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Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids

Jürgen Horbach* and Daan Frenkel
Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
~Received 6 July 2001; published 21 November 2001!

We present a simulation scheme based on the lattice-Boltzmann method to simulate the dynamics of charged
colloids in an electrolyte. In our model we describe the electrostatics on the level of a Poisson-Boltzmann
equation and the hydrodynamics of the fluid by the linearized Navier-Stokes equations. We verify our simu-
lation scheme by means of a Chapman-Enskog expansion. Our method is applied to the calculation of the
reduced sedimentation velocityU/U0 for a cubic array of charged spheres in an electrolyte. We show that we
recover the analytical solution first derived by Booth@F. Booth, J. Chem. Phys.22, 1956~1954!# for a weakly
charged, isolated sphere in an unbounded electrolyte. The present method makes it possible to go beyond the
Booth theory, and we discuss the dependence of the sedimentation velocity on the charge of the spheres.
Finally we compare our results to experimental data.
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I. INTRODUCTION

The simulation of the dynamics of colloidal suspensio
is a challenging task. The reason is that the movement of
colloidal particles can be on a time scale that is orders
magnitudes slower than that of the solvent particles~e.g.,
seconds versus picoseconds!. Therefore, simulation method
such as molecular dynamics, that account for the fluid p
ticles explicitly, are not well suited to study the dynamics
colloidal suspensions because one would spend most o
simulation time solving the equations of motion of the flu
particles. The situation for charged colloids is even wo
because one has to take into account the long-ranged
lomb interactions that are already very time consuming
simple ionic liquids.

One possibility to circumvent these problems is to av
explicit simulation of the solvent particles and describing
interaction between the colloidal particles by means of
effective potential. In the case of charged colloidal syste
this is usually a Yukawa-like potential that gives in ma
cases quite an accurate description of interaction-depen
properties@1,2#. But the approach with effective interaction
neglects completely the hydrodynamic interactions betw
the colloidal particles that stem from the momentum tra
port through the solvent. In order to take this into acco
one has to treat the hydrodynamics of the solvent at leas
a coarse-grained level. An effective scheme that was de
oped to solve efficiently the Navier-Stokes equations, is
so-called lattice-Boltzmann method~LBM !. The LBM is a
preaveraged version of a lattice gas, i.e., a Boltzmann e
tion is solved on a lattice such that the Navier-Stokes eq
tions are recovered~reviews of the method are the Ref
@3–5#!. Recently, the LBM was applied to simulate the d
namics of colloidal systems, such as the rotational and tra
lational short-time dynamics of colloids@6–10#, the diffusion
of colloidal particles in confined geometry@11–13#, and the
dynamics in porous media@14–17#. Also other complex sys-
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tems such as polymer solutions@18# have been investigate
by LBM.

Several attempts to apply the LBM to charged syste
have been reported in the literature. He and Li@19# proposed
a scheme that is appropriate to study electrochemical
cesses in an electrolyte. However, in this method it is
sumed that the fluid islocally electrically neutral that canno
be true for the part of an electrolyte forming the electric
double layer around a macroion. Thus, the LBM of He a
Li cannot be used to describe the dynamics of suspension
charged colloids. A different LBM for charged systems w
suggested by Warren@20#. The central idea of this method i
the introduction of external charge densitiesrs for the ionic
species of types that are propagated with the one-partic
distribution function of the LB equation by means of th
so-called moment propagation method@21#. These ionic den-
sities are coupled back to the mass current of the LB eq
tion via a chemical potential that consists of a term prop
tional to lnrs and a term proportional to the electrosta
potential such that it only gives a contribution if the io
densities are not distributed as expected in equilibrium b
Boltzmann distribution~e.g., because of an external elect
cal field!. Finally, the electrostatic potential is determine
from the charge densities by means of a Poisson equa
solver. The main drawback of Warren’s method is that
charge densities are introduced as additional physical qu
tities that are independent from the mass density in the
equation, and thus, this method is not self-consistent and
correctness of coupling of the charge density to the m
current is not obvious.

Our LBM for charged colloidal suspensions is inspired
Warren’s approach, but it does not introduce ionic specie
additional quantities. The details of our method can be fou
in the following sections. We apply it to the determination
the sedimentation velocity of an array of charged sphere
an electrolyte.

The paper is organized as follows. In Sec. II we give
brief introduction into the electrokinetic equations of motio
with which we model the dynamics of the fluid. In Sec. I
the LBM is presented that solves the latter equations of m
tion on a lattice. The LBM is verified in Sec. IV by means
d-
©2001 The American Physical Society07-1
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JÜRGEN HORBACH AND DAAN FRENKEL PHYSICAL REVIEW E64 061507
a Chapman-Enskog expansion. And in Sec. V we show
results for the sedimentation phenomena. We conclude w
discussion of the method and the results.

II. THE ELECTROKINETIC EQUATIONS

In this section we introduce the equations of motion fo
hydrodynamic description of charged colloidal suspensio
These equations can be found in standard textbooks~see e.g.,
Ref. @22#!.

Consider a system of macroions with radiusa in an elec-
trolyte consisting of two ionic species that have charg
1z1e and 2z2e, respectively, wherez1 and z2 are the va-
lencies of the ions ande is the charge of a proton. The den
sities of the ions,r1(rW,t) andr2(rW,t), are conserved quanti
ties and therefore each of them follows a continuity equat

]rs

]t
52“•JW s s51,2. ~1!

The currentJW s is given by

JW s5rsuW 2Ds“rs2zsDsrs“F̂. ~2!

The first term in Eq.~2! in which uW denotes the flow velocity
is the convection current whereas the two other terms
scribe the diffusive current and the current due to the e
trostatic potentialF. Ds denotes the diffusivity of ions o
type s and F̂ is the electrostatic potential in dimensionle
form, F̂5@e/(kBT)#F, wherekB is Boltzmann constant an
T is temperature.

F̂ is determined by the Poisson equation,

¹2F̂524p l BS (
s51

2

zsrs1s D , ~3!

where the Bjerrum lengthl B is defined by

l B5
e2

4pekBT
, ~4!

ande is the dielectric constant. At a distancel B the Coulomb
energy of one ion due to another ion is equal tokBT. s
denotes the charge density of the macroion. We assume
the chargeZ of each macroion sits on its surface in the for
of uniformly distributed point charges.

If we setuW 50 in Eqs.~1! and~2! we yield the equilibrium
solution for the ion densities as

rs~rW !5 r̄sexp„2zsF̂~rW !…. ~5!

By putting the Boltzmann distribution~5! into the Poisson
equation~3! this leads to the so-called Poisson-Boltzma
equation in which correlations between the ions are
glected. Moreover, if one linearizes the exponential funct
in Eq. ~5! ~Debye-Hückel theory! it is possible to solve Eq
~3! analytically and the result is a Yukawa potential,
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F̂~rW !5K
exp~2urWu/lD!

urWu
. ~6!

The so-called Debye length is defined by

lD[k215
1

A4p l B(
s

zs
2r̄s

. ~7!

The potential~6! is even a good approximation in the no
linear case but the prefactorK is then different from the one
of the linear theory.

The equation of motion that has to be specified finally
that for the total mass current of the fluid,ruW [((s51

2 rs

1rn)uW , wherern is the density of the neutral part of th
fluid. We assume that our fluid can be described by the
earized Navier-Stokes equations for low Reynolds num
flow. Hence, the equation forruW with a body force due to the
electrostatic potential is

]~ruW !

]t
5n¹2ruW 2“p2kBT(

s
zsrs“F̂, ~8!

wherep is the pressure andn is the kinematic viscosity. If
the equation for the pressure is the one of an ideal gap
5kBTr, p can be decomposed into an electrostatic an
neutral part,pe5kBT(s51

2 rs and pn5kBTrn , respectively.
The sum of2“pe and the electrostatic body force, i.e., th
last term in Eq.~8!, is zero, if the ion densities have relaxe
to their equilibrium distribution, Eq.~5!.

III. THE LATTICE-BOLTZMANN METHOD
FOR CHARGED COLLOIDS

We have developed a simulation method to solve the n
linear coupled Eqs.~1!, ~3!, and~8! numerically. For this we
use concepts that are well known from the LBM.

In this method the discretized version of a Boltzma
equation is solved numerically on a lattice on which eve
lattice point represents a cell of particles. The central qu
tity is the one-particle distribution functionni(rW,t) that de-
scribes the number of particles on a lattice noderW at time t

with a discrete velocitycW i . The discrete space of velocitie

$cW i% is chosen such that no artificial anisotropic terms app
in the corresponding equations in the continuous limit. In o
case the velocity space consists of 18 vectors of which, fr
a given lattice node, six point to the nearest and 12 to ne
nearest neighbors on a simple cubic lattice. This veloc
space can be constructed by projecting the unit vectors
four dimensional FCHC lattice onto three dimensions. It
one possible choice of a velocity space that exhibits the
quired isotropy.

The equation of motion forni(rW,t) consists of two steps, a
collision and a propagation step. In the collision step
interaction between the particles is taken into account
results in the postcollision functionni

!(rW,t!) at the collision
7-2



th

nt

ib
re
o
e
a

fo
,

e
th
nt

su
th

th
fa
a

nc
r

ee
e

the
our
the

als
is

the
of a
the
the

the

d.

tatic
.

of

ar-
e

n at
ten-

n
n

ol-

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION . . . PHYSICAL REVIEW E64 061507
time t!. In the propagation stepni(rW,t) is updated by

ni~rW1cW i ,t11!5ni
!~rW,t!!. ~9!

In this equation the lattice constant, the time step, and
mass of a particle is set to unity. The densityr(rW,t) and the
mass currentjW[ruW are given by the zeroth and first mome
of ni , respectively,r5( ini(rW,t), jW5( ini(rW,t)cW i .

In the case of the charged system a one-particle distr
tion function for each ion species and a neutral part is
quired. The purpose of the neutral part is to keep the visc
ity essentially constant through the fluid. Thus, it is chos
such that its value at a given lattice point is much higher th
that of the ionic densities. We make the following ansatz
the postcollision functionni

s! for the counterions and coions
s51,2, respectively, and the neutral part,s5n ~we also
take into account rest particles by the indexi 50),

ni
s!~rW,t!!5

wigs

24
rs~rW,t !S 11

1

csv
2 r8~rW,t !

jW~rW,t !•cW i D ,

~10!

n0
s!~rW,t!!5~12gs!rs~rW,t !. ~11!

The factor wi is a weighting factor that is equal to 2 for th
cW i in the direction of nearest neighbors and equal to 1 for
remaining cW i . So it satisfies the normalization constrai
( i 51

18 wi /2451. For the following we define also w050. With
the parameter 0,gs<1 the diffusivityDs of the particles of
type s can be varied. The latter quantity is given by

Ds5
csv

2

2
gs , ~12!

which is shown in the next section.csv is the sound velocity
that is 1/A2 for our model@4#. The densityr8 is defined by
r85(sgsrs .

The propagation step for our charged system is

ni
s~rW1cW i ,t11!5ni

s!~rW,t!!, ~13!

n0
s~rW,t11!5n0

s!~rW,t!!. ~14!

Different propagation rules have to be established at the
face of the macroions and at the walls. Here we use
bounce back rules suggested by Ladd@4# that lead to no-slip
boundary conditions. In this scheme one puts a sphere
represents a macroion onto the lattice whereby its sur
cuts links between lattice nodes. The boundary nodes
defined halfway along these links and the population fu
tionsni

s that point to the direction of the boundary nodes a
reflected back during the propagation step. In the case
moving boundaries there is a momentum transfer betw
the boundary nodes and the fluid. In this case the s
consistent scheme derived by Loweet al. @9# and Heemels
et al. @10# can be used.
06150
e

u-
-
s-
n
n
r

e

r-
e

at
ce
re
-

e
of
n

lf-

The aforementioned way of mapping a sphere onto
lattice introduces fluid inside and outside the sphere. In
scheme we assign the charge of the macroions in that
inner fluid is an electrolyte with net chargeZ. Charge neu-
trality requires that the total charge of the outer fluid equ
the one of the inner fluid of the macroions. Of course, it
not allowed in our scheme that outer fluid leaks through
surface of the sphere. Therefore, only small movements
macroion are possible such that the center of mass of
sphere can be fixed, and only a momentum transfer with
fluid takes place.

The densitiesrs and the total mass currentjW cannot be
inferred simply from the zeroth and first moments of theni

s’s
because we have to take into account their coupling to
gradient of the electrostatic potential. Ifrs and jW are calcu-
lated as

rs~rW,t11!5(
i 50

18 Fni
s~rW,t11!2

zs

2

wigs

24
rs~rW2cW i ,t !“F̂~rW

2cW i ,t !•cW i G ~15!

and

jW~rW,t11!5(
s51

3 F(
i 51

18

ni
s~rW,t11!cW i2csv

2 zsgsrs~rW,t

11!“F̂~rW,t11!G , ~16!

we are consistent with Eqs.~1! and ~8! in the continuous
limit. “F̂ does not couple to the neutral part of the flui
This is guaranteed in Eqs.~15! and~16! by settingzs50 for
s5n.

If one replacesni
s(rW,t11) by ni

s(rW2cW i ,t) in Eqs.~15! and
~16! by using Eq.~13! it becomes clear that Eqs.~15! and
~16! are the discrete versions of Eqs.~1! and ~8!, respec-
tively. Thereby, the second terms in Eqs.~15! and ~16! cor-
respond, respectively, to the current due to the electros
potential in Eq.~1! and the electrostatic body force in Eq
~8!. We show this explicitly in the next section by means
a Chapman-Enskog expansion. Of course, with the“F̂
terms in Eqs.~15! and ~16! the conservation of the ionic
densities and the mass current is still fulfilled. This is gu
anteed becauseF̂ is determined self-consistently from th
ionic densities by means of the Poisson equation.

This means that we have to solve the Poisson equatio
each time step in order to determine the electrostatic po
tial from the ionic densitiesr1 andr2 . For this purpose we
use a successive over-relaxation~SOR! scheme in which one
looks in principle for the stationary solution of a diffusio
equation@23#. But in contrast to a normal diffusion equatio
one introduces an acceleration parameter 1,v,2 such that
the potential is obtained as the iterative solution of the f
lowing equation:
7-3
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JÜRGEN HORBACH AND DAAN FRENKEL PHYSICAL REVIEW E64 061507
F̂h11~rW,t !5vF(
i

S wi

24
F̂h~rW2cW i ,t !

14p l B

csv
2

2 (
s51,2

zsrs~rW,t ! D G
1~12v!F̂h~rW,t !. ~17!

In this equation we have denoted the iteration time byh ~the
unit for an iteration step is again set to unity!. For a sufficient
number of iteration stepsFh converges toF. We have found
that a suitable choice forv is 1.45 that guarantees stabilit
and optimal acceleration. The gradient ofF̂ that we need in
Eqs.~15! and ~16! is given by

“F̂~rW !52(
i

wi

24csv
2

F̂~rW2cW i !cW i . ~18!

Note that we use in Eqs.~17! and ~18! the same discrete
space as the velocity space in the lattice-Boltzmann eq
tions. This means that the truncation error that is caused
to the discrete representation of the derivatives is of fou
order in contrast to a second order truncation error o
simple cubic lattice with six vectors$cW i% pointing to the near-
est neighbors from a given lattice node. The stability a
efficiency of the SOR algorithm are further optimized
making use of a partially decoupled red-black Gauss-Se
scheme@24#.

IV. CHAPMAN-ENSKOG EXPANSION

By means of a Chapman-Enskog expansion we show
this section that the set of discrete equations from the
ceding section indeed recover the Eqs.~1!, ~3!, and~8! in the
continuous limit.

As a first step we rewrite Eqs.~15! and ~16! for the den-
sitiesrs and the partial currentsjWs[gsrsjW/r8,

rs~rW,t !5(
i

wigs

24 Frs~rW2cW i ,t21!1 jWs~rW2cW i ,t21!•cW i

1
zs

2
rs~rW2cW i ,t21!“F̂~rW2cW i ,t21!•cW i G , ~19!

jWs~rW,t !5(
i

wigs

24
@rs~rW2cW i ,t21!cW i1 jWs~rW2cW i ,t21!•cW icW i #

2csv
2 gszsrs~rW,t !“F̂~rW,t !. ~20!

If we now expand the functions of the formf (rW2cW i ,t21)
( f 5rs , jWs ,rs“F̂) around positionrW and timet up to second
order,

f ~rW2cW i ,t21!5 f ~rW,t !1F2] t2cia“a1
1

2
~] t

1cia“a!2G f ~rW,t !, ~21!
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we obtain the following equations forrs and jWs :

] trs5
1

2
] t

2rs2“• jWs1] t“• jWs1
csv

2

2
gs~“

2rs1zs“•rs“F̂

1zs] t“•rs“F̂!, ~22!

] t jWs52csv
2 gs“rs1csv

2 gs] t“rs1
1

2
] t

2 jWs1
1

6
“

2 jWs

2csv
2 gszsrs“F̂. ~23!

To achieve Eqs.~22! and~23! we have used the lattice sum
@4#

(
i 51

18

ciacib5csv
2 dab , ~24!

(
i 51

18

ciacibcigcid5
1

3
~dabdgd1dagdbd1daddbg!. ~25!

Equations~22! and ~23! are the starting point for the
Chapman-Enskog expansion that introduces a macrosc
space scale byrW15erW and two macroscopic time scales b
t15et and t25e2t. The t1 scale describes fast convectio
processes whereas on the slowert2 scale the diffusion of
vorticity takes place. Thus, the Chapman-Enskog expan
enables us to consider the latter time scales separately. It
for the first time applied to lattice gases by Frischet al. @25#.

We now express the derivatives by means ofrW1 , t1, and
t2,

“5e“1 , ~26!

] t5e] t1
1e2] t2

, ~27!

and put them into Eqs.~22! and ~23!. If we collect terms of
the same order ine we obtain on thee1 scale

] t1
rs52“1• jWs , ~28!

] t1
jWs52csv

2 gs~“1rs1zsrs“1F̂!. ~29!

Equation~28! is the continuity equation for mass conserv
tion. If one takes the sum overs on both sides of Eq.~29!
one obtains the ‘‘fast’’ part of the linearized Navier-Stok
equation for the total mass currentjW

] t1
jW52csv

2 (
s

~“rs1zsrs“1F̂!. ~30!

The first term on the right-hand side of this equation is
negative gradient of the pressure and the second term
electrostatic body force.

On thee2 scale we have
7-4
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] t2
rs5

1

2
] t1

2 rs1] t1
“1• jWs1

csv
2

2
gs~“1

2rs1zs“1rs“F̂!,

~31!

] t2
jWs5csv

2 gs] t1
“1rs1

1

2
] t1

2 jWs1
1

6
“

2 jWs . ~32!

From Eqs.~28!–~32! we see that the transport of the io
densities to equilibrium can be either achieved by convec
or by diffusion. So, if] t1

jWs vanishes Eq.~29! is solved by the
Boltzmann distribution, Eq.~5!. And by using Eqs.~28! and
~29!, Eq. ~31! for the densities simplifies to

] t2
rs50. ~33!

This equation implies that the fluid is incompressible on
t2 scale. In this case there is no diffusion on thet2 scale
because the ionic densities have already come to their e
librium on the fastert1 scale. On the other hand, if we a
sume that the second derivative ofrs with respect tot1 van-
ishes then Eq.~31! becomes a diffusion equation with th
diffusion constantDs5csv

2 gs/2 for ions of types. The diffu-
sion process relaxes the densitiesrs (s51,2) again to the
equilibrium distribution~5!.

We still have to discuss Eq.~32! for the mass current on
the t2 scale. It is reasonable to assume that the derivative
rs and jWs with respect tot1 are small on thet2 scale. So we
may neglect the first two terms in Eq.~32!. Furthermore, we
have to sum overs on both sides of Eq.~32! in order to
obtain the equation of motion for the total currentjW on thet2
scale

] t2
jW5

1

6
“1

2 jW. ~34!

Moreover, if we combine this equation with Eq.~29! for
variations on thet1 scale we obtain the following equation

] t jW5
1

6
¹2 jW2csv

2 (
s

gs“rs2csv
2 (

s
gszsrs“F̂. ~35!

So, we recover Eq.~8! for the total current whereby th
kinematic viscosityn is one-sixth and the equation for th
pressure depends on the parametersgs ,

p5csv
2 (

s
gsrs . ~36!

Note that forg15g2 this is just the equation of state for a
ideal gas.

V. THE SEDIMENTATION VELOCITY

In this section we present the results for the sedimenta
velocity of an array of charged spheres in an electrolyte
lution. We show that our method gives correct results in t
it recovers an analytical formula that is valid in the limit
an isolated, weakly charged sphere in an unbounded ele
06150
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lyte. Furthermore, we discuss the dependence of the s
mentation velocity on the charge of the spheres. We t
compare our results to experimental data.

Before we show the results for the sedimentation veloc
we discuss to what extent the calculated electrostatic po
tials and the ionic densities around a macroion are influen
by lattice artifacts. The latter may have several reasons.
use a simple way to introduce the charge of a macroion.
assign its chargeZ by distributing the densities on the lattic
nodes inside the macroion such that the net charge, i.e.
sum over all these nodes, is equal toZ. This may have the
effect that the effective charge distribution on the surface
the macroion is anisotropic because the inner nodes f
only an approximative representation of a sphere that can
course, be improved by increasing its radiusa. Another
drawback that is due to the lattice lies in the range of
electrostatic potential. The Debye length, measured in lat
units, must be at least larger than one. Otherwise, the si
lation becomes unstable because one has strong discon
ties in the ionic densities between two lattice points close
the surface of the macroion.

The importance of these artifacts can be checked by
termining the radial ionic densitiesrs(r ) around a spherica
macroion, i.e., the densities for the ions of types at a dis-
tancer from the center of the sphere. In the absence of a
factsrs(r ) should obey

rs~r !5 r̄sexp„2zsF̂~r !…. ~37!

In Fig. 1 we show an example of thers(r ) calculated di-
rectly ~symbols! and from the right-hand side of Eq.~37!
~solid lines! for a macroion with a radiusa54.5 and charge
Z5100. The length of the simulation box isL580 and the
density of the neutral fluid is set torn520. The Debye
length is varied by changing the sum of the mean ionic d
sities from (sr̄s50.0063 (lD55.6) to (sr̄s50.1 (lD
51.4) whereby the Bjerrum length isl B50.4. We can infer
from Fig. 1 that the ionic densities as calculated direc
agree very well with those calculated from the right-ha
side of Eq.~37! even for a Debye length as small aslD

FIG. 1. The radial ionic densities around a macroion witha

54.5 for Z5100 as determined directly fromrs(rW) ~filled symbols
for the counterions and open symbols for the coions! and by calcu-
lating it from the electrostatic potential~lines!; see text, for the
indicated Debye lengthslD .
7-5
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JÜRGEN HORBACH AND DAAN FRENKEL PHYSICAL REVIEW E64 061507
51.4. This means thata54.5 is a reasonable choice for th
radius of a macroion that keeps lattice artifacts small at le
for lD>1.4.

Now we consider one charged macrosphere in a unit
of lengthL with a fixed position. It represents one particle
an array of spheres on a simple cubic lattice because it in
acts with its own periodic images. The volume fraction of t
macroions is given byw5(4pa3)/(3L3). In order to inves-
tigate sedimentation phenomena we have to introduc
gravitational force in the LB equations. After a time of th
orderts5L2/neff (neff is effective, kinematic viscosity of the
fluid in the presence of the spheres! the steady state is
reached for which one determines the average flow velo
in the unit cell. We divide the latter by the average flo
velocity of the corresponding neutral system and yield
ratio U/U0 of the sedimentation velocities in the charged a
the neutral system, respectively. For the larger systems
sidered, we did not wait until the system came to its ste
state, because we know that the time dependence of the
parent sedimentation velocityUapp(t) is given by

Uapp~ t !5UF12expS 2
t

ts
D G . ~38!

By computing numerically the time derivative of Eq.~38!
one obtains a simple exponential function with the two u
known quantitiesU andts that we computed from fits of the
logarithm of this exponential function. With this procedure
was possible to determineU within a time of the ordert
'ts/20. We checked the accuracy of our fits atw50.0018 by
comparing them to the exact steady state results, and
obtained identical results forU/U0 as a function ofka (k
[lD

21).
In the following we show that our LB method recovers

analytical result forU/U0 which was first derived by Booth
@26#, and later slightly modified by Ohshimaet al. @27#.1 It is
valid in the limit of infinite dilution and small charge of th
macroions, i.e., a weakly charged macroion in an electro
with infinite extension. What do we expect in this case? D
to the external force the ionic concentrations around the m
roions that form the electrical double layer deviate from th
equilibrium values. The double layer loses its spherical sy
metry due to the fluid motion that results in an electric
dipole field pointing in the direction opposite to the motio
of the macroion and thus reduces its sedimentation velo
Booth’s calculation starts with the ansatz

U

U0
511 (

k51

`

ckZ
k ~39!

and takes into account only terms in the lowest nonvanish
order inZk,

1However, Booth’s result agrees with the one of Ohshimaet al.
for an 1-1-electrolyte. We are only interested in this special cas
this paper.
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U

U0
511c2Z2. ~40!

The coefficientc2 can be calculated analytically by solvin
the electrokinetic equations of motion~1!, ~3!, and ~8!
whereby the Poisson equation is solved in the Debye-Hu¨ckel
limit. The final expression forc2 has the following form
@26,27#,

c252
kBTlB

72pa2h

(
s

zs
4r̄sDs

21

(
s

zs
2r̄s

f ~ka!, ~41!

wherer̄s denotes the mean density of the ions of types far
away from the center of the macroion,h is the shear viscos
ity, f (ka) is a function of exponential integrals of differen
ordern, En(x)5xn21*x

`dt t2nexp(2t).

f ~ka!5
1

11~ka!2
$e2ka@3E4~ka!25E6~ka!#2

18eka@E3~ka!2E5~ka!#2e2ka@4E3~2ka!

13E4~2ka!27E8~2ka!#%. ~42!

We have determinedU/U0 as a function ofka for different
volume fractions. The radius of the macroion is fixed toa
54.5. Moreover, the diffusivities of the ionic species in th
fluid are chosen to beD150.165 for the counterions an
D250.25 for the coions. The ratioD1 /D250.66 corre-
sponds to that ofDNa/DCl in sodium chloride. The Bjerrum
length is again set tol B50.4. In order to varyka from 0.15
to 1.5 we have to change(sr̄s from 0.000 25 to 0.022 11
respectively. This is small compared to the density of
neutral fluid,rn520. So by changingka we do not change
the viscosity of the fluid significantly.

Figure 2 shows the results for a surface chargeZ510 of
the macroion. We demonstrate below that this value is sm
enough for the approximation~28! to hold. First, we infer
from Fig. 2 that the relative reduction of the sedimentati

in

FIG. 2. U/U0 for the volume fractionsw50.0046, 0.0018, and
0.000 76 as a function ofka. The charge of the macroion is set t
Z510. The solid line is the result from Booth’s theory. The ins
showsU/U0 as a function ofw1/3 for ka50.5. The solid line in the
inset is the fit function 0.999 26910.002 455 6w1/3.
7-6
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velocity due to the charges is only of the order of 1024 at
Z510 in thew range considered.U/U0 exhibits a minimum
that moves to higher values ofka with increasingw. The
occurrence of such a minimum is reasonable since an
crease ofka is accompanied with two competing effects. O

the one hand, the electrostatic potentialF̂ becomes stronge
due to an increasing salt concentration but, on the o
hand, it becomes also more short ranged because of a
creasing Debye length, and thus, it affects only the flow n
the macroion. The value of the minimum inU/U0 decreases
with decreasingw and seems to move towards the one of
Booth curve forw→0. This also holds for the amplitude an
the shape ofU/U0 for w→0. In order to give quantitative
evidence that our calculation would recover Booth’s res
we plot in the inset of Fig. 2,U/U0 as a function ofw1/3 at
ka50.5, i.e., around the position of the minimum. The fit
this figure with a straight line indeed approaches the Bo
result, i.e., atw50.

Up to now we have shown only the results forU/U0 for a
small charge of the macroionZ510. But it is of course in-
teresting to check up to which values ofZ the approximation
~40! holds. If Eq.~40! would be exact, one could renormaliz
U/U0 as a function ofka for a given chargeZ5Zold to a
new chargeZ5Znew by multiplying 12U/U0 by Znew

2 /Zold
2 .

In this way we have renormalized our data forZ510 at w
50.000 76 toZ5100 andZ5130, and we compare thes
data sets in Fig. 3~a! with the corresponding simulation re
sults for the latter two values ofZ. We see that we have
strong corrections to the results as expected from Boo
theory, especially around the minimum inU/U0. First the
amplitude of the minimum is underestimated by the ren
malized curves and also the position of the minimum is a
slightly larger value. To study the corrections to Booth
theory more quantitatively we plot in Fig. 3~b!, 12U/U0 as
a function ofZ for ka50.16,0.5, and 1.5. The solid lines i
this figure are fits of the formg(Z)5c2Z21c4Z41c6Z6.
From the comparison of the different functionsg(Z) to the
corresponding ones with only the leading term proportio
to Z2 @dashed curves in Fig. 3~b!# we can conclude that th
corrections to Booth’s theory become important forZ.50.

Finally we address the question whether our results ar
agreement with a dynamic light scattering experiment
Schumacher and van de Ven@28#. They measured the diffu
sion constantD for a system of gold particles in distille
water. Note thatD/D0 is equal toU/U0. The radius of the
gold particles was around 20 nm and their volume fract
(231025)%. Different data sets were determined by chan
ing the value ofka with different salts. We consider here th
experimental data points measured with sodium chloride
are shown in Fig. 4 in comparison to our simulation data
w50.0046 and atw50.000 76 forZ5100. It is interesting
that the experimental data can be very well described by
simulation curve forw50.0046 although the experiment wa
done at a very small volume fraction of gold particles and
curve forw50.000 76 deviates strongly from the experime
tal data. More systematic experiments, e.g., for different v
ume fractions, would be necessary to clarify this discrepan
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VI. CONCLUSIONS

We have developed a LBM for the simulation of the d
namics of suspensions of charged colloidal particles. In
method a set of nonlinear, coupled electrokinetic equation
solved that consists of convective diffusion equations for
ion densitiesrs (s51,2), the linearized Navier-Stoke
equations for the mass currentjW, and the Poisson equatio
for the electrostatic potentialF̂. Furthermore, a neutral fluid

FIG. 3. ~a! U/U0 at w50.000 76 as a function ofka for Z
5100 andZ5130 ~filled symbols!. The open symbols show dat
for Z510 that are renormalized toZ5100 andZ5130 ~see text!.
~b! 12U/U0 as a function ofZ for the indicated values ofka. The
solid lines show the following fit functions:g(Z)52.916
31026Z226.086310211Z421.173310215Z6 for ka50.16, g(Z)
55.18231026Z222.810310210Z415.801310215Z6 for ka
50.5, g(Z)52.05631026Z228.684310211Z411.592310215Z6

for ka51.5. The dashed lines show only the term proportional
Z2 of the latter three functions.

FIG. 4. U/U0 at w50.000 76 andw50.0046 as a function of
ka for Z5100 in comparison to experimental data~closed circles!.
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characterized by the densityrn can be introduced in order t
keep the viscosity in the fluid essentially constant. T
propagation ofrs and jW is computed by means of one
particle distribution functionsni

s for each speciess. But in

contrast to the normal LBMrs and jW are not simply given as
zeroth and first moments of theni

s’s, respectively. This is due
to the coupling of the ionic part of the fluid to the gradient
F̂ that leads to an additional diffusive term in the propag
tion of the ion densities and a body force term in the pro
gation of the mass currentjW. The electrostatic potential i
determined from the ion densities by means of a Pois
equation solver for which we use a successive ov
relaxation scheme. Our method is fast, stable, and eas
implement. We have verified our numerical scheme
means of a Chapman-Enskog expansion.

As an application we applied our method to determine
reduced sedimentation velocityU/U0 for an array of charged
spheres on a simple cubic lattice. We determinedU/U0 as a
function of the dimensionless parameterka for different vol-
ume fractions of macroionsw. We compared our results wit
an analytical formula first derived by Booth that is valid
the limit of a weakly charged, isolated macroion in an u
bounded electrolyte. Booth’s theory starts with an expans
of U/U0 in powers of the macroion chargeZ of which the
lowest nonvanishing order,Z2 is taken into account. We gav
evidence that we recover Booth’s result in the limitw→0.
ys

u

ke

ke

ke
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For aboutZ.50, corrections to the Booth theory becom
important. Up toZ5130 our simulation data can be we
described by an expansion up to orderZ6. These numerical
data could be used to test theories that go beyond the B
level. We mention that very recently also a mode coupl
theory with hydrodynamic interactions was shown to be
agreement with Booth’s theory@29#. This theory is also able
to consider colloidal systems at finite volume fractions.

Our LBM for charged colloids is well suited to study the
short-time dynamics and the flow around macroions. It is
restricted to steady state problems but one can also deter
time dependent quantities such as velocity autocorrela
function of a tagged macroion in a colloidal suspension. A
particle shapes, which are different from a spherical one
be easily introduced in our LBM. Moreover, the introductio
of walls is rather simple, which makes it possible to stu
charged colloidal particles in confined geometries.
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