™y, takes the valuey,=0.1,
0.4, 0.48, 0.49, 0.491, 0.5, 0.6, and 1.

= 100 :
° M V. JAMMING MODEL B: x=x(1)
The second limiting form fox=x(o,l) to be considered
is one that depends only on the local straim; x(l). This
102 | . marks a more drastic departure from the SGR model than the
‘ : . X(o) considered in the previous section, since now every
10° 102 10" 10° 10' element will generally have a different effective temperature
-7, X. The steady state will, therefore, be different from that of

) the SGR model, and it will not now be possible to map the

FIG. 4. Plot of stress versus strain fgft)=y,+yt and the  flow curves forx(l) across from those for constant One
samex(o) as in Fig. 3. The upper set of lines correspondsy§o  could also envisage regions of the parameter space for which
=1 and the lower set tgo=0.1. Within each set, the lines refer to the steady state cannot even be reached. Indeed, this is pre-
(from top to bottom y=3x10"3, 10°3, 3x10 % and 10% As  cisely what we find: for some finite region of parameter
y—0%, the upper curves are seen to be convergingrte oy space, the system reaches an oscillatory regime under an
~0.65, whereas the lower curves are approaching a zero-stress stateposed stress, but not under an imposed strain. This is the
according too~ky%5, wherek is an arbitrary constant. In all cases central finding of this section.
the system was first allowed to reach equilibrium under zero shear The physical justification in choosing=x(1) is similar to
before the step shear, was applied. that already discussed fae=Xx(0), i.e., it is assumed that the
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100 L0 e x()) = 2.5 (<0.4), else 0.5 | 20
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¥ 10 -
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FIG. 6. Examples of typical flow curves wherdepends on the t/10
local strainl. Here,x(l)=0.5 for|>0.4, but takes the higher value 0 0 100000 200000

of 1.5 (solid line) or 2.5 (dashed lingfor | <0.4. These lines were
generated from the steady state solution of the master equation.
FIG. 7. The strainy(t) under an imposed stresg=0.05 for a

material can become more or less susceptible to noise in i€yStem in whichx depends on the local strain accordingxd)
strained state. The main difference is that this is now as- -8 for1=0.4 andx(l)=0.8 for|>0.4. (Insey The strain rate
sumed to be a local effect, that can be described purely of(t) for the same data after the transient.

the level of individual elements. Just as in the previous sec-

tion, we shall focus our attention og{l) that decrease with poral oscillations may be observ¢ti7,18. Since the flow

I, since it is these that have the potential to exhibit sheagurves forx=x(l) have no regions of negative slope, one

thickening. would not expect any instabilities to appear in this model.
Nonetheless temporal oscillations 4ndo occur for a finite
A. Monotonicity of the flow curves range of imposedr, as we now describe.
Givenx(l), the steady state stressfor a giveny can be B. Oscillatory behavior under an imposedo

found by calculating the mean straih) for the steady state . . .
y g ahy Y The monotonicity result described above was attributed to

solution(4). Some example flow curves are plotted in Fig. 6. A ove.
They are clearly monotonic: their gradient is everywheretl® independence of the elements, which is only true for a
positive, and there is a one-to-one relationship between strain controlled system. By contrast, the elements become

nd >, In th figures. tha(l) were chosen to vary in coupled under an imposed since, for example, a single
andy. ese Tigures, &(1) were chosen to vary in a element yielding causes the mean strain to decrease slightly,
stepwise manner, taking a valye-1 for1<0.4 and a lower .

valuex< 1 for | >0.4. This is typical of thex(I) employed in WE?CE mf?St be immedliately cpun:]ered by"f;m incrﬁas_er,in
this section. However, the monotonicity result is entirelyW ich affects every element in the systarhus collective

general and applies for any=x(1), as demonstrated in Ap- behavior can now occur. In fact, this collective behavior can-
pendix B ' not alter any system that has already reached steady flow,

The physical reason for the monotonicity of the flow which we know is identical for strain and stress controlled
curves is that the elements are uncoupled whex(l) and systems. Thus as long as the stress-controlled system reaches

the system is driven by an imposed straift). That is, the steady flow, it will fall onto the same monotonic flow curve
expected strain reached before a given element yields do before. However, the pouplmgs petween the elements can
not depend on the state of any other elements. Thisots rastically alter the transient behavior, to such an extent that

true for the general case=x(a,1), when the value ok for steady flow may never be. reached.. . R
an element depends on the global stressnd thus on the '_A‘n example of collective behawor IS 9'Ye” in Fig. 7,
state of the rest of the system. As long as independenc&hich showsy(t) for a system driven by an imposed stress
holds, the average strain reached before each individual el¢z=0.05. As before, this plot was generated by numerically
ment yields, and hence the global stressan only increase integrating the master equatiaid) from an initially un-
with increasingy. Thus the flow curves must be monotonic. stram(_ed state, using the procedure described in Appe_nd|x A.
The monotonicity of the flow curves is an important find- For this e?<am.p|e, the sy;tem unde.rgoe.s a shprt tran§|ent be-
ing. As mentioned in Sec. I, rheological instabilities often fore entering into an oscillatory regime, in whigift) varies
arise when the system has been driven to a point on its floWith @ single period of oscillation. There is no suggestion of
curve that has a negative gradient. Fluctuations can thea decay in the amplitude of the oscillation #{t) over the
cause spatial inhomogeneities to arise, such as shear bardggest simulation times attainable, even when plotted against
with either the same stress and different strain rates, or equldt (not shown, suggesting that this is the true asymptotic
strain rates but differing stressgi3,14). Alternatively, tem-  behavior. For different choices of(l) it is not possible to
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20 - - - VI. Before turning to consider this, we provide a qualitative
description of the oscillatory behavior in terms of the local
strainsl.

15

C. Qualitative description of the evolution of the system in the
oscillatory phase

The mechanism behind the oscillatory behavior can be
qualitatively understood by inspecting the evolution of the
P(E,I,t) distribution during a single period of oscillation. As
an example, a suitable sequence of snapshots is given in Fig.
5t 1 9. To aid in the interpretation of these figures, it is useful to
recall some properties of the master equatibn First, the

convective terW&P/al means that any maxima or minima
in P(E,l,t) will move in the direction of increasing at a

rate y(t). These extrema will eventually disappear when
large values of are reached, and the yield rdt¢E,l) be-

FIG. 8. The strainy(t) under an imposed stresg,=0.1 for ~ comes very high. Also, there is a flux of newly yielded ele-
x(1)=1.5 forl<0.7, 0.5 forl >0.7. Despite the long times attained, ments ai =0, which have barrier& weighted according to
there is no clear indication of a single period of oscillation. p(E).

Since the oscillatory behavior is by definition cyclical, it
identify a single period of oscillation, as demonstrated in Figis somewhat arbitrary where one chooses to start the se-
8. It is not yet clear if this behavior represents a distinctquence of snapshots. In Fig. 9 we have chosen times corre-

regime with more than one period _of osci_lla_tio_n, pOSSiblysponding to before, during, and just after the point When
even a precursor to chaotic behavior, or if it is merely ayo5:heqits maximum value. In the first snapsRgE, |, t) is
long-lived transient that eventually crosses over to e'the[:oncentrated into two regions: a sharp peak-a0, and a

steady flow or a single-period oscillation at later times. broader peak with in the range ¥1<3. The first peak is
The extensive simulation times means that we have so fahot’ in the sense that it has the higher valuesxgt), but

bee.n unable 1o map out the classxgl) that give rise to an since it has a low strain, it does not significantly contribute to
oscillatory or Oth?l’WISG nonstgady state. Nonetheles_s W€ Cqfe total stress. The second peak, although highly strained,
make the following observation. For all of the oscillatory .o iy 4 region in which(1) is small, and, therefore, has a

cases that we have observed thus &gt) changes from a 1, a6 of yielding. As long as the yield rate is low, so too is

value in the range £x<2 for smalll, to a valuex<1 for the rate of stress loss from elements that belong to this peak.

larger|. Other choices ok(l) may produce an oscillatory . - . )
transient, but its amplitude always seems to decay to zero i}ﬁhe“-‘for& the strain rate will also be low, and indeed this

time. It is not clear to us why only this class gfl) can first example corresponds to a system in whicfs close to
produce a stable oscillatory regime, but it is tempting to notdts minimum value.
that the requirement that<ix<2 for smalll is also the This state of affairs is not stable, however. Although the
range ofx for which the SGR model does not have a linearyield rate of the highly strained elements is low, it is none-
regime under an imposed[8]. That is, a significant propor- theless nonzero, and, therefore, soyisConsequently the
tion of elements will eventually gain a finite strain, no matterwhole system is being convected at a finite rate, so the ele-
how smallo is, and thus the variation ix(l) will eventually  ments in the high-region are becoming more strained. This
be “felt.” decreasestheir effective energy barrieAE=E—(1/2)I?,
Once a suitablex(l) has been found, it is possible to which increasestheir yield rate. But an increased yield rate
move in and out of the nonsteady regime by varying themeans an increaseg, which in turn increases the rate at
applied stresgr. Generally, we find that a highr gives rise  which the elements are becoming more strained, which in-

to steady flow, and lowr produces oscillations; however, the creases their yield rate yet more, and so on. This description
excessive simulation times needed for sneatheans that we is that of apositive feedback logpwhich causesy to in-

have not been able to rule out another crossover to steadyease at ever faster rates until all of the heavily strained

flow as o—0". Within the oscillatory regime, the mean gjements have been depleted. The second snapshot in Fig. 9
strain rate averaged over a period of oscillation is generallghow the state of the system shortly before this has
much lower than that predicted by the flow curve. For thehappened.

examples already given, the mean strain_ratg deviates f_rom At the same time that the highly strained elements are
the flow curve by a factor of 2 for the oscillations shown in

Fig. 7, and by two orders of magnitude for thgossibly being depletedy ?s close to its maximum value and conse-
transient oscillations of Fig. 8. Again, we have been unablequently P(.E’I’t) in the smalll region becomgs sqmewhat
to fully characterize this behavior with the available simula-flat, certainly much flatter than under a smadl This can
tion resources. To an extent, these problems will be alleviclearly be seen in the second and third snapshots of Fig. 9.

ated by considering a simplified model considered in SecWheny again falls to lower values, this flat part of the dis-

1o
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tribution will start to decay as the elements within it yield.
However, the yield rate depends otfl), and sincex(l)
changes to a lower value &t=0.4, P(E,l,t) will decay
much more rapidly fot just smaller than 0.4 than fdrjust
greater than 0.4. Thus a dip will occur around the pdint
~0.4, which can clearly be seen in the final snapshot. As
time increases, this dip will become more pronounced until
the system can again be separated into a population of highly
strained elements and a second population Wit. This is
where we began, and thus the cycle is complete.

VI. JAMMING MODEL C: x=x(I), MONODISPERSE E

It is possible to more completely describe the oscillatory
regime for a simplified version of the model where every
element has the same energy barkgr This formally cor-
responds to a “monodisperse” prior distributiop(E)
=8(E—E,), as opposed to the exponentia(E)=e E
which has been employed in all of the earlier sections. The
reduction in the number of degrees of freedom that this en-
tails significantly decreases the simulation times, and, there-
fore, allows for a more thorough numerical investigation of
the model. It is also possible to derive an analytical criterion
for the stability of the steady state, as described below.

Furthermore, the very fact that a monodisperse system
also has an oscillatory regime clearly demonstrates that this
phenomenon is robust. In particular, it does not require the
usual SGR assumption of an exponential taibt&). There-
fore, the possible existence of a yield stress, which was so
central to the history-dependent jamming scenario at con-

trolled y described in Sec. 1V, is not necessary. This robust-
ness means that the mechanism behind the oscillations at
controlledo may be realizable in a much broader range of
models than the restricted set considered here and, possibly,
may also occur in real materials.

The emergence of oscillations in this monodisperse model
has been separately discussed elsewf&g Here we sup-
ply extra details, such as the stability analysis of the steady
flow state. For the sake of completeness, the overall behavior
of the model will also be briefly described, although we refer
the reader to Ref20] for a fuller discussion of many of the
points raised below.

A. Steady state behavior for monodispersé&

Perhaps the most immediate consequence of only allow-
ing a single barrieE; is that the system can never have a

finite yield stress. Indeed, in the linear reginge-0*, the

FIG. 9. Snapshots d?(E,I,t) for the same system as in Fig. 7 §teady state stress is just- yeENX(O)’ which vanishes with
at three different times. For clarity only three values Bfare Y. There are no qualitative differences forxl, 1<x<2,
shown, namelyE=8 (solid line, E=10 (dashed ling and E etc., as in the SGR model. The complete lack of a yield stress
=12 (dot-dashed ling The chosen times correspond to just before means that a monodisperse system withx(o) will not
(a), during (b), and just after(c) the point at whichy reaches it ~€xhibit a jamming transition, in contrast to the situation for a
maximum value. The period of the oscillation is approximatety  p(E) with an exponential tail described Sec. IV.
=1.6x 10%, so that the time betwee(a) and(c) comprises roughly One respect in which the monodispeEmodel is similar
% of a single oscillation. In each case, thet whichx(l) changes to the exponentiap(E) case is that its flow curves fox
from 1.8 to 0.8 is represented by a vertical dotted line, and the=x(l) are also monotonic. In fact, the monotonicity proof
arrow points to thesamedip in the E=10 distribution, which  given in Appendix B holds for arbitrary(l) andp(E). Thus
moves to the right under the action of there are no regions on the flow curve with a negative slope,
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FIG. 11. The flow curve for the same system as in Fig. 10 under
an imposed stress. The circles are theas measured from the
simulations, either in the steady stdselid circles or in the oscil-
latory regime(open circles In the latter casesy was averaged
over a whole number of oscillations. The sizes of the circles are
larger than the error bars. For comparison, the theoretical flow

curve for the steady state solutién,(E,|) is plotted as a solid line.
and, therefore, there are no ranges of control parameters for

which one might normally expect bulk shear banding to roximately sinusoidal, indicating that there is only a single
arise. Just as in the previous section, however, oscillatory y ! 9 y gie,

: : : inite frequency of oscillation at the transition, the amplitude
behavior can be realized under an imposed constant StrESSOf which vanishes with the onset of steady flow. Further into

the oscillatory regimey can no longer be decomposed into a
single harmonic, but instead approaches a wave form in

_As in the polydisperse case, the monodisperse model eXyhich most of the variation iry is compressed into a small
hibits an oscillatory regime under conditions of 'mposedfraction of the total period of oscillation. Consequentit)

stress, but not under an imposgdHowever, the oscillatory approaches an almost rectangular, staircase shape. The

regime in the monodisperse model differs from the polydiSyyechanism underlying the rapid increaseniris the same
perse case in that only single-period oscillations have so f

b b d. There | . f th | ositive feedback loop that has already been discussed for
een observed. There is no suggestion of the more complggs o\ disperse case, as can be seen by inspecting the evo-
nonsteady behavior hinted at earlier in Fig. 8, for example|

S I £ h i behavior in th i ution of the P(l) distribution with time[20].
ome examples of the oscillatory behavior in the monodis- - Near 19 the transition points at=o., the amplitude of
perse case are given in Fig. 10. Here, the strgfh) is

I the oscillation appears to vanish [as— o|* with «>0, as
shown for three systems wi, =5 and the samé(), but demonstrated in Fig. 12. Data fitting suggests that the lower

different imposeds. Remarkably, the mean strain ratg),  threshold lies atr¢~0.07 with a value ofx~0.7, and that
where the use of the angular brackets now dengteser-  the upper threshold is at.~1.204 and has a different value
aged over a single period of oscillation, is clearlgecreas- of a~0.2. However, the range of values given in this figure
ing function of o, in complete contrast to the monotonic flow is somewhat limited, constituting only an order of magnitude
curve. of variation in|oc— o and an even narrower range of am-
Varying o over a wider range of values reveals that steadyplitudes. The reasons for this are purely technical: close to
flow is reached for either sufficiently small or sufficiently the transition points, the amplitude decays very slowly in
large imposed stresses; only for intermediata@re oscilla- time to its asymptotic value, rendering the required simula-
tions observed. Théy) as read off from the simulations are tion times impractically long. Hence it is conceivable that the
plotted against in Fig. 11, overlayed with the steady state true values of are significantly different from those found
flow curve. It is clear that, if the system reaches a steadyiere. In particular, a value af=0.5 for both cases, as ex-
state, it falls onto the flow curve and, therefore, the depenpected for a Hopf bifurcatiofi26], cannot be ruled out.
dence of(y) with ¢ is monotonic. Within the oscillatory F"?a”y' plotted in Fig. 13 is the product of the mean strain

regime, however, théy) line deviates from the flow curve to rate(y? and the p_erloq of OSC'”at'OHT for different vaIue; of

an extent that it even becomes nonmonotonic for a broad- To first order(y)T is seen to be independent ef which

range ofo. suggests that the oscillatory regime can be characterized by a
The shape of the oscillations varies with Close to either  single strain* ~(y)T. In this casd* ~2.3, which is also the

transition to the steady flow regime, the oscillations are aptypical increase iny during a single cycle of oscillation. A

FIG. 10. The strainy(t) for a monodisperse system witg,
=5 under an imposed step stress 0.1 (solid ling), 0.13 (dashed
line) and 0.2(dot-dashed lingat a timet=0, demonstrating a de-

crease in the meaf with o. Here,x(1)=1 for 1<0.4 andx=0.4
for 1>0.4. The system was initially unstrained.

B. The oscillatory regime
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10? . . C. Analysis of the stability of the steady state

A second advantage of the monodisperse model is that it

is possible to derive an analytical criterion for the stability of

the steady state at fixed driving shear stresalthough even

in this simplified case the resulting expression is still some-
what unwieldy. Suppose steady flow is reached with a strain

10° | ] rate y,,= v..(o). Then the corresponding..(1) is

//"/ 1 ’ ’
e P.(l)=Nex —.y—OCJ’OFU )i’ )

Amplitude of oscillation

‘ where the normalization constahtis fixed by the constraint
10* | AT ] JoP.(l)dl=1. We now look for eigenfunction$p(l),g}

- and eigenvaluess} of the linearized relaxation operator by
writing

107 10"
lo-o,l P(l,t)=P.(I)+ep(l)es, 9

FIG. 12. The amplitude of the oscillation, defined Hlsyax
- 'ymin|, against the distance from the transition between the steady
and oscillatory regimes. The upper data @tcles corresponds to | these expressions, is a real constant, and the real func-
the transition ato.=1.204, and.the lower ge(ltriangles) porre- tions p(l) remain to be found. The complex constande-
sponds t00;=0.07. For comparison, the solid straight line has atermines the stability of the steady state: it is unstable pre-
slope of 0.21, and the dashed line has a slope of 0.7. cisely when Ref)>0, since the amplitude of the

perturbation will then increase exponentially in time. Con-

possible interpretation df is that it is the amount by which versely, it is stable when Rg(<0. The frequency of the
the system needs to be strained until the positive feedbaaiscillatory part of the motion near to the steady state is
loop discussed earlier starts to dominate the system behavidm(s)/27 [26].
causing it to “reset” to the start of its cycle. If this is correct, ~ The unknown functionp(l) can be found by inserting
then I* should correspond to the point at which highly Eds. (9) and (10) into the master equation and neglecting
strained elements have the same yield rate as unstrained &rms ofO(s?), which gives
ements, i.e.]'(0)~I"(I*). Rough calculations based on this

y()=7y.+ege’. (10)

assumption give* ~ \2E,[1— x()/x(0)], which for this P'(Ny=tpHs+I(H]=—gP.(l) (11)
example predictd*~2.4, in fair agreement with the ob- -
served value. 9 _( )Pm(l). 12
’y:x:
3.0 This is just a first-order differential equation Inand inte-
grates to
251 .
® Cl
i * sl p(l)=%f A+ Jldvr(v)eS"%
20} 1 ¥; 0
7y i ] Ios+I(l!
g 10 Xex;{—f g ) (13)
0 Voo
10t . .
The constantA can be found by imposing,dIP(l,t)=1,
05 i.e., [odIp(l)=0.
’ Also, since we are considering a stress-controlled system,
o=(l) must remain constant and hence
0'%.00 0.25 0.50 0.75 1.00 1.25

° jo dip(hHI=0. (14)

FIG. 13. The product of the mean strain rate and the period
of oscillation T for different stressesr, demonstrating that this This global constraint allows the value sfto be specified.
quantity is approximately constant. The solid horizontal line repre-nserting Eq.(13) into Eq. (14) gives, after some manipula-
sents(y)T=2.33. tions, the following equation fos:
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o % sl analo_gous_ phenomena. One possibility comes from math-
fo dllfo dla(l2=11)Po(l1) Pu(lp) ™22y ematical biology. The Glass-Mackey equation describes the
variation in time of the size of a population of white blood
I2 sy, _ cells in response to a hormonal control sys{@m]. It has a
o L dir'(he>"==0. (15 form similar to that of a first-order differential equation, but
includes a feedback term that depends on the state variable at
Although this equation cannot be rearranged to give an exan earlier time. Thisdelay corresponds to the maturation
pression foisin terms of the system parameters, as would bdgime of white blood cells from stem cells. Because of this
desired, it is still enough to show that a purely exponentialdelay, the population size can vary in time in a nontrivial
variation away from the steady flow cannot be observedmanner, including oscillatory behavior and ch§2g].
This follows from the observation that the first line in Eq.  That some form of time delay may also play a role within
(15) is an odd function inl,—1,, but the second line is a ourx(l) model is clear: once an element becomes “cold,” its
strictly increasing function of, when Im()=0. Hence the yield rate remains very low until some time later, when it
equation cannot be obeyed for a purely rgadnd the tran-  pecomes sufficiently strained that its yield rate becomes
sient behavior close to the steady state must include an ogpmparable to that of “hot” elements. Thus there is a delay
cillatory component, which is consistent with the simulationpetween when an element first becomes cold and when it
results. yields, although here the delay time is not constant but de-
pends omy(t). Thus it is possible that the oscillatory behav-
VII. DISCUSSION ior observed forx=x(1) could be described by a simplified
equation, similar in form to the Glass-Mackey equation. This

is a particularly enticing proposition, as the Glass-Mackey

- . : equation is capable of producing chaos, and chaotic behavior
posed stres for somex=x(1), as described in Sec. V and as also been observed in surfactant solutj@&s29, albeit
Sec. VI. Some consequences of this phenomenon have an '

ready been discussed in REZ0]. Two further points will be  in the signature obr(t) under an imposed. It is not yet
discussed here: the identification of the dominant physica¢lear to us if a meaningful mapping between the two models
mechanisms, and the relationship to so-called “stick-slip”is possible.

behavior observed in other systems. Both of these will be

considered in turn. B. Oscillatory behavior or “stick-slip?”

One of the most striking findings of this work has been
the observation of oscillations im(t) under a constant im-

Deep into the oscillatory regime, the wave form wft)
throughout a single period of oscillation becomes increas-
In Sec. VC, the mechanism behind the OSCiIIatory behaV'i'ng|y “Sharp," with most of the variation |ny(t) Occurring
ior was explained in terms of two separated populations ofn just a small fraction of the total period of oscillation. The

el_ements: a “cold p?pulﬁltlon of r_nghly strained elements ratio of the maximum value of(t) to its minimum has been
with a low % and a "hot p.opulatlon of elements with shown to exceed two orders of magnitude, and we see no
~0 and a highx. It was explained how the cold elements can o450 to deny that greater separations may be attained for
give rise to a positive feedback loop, causip@) to rapidly  different parameter values.

increase until the cold elements have yielded. At the same |, ;o tempting to refer to this behavior of(t) as “stick-

time, a new population of cold elements is produced from theslip” behavior, in which the system is “stuck” until the short

hot one. . o o . . .
Known instances of rheological instability are often ex_duratlonlof time in Wh'%hy ratp|dly“a|_cc:alerat(is _trcr)]_ltskmgxrf

plained in terms of the spatial coexistence of subpopulationé‘,“é;nor\:seug ' aflgg%stg%rr]vé%ginoe:rﬂfqlﬁ a[é\;ir:tr.athilnslic;ﬂi d 0

or phases. For instance, the temporal oscillations in viscosity .
observed in wormlike micelles under an imposed stress wa: Ims [10], and granular medigl1,12, for example. How-

attributed to a slowly fluctuating interface between a fluid€ver, we have instead chosen to refer to the variatiop(th
phase and shear-induced structUre&). For surfactant solu- as merely “oscillatory,” since the underlying physics seems
tions in the lyotropic lamellar phase, it was attributed to co-to be somewhat different to the examples of stick-slip behav-
existing ordered and disordered phaiEd. However, these i0r mentioned above. In particular, the term stick slip is usu-
instabilities occur in the vicinity of nonmonotonic regions of ally employed to refer to a surface friction phenomenon,
the flow curve. Spatial instabilities, such as shear bandinghereas the models studied in this paper have no surface, or
can also be found near to where the flow curve has a negativedeed any form of spatial definition. They are only intended
gradien'[[_‘]_s]_ By contrast, the tempora| oscillations Observedto describe the bulk be.haVior of a material. Furthermore, we
in our models arise even though they are by assumption spanly find oscillations iny(t) under an imposed, and never
tially homogeneous, and the flow curves are everywhereice versa whereas stick slip seems to more usudiy-
monotonic. though not exclusivelyrefer to variations in thg€norma)

This suggests that the mechanism behind the oscillatorgtress under a constant driving velocity. Thus to avoid pos-
behavior seen here has not yet been observed in a rheologiaible confusion, we choose not to refer to the behavior ob-
context. It is, therefore, sensible to look further afield forserved in the models as stick slip.

A. Physical picture and analogous phenomena
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VIIl. SUMMARY IP(E,Al L)
_ ) ——— =T (Al + y(1))P(E,Al,t) + w(t)
We have introduced a range of schematic models that are Jt
capable of exhibiting a form of jamming under an imposed
stresso. The models are based on the SGR model of Sollich * S(Al+y()p(E), (AL)
et al, but differ in that the effective temperatuseis no . .
longer constant, and can instead vary with the state of thwhere Al=1—y(t). This removes the convective term and

dramatically improves numerical stability. The discrete prob-
ability distribution P;;=P(i oE,jdl) was defined on a rect-
angular mesh of point$ij} and evolved according to Eq.
Al) by using a straightforward Euler method. A further re-
ement was to average both the evolution equatidh)
‘and the initial conditions over the rangeg,E+ SE) and

system through either the global stressr the local strain.

We have considered choicesxthat decrease for increasing
o or |, which is relevant to the study of shear thickening
materials. These models have no spatial definition, and th
by construction cannot exhibit any form of spatial heteroge

neity. (Al,Al+ 61). This significantly reduces the number of mesh
For x=x(o), the flow curves can be extracted from the qints required for the simulations to properly converge,
known curves for constant Many choices ok(c) produce  \yithout unduly increasing the algorithmic complexity. The
flow curves with nonmonotonic regions, whlch exhibit hys- gelta function was treated as a triangle of base widthahd
teresis ino(t) under ramping the strain ratg(t) first up-  height 161, but any sufficiently narrow function gave the
wards and then downwards. Furthermore, a subset of thesame results.
x(o) also give rise to gammedstate for a range of applied Two classes of initial conditions were employed, but the
stresses, in that the straiy(t) creeps logarithmicallyy(t) long-time behavior of the system was found to be identical in
«In(t). The criterion for this to arise is that the curvexgir) ~ Poth cases. Only the short-term behavior varied, and then
drops below the SGR yield stress cumvg(x) when they are  Only in a nonessential manner. For the sake of completeness,
plotted on the same axes. For an imposed strain rate th§#€_initial conditions were:(i) A “quench” Po(El)
decays to zero at late times, a jammed configuration was o(1)€ =, which corresponds to the unstrained equilibrium
: : - : g at x=o, or (i) Po(E,1)=58(1)(LEy)e FEo with Ex=[1
defined as one with a finite asymptotic stresét) ~oy>0 0 0 0

(0" andtoo. It found that wheth i —1/x(1=0,0=0)]"%, which corresponds to an unstrained
as y(t)—0" andt—. It was found that whether or not a yqtem that has been allowed to reached equilibrium. Note

jammeq configuration was regche_d depends on the entir at this second initial state is only defined fofl =0,
strain history of the system, a situation that was referred to as. 0)>1 [30].

history-dependent jamming _ The strain y(t) is only known a priori for a strain-
For x=x(l), the flow curves are always monotonic, and controlled system. When it is rather a known stret) that
steady flow is always reached under a constant imposed applied,y(t) must be chosen at every time step so that the
strain rate y(t)~yt. However, for a range of imposed actual stress does not differ froa(t) by more than a toler-
stresses and some choicex(if), steady flow is not realized. ance parameter<1. To ensure that this condition was sat-
Numerical integration of the master equation demonstrateified in our simulations, a series of trial strain rates

that y(t) oscillated around a well-defined mean with a singley(1), @ 33 . were generated and tested on a replica

period of oscillation. The possibility of more complex non- meshP}: . The P;; were not updated until a suitable had
steady behavior in some regions of parameter space coulgben found.
not be ruled out. A similar oscillatory behavior occurs with a
simpler model in which every element has the same energy . ) . . )
barrier[20], which suggests that this phenomenon is robustcontinuous time variabley(t) =(IT'(I))py) + o(t) exactly,
Finally, we discussed the relationship between this oscilla®S S€e€n by multiplying the master equatidn by | and in-
tory behavior and that observed in experiments, and considedrating over allE and . This is, therefore, the sensible
ered analogous phenomena from fields outside of rheologychoice fory*). However, integrating over a finite time step
6t inevitably introduces errors oD(6t), and so the inte-

grated stress will differ from the required value by some

ACKNOWLEDGMENTS small amountdo. Reintegrating withy(®) =y — 5o will,
therefore, reduce the error to a smaller amaD(6t?). This
procedure can be repeated to generate a series of succes-

The trial valuesy!) were generated as follows. For a

The authors would like to thank Suzanne Fielding for
stimulating discussions concerning this work. D.A.H. was

sively better estimates®), ), etc. For our choice of
funded by EPSRAK) Grant No. GR/IM09674. =10 % we have found that typically 3—-5 such trials are

needed at every time step.

APPENDIX A: SIMULATION DETAILS

. . . . . APPENDIX B: MONOTONICITY OF THE FLOW CURVES
Direct numerical integration of the master equatidn

has proven to be unstable with respect to discretization er- The purpose of this appendix is to show that the flow
rors. Instead, the results in this paper were generated frourves are monotonic for any vyield ralgl) that depends
the transformed equation only on the local strain. This includes the thermally acti-
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vatedI'(l) with x=x(l), possibly constant, but not when The final line in this equation is valid d¢o) is a constant,

also depends on the stress It also applies for an arbitrary SO ((I =0)f(0))..=f(0)(I-0)..=0. Sincef(l) is an in-
prior barrier distributionp(E). creasing function of, the quantity in the angular brackets in
The steady state solutid®..(E,1) has already been given (B6) is positive both forl <o and forl> ¢, and vanishes
in Eq. (4). The asymptotic yield rates,=lim, ..o(t) is  Smoothly atl=o-. Thus the left-hand side must be positive,
fixed by ensuring that this expression normalizes to unity, i.e., o always increases witly, as claimed.
The same conclusion does not hold whEsT'(o,l).

1 _ : Since s depends ony, differentiating the steady state solu-
1_* f(o)ly p ny, differentiating the steady state solu
@er yf dEf dip(E)e ' (B1) tion now gives rise to an extra term on the right-hand side of
(B2),
where we have introduced the shorthand notati¢ar,|)
=[ol'(o,1")dl". The stress isr=(l).., where the angular ~ do o do, o ol 1 | | do
brackets ¢).,’ denote the average ové?.(E,l). If I' de- E_w_x&_-y_;jL?( (o, )>m—;< g(o, )>w(?—.y.
pends oro, then ac must be chosen that is consistent with (B7)
Eq. (4). In general there can be more than one suitable
First consider the case=T'(1), sof=f(l). Then by dif-  usingg(e,1)=[,[d'(o,1")/da]dl’. Proceeding as before,
ferentiating(l ).. and using Eq(4),
00 {(I=o)f(a,l)).

do o Jdw, a'+ 1 (F(1) 82 728—-:1—. (B8)

—_— = ——+ = o - Y
y Y 1+ ;(lg(aﬂ)}Oo

Iy ©= dy

Similarly, thew., equation(B1) can be differentiated to give o ) ) ) )
Thus it is now possible for the gradient to diverge if

1 dw, 1 1 (lg(a,1)) is sufficiently negative, i.e., il’'(o,l) decreases
— === (f(D)e. (B3)  sufficiently rapidly with o. For the particular case of
=dy v Y I'(o,))=exd —(E—212)/x(o)], the gradient of the flow
Combining these two expressions produces curve diverges at any point such that
.
. do ’ _ X (0')’)/
Y= =(f (D)= o(f())= ®a)  X(O=T
day |J E—51"?|exp[— (E~ 31')/x1dl’
0
=((I=0)f(1))e (B5) (B9)
=((l=a)[f()—f(o)])w- We can see no obvious physical interpretation of this math-

(B6) ematical criterion.
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