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Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids
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We present a simulation scheme based on the lattice-Boltzmann method to simulate the dynamics of charged
colloids in an electrolyte. In our model we describe the electrostatics on the level of a Poisson-Boltzmann
equation and the hydrodynamics of the fluid by the linearized Navier-Stokes equations. We verify our simu-
lation scheme by means of a Chapman-Enskog expansion. Our method is applied to the calculation of the
reduced sedimentation velocity/U, for a cubic array of charged spheres in an electrolyte. We show that we
recover the analytical solution first derived by BopEh Booth, J. Chem. Phy&2, 1956(1954] for a weakly
charged, isolated sphere in an unbounded electrolyte. The present method makes it possible to go beyond the
Booth theory, and we discuss the dependence of the sedimentation velocity on the charge of the spheres.
Finally we compare our results to experimental data.
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[. INTRODUCTION tems such as polymer solutioh&8] have been investigated
by LBM.

The simulation of the dynamics of colloidal suspensions Several attempts to apply the LBM to charged systems
is a challenging task. The reason is that the movement of thieave been reported in the literature. He andl19] proposed
colloidal particles can be on a time scale that is orders o scheme that is appropriate to study electrochemical pro-
magnitudes slower than that of the solvent partidley., cesses in an electrolyte. However, in this method it is as-
seconds versus picosecopdBherefore, simulation methods sumed that the fluid ibcally electrically neutral that cannot
such as molecular dynamics, that account for the fluid parbe true for the part of an electrolyte forming the electrical
ticles explicitly, are not well suited to study the dynamics ofdouble layer around a macroion. Thus, the LBM of He and
colloidal suspensions because one would spend most of tha cannot be used to describe the dynamics of suspensions of
simulation time solving the equations of motion of the fluid charged colloids. A different LBM for charged systems was
particles. The situation for charged colloids is even worsesuggested by Warrgr20]. The central idea of this method is
because one has to take into account the long-ranged Cothe introduction of external charge densitjgsfor the ionic
lomb interactions that are already very time consuming irspecies of types that are propagated with the one-particle
simple ionic liquids. distribution function of the LB equation by means of the
One possibility to circumvent these problems is to avoidso-called moment propagation metH@d]. These ionic den-
explicit simulation of the solvent particles and describing thesities are coupled back to the mass current of the LB equa-
interaction between the colloidal particles by means of artion via a chemical potential that consists of a term propor-
effective potential. In the case of charged colloidal systemsional to Inp; and a term proportional to the electrostatic
this is usually a Yukawa-like potential that gives in many potential such that it only gives a contribution if the ion
cases quite an accurate description of interaction-dependedénsities are not distributed as expected in equilibrium by a
propertieg 1,2]. But the approach with effective interactions Boltzmann distribution(e.g., because of an external electri-
neglects completely the hydrodynamic interactions betweenpal field. Finally, the electrostatic potential is determined
the colloidal particles that stem from the momentum transfrom the charge densities by means of a Poisson equation
port through the solvent. In order to take this into accountsolver. The main drawback of Warren’s method is that the
one has to treat the hydrodynamics of the solvent at least ocharge densities are introduced as additional physical quan-
a coarse-grained level. An effective scheme that was devetities that are independent from the mass density in the LB
oped to solve efficiently the Navier-Stokes equations, is thequation, and thus, this method is not self-consistent and the
so-called lattice-Boltzmann methaddBM). The LBM is a  correctness of coupling of the charge density to the mass
preaveraged version of a lattice gas, i.e., a Boltzmann equaurrent is not obvious.
tion is solved on a lattice such that the Navier-Stokes equa- Our LBM for charged colloidal suspensions is inspired by
tions are recoveredreviews of the method are the Refs. Warren's approach, but it does not introduce ionic species as
[3-5]). Recently, the LBM was applied to simulate the dy- additional quantities. The details of our method can be found
namics of colloidal systems, such as the rotational and transa the following sections. We apply it to the determination of
lational short-time dynamics of colloid6—10], the diffusion  the sedimentation velocity of an array of charged spheres in
of colloidal particles in confined geometf$1-13, and the an electrolyte.
dynamics in porous med{d4-17. Also other complex sys- The paper is organized as follows. In Sec. Il we give a
brief introduction into the electrokinetic equations of motion
with which we model the dynamics of the fluid. In Sec. IlI

* Author to whom correspondence should be addressed. Email adhe LBM is presented that solves the latter equations of mo-
dress: horbach@amolf.nl tion on a lattice. The LBM is verified in Sec. IV by means of
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a Chapman-Enskog expansion. And in Sec. V we show our ) exr(—|F|/)\D)

results for the sedimentation phenomena. We conclude with a O(r)=K——=———. (6)
discussion of the method and the results. Il

The so-called Debye length is defined by
Il. THE ELECTROKINETIC EQUATIONS

1

In this section we introduce the equations of motion for a -1
; . . . Ap=K =——on. )
hydrodynamic description of charged colloidal suspensions. -
These equations can be found in standard textb(sses e.g., 47l BE zgpS
S

Ref. [22)).

Consider a system of macroions with radaii an elec- o potential(6) is even a good approximation in the non-

: Yinear case but the prefactiris then different from the one
+z,e and —z,e, respectively, wherg; andz, are the va- .
lencies of the ions and is the charge of a proton. The den of the linear theory.

1es 1ons IS 9 P ' " The equation of motion that has to be specified finally is

sities of the ionsp4(r,t) andp,(r,t), are conserved quanti- that for the total mass current of the fluidﬁE(Egzlps

ties and therefore each of them follows a continuity equation - i i
+p,)u, wherep, is the density of the neutral part of the

. fluid. We assume that our fluid can be described by the lin-
-V.J; s=1.2 (1) earized Navier-Stokes equations for low Reynolds number

flow. Hence, the equation fmﬁ with a body force due to the
electrostatic potential is

s _
at

The currentjS is given by

(pu)

js: PSG_ DsVps— ZstPsV(i)- 2 at

= szpﬁ—Vp—kBTz zp VD, 8)

The first term in Eq(2) in which u denotes the flow velocity wherep is the pressure and is the kinematic viscosity. If

is the convection current whereas the two other terms de,[-he equation for the pressure is the one of an ideal nas
scribe the diffusive current and the current due to the elec-_ q P pas,

trostatic potentiakb. D4 denotes the diffusivity of ions of =KgTp, p can be degomposed Into an electrostat_lc and a
A i N ) neutral part,p.=kgT=s_,ps and p,=kgTp,, respectively.
type s and ® is the electrostatic potential in dlmen5|onless-|-he sum of— Vp, and the electrostatic body force, i.e., the
A . e y 1y
form, ®=[e/(kgT) P, wherekg is Boltzmann constant and |ast term in Eq(8), is zero, if the ion densities have relaxed
T is temperature. to their equilibrium distribution, Eq(5).
® is determined by the Poisson equation,
lll. THE LATTICE-BOLTZMANN METHOD

2
V2 — —4wIB( S st 3 FOR CHARGED COLLOIDS
s=1 We have developed a simulation method to solve the non-
. ) i linear coupled Eq9.1), (3), and(8) numerically. For this we
where the Bjerrum length is defined by use concepts that are well known from the LBM.
9 In this method the discretized version of a Boltzmann
lg= e , (4) equation is solved numerically on a lattice on which every
4mekgT lattice point represents a cell of particles. The central quan-

. ) ) ) tity is the one-particle distribution functioni(F,t) that de-
ande is the dielectric constant. At a distanigethe Coulomb scribes the number of particles on a lattice nodat time t
energy of one ion due to another ion is equalkiol. o i P

denotes the charge density of the macroion. We assume th\é(fh a discrete velocityc; . The discrete space of velocities
the chargeZ of each macroion sits on its surface in the form{c;} is chosen such that no artificial anisotropic terms appear

of uniformly distributed point charges. in the corresponding equations in the continuous limit. In our
If we setu=0 in Egs.(1) and(2) we vield the equilibrium  case the velocity space consists of 18 vectors of which, from
solution for the ion densities as a given lattice node, six point to the nearest and 12 to next-
nearest neighbors on a simple cubic lattice. This velocity
> _ e space can be constructed by projecting the unit vectors of a
ps(N)=psexp(— 2D (). ® P peer oY ProJecting e Wik v

four dimensional FCHC lattice onto three dimensions. It is
By putting the Boltzmann distributiofb) into the Poisson one po;sible choice of a velocity space that exhibits the re-
equation(3) this leads to the so-called Poisson-BoItzmannqUIred Isotropy. R
equation in which correlations between the ions are ne- The equation of motion fom;(r,t) consists of two steps, a
glected. Moreover, if one linearizes the exponential functiorcollision and a propagation step. In the collision step the
in Eq. (5) (Debye-Hickel theory it is possible to solve Eq. interaction between the particles is Eaken into account that
(3) analytically and the result is a Yukawa potential, results in the postcollision functiom(r,t*) at the collision
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time t*. In the propagation step(r,t) is updated by The aforementioned way of mapping a sphere onto the
lattice introduces fluid inside and outside the sphere. In our
”i(F+ Ei t+1)=n*(r,t*) (9 scheme we assign the charge of the macroions in that the

1 1 ’ .

inner fluid is an electrolyte with net charge Charge neu-
In this equation the lattice constant, the time step, and th&rality requires that the total charge of the outer fluid equals

mass of a particle is set to unity. The den (f t) and the the one of the inner fluid of the macroions. Of course, it is
P Y- S not allowed in our scheme that outer fluid leaks through the

mass curren}=pu are given by the zeroth and first moment grface of the sphere. Therefore, only small movements of a

of n;, respectivelyp=3;n;(r,t), j==;n;(r,t)c;. macroion are possible such that the center of mass of the
In the case of the charged system a one-particle distribusphere can be fixed, and only a momentum transfer with the

tion function for each ion species and a neutral part is refluid takes place.

quired. The purpose of the neutral part is to keep the viscos- The densitiesp and the total mass currefitcannot be

ity essentially constant through the fluid. Thus, it is chosennferred simply from the zeroth and first moments of tifis

such that its value at a given lattice point is much higher thar e .4 se we have to take into account their coupling to the
that of the ionic densities. We make the following ansatz for . . . -
radient of the electrostatic potential.df andj are calcu-

the postcollision functiom:™ for the counterions and coions, g
. lated as
s=+,—, respectively, and the neutral past=n (we also

take into account rest particles by the index0),

18
- - Zs W - - P
pe(r t+1)=> n(r,t+1)— = Iysps(r—ci DHVD(r
Sk T L Wi Ys = 1 > > > i=0 2 24
ny(r,t*)= ps(r O 1+ —Z——=—j(r,t)-c|,
24 cep' (1) .
(10) —Ci,t)-c (15
ng' (M) =(1=y9ps(r ). 1) g
The factor w is a weighting factor that is equal to 2 for the 3 18
i in t.hg dllectlon of nea.retst neighbors anq egual tol for.the f(F,H 1)= 2 {2 nf(F,H— 1)Ei —C§stvsps(F,t
remaining c;. So it satisfies the normalization constraint s=1]i=1
Eilf 1W;/24=1. For the following we define alsoga 0. With
the parameter €& ys=1 the diffusivity Ds o_f the_z particles of +1)VE(rt+1)], (16)
type s can be varied. The latter quantity is given by

2
Csy

we are consistent with Eq$l) and (8) in the continuous
Ds=77’s: (12

limit. V& does not couple to the neutral part of the fluid.
This is guaranteed in Egél5) and(16) by settingzs=0 for
which is shown in the next section,, is the sound velocity s=n.

that is 14/2 for our model[4]. The densityp’ is defined by If one replaces®(r,t+1) by n¥(r — ¢, ,t) in Egs.(15) and
p'=ZsYsPs- (16) by using Eq.(13) it becomes clear that Eq§l5) and
The propagation step for our charged system is (16) are the discrete versions of Eqd) and (8), respec-
o R tively. Thereby, the second terms in Eq$5) and (16) cor-
n(r+c;,t+1)=n>(r,t*), (13)  respond, respectively, to the current due to the electrostatic
potential in Eq.(1) and the electrostatic body force in Eq.
nS(F,t+l)=n8‘(F,t*). (14) (8). We show this explicitly in the next section by means of

a Chapman-Enskog expansion. Of course, with ¥hé
Different propagation rules have to be established at the suterms in Egs.(15) and (16) the conservation of the ionic
face of the macroions and at the walls. Here we use thdensities and the mass current is still fulfilled. This is guar-
bounce back rules suggested by Lad#ithat lead to no-slip anteed becaus® is determined self-consistently from the
boundary conditions. In this scheme one puts a sphere th#nic densities by means of the Poisson equation.
represents a macroion onto the lattice whereby its surface This means that we have to solve the Poisson equation at
cuts links between lattice nodes. The boundary nodes areach time step in order to determine the electrostatic poten-
defined halfway along these links and the population functial from the ionic densitiep, andp_ . For this purpose we
tionsn?® that point to the direction of the boundary nodes areuse a successive over-relaxati®0OR scheme in which one
reflected back during the propagation step. In the case dboks in principle for the stationary solution of a diffusion
moving boundaries there is a momentum transfer betweeequation[23]. But in contrast to a normal diffusion equation
the boundary nodes and the fluid. In this case the selfene introduces an acceleration parameterl<<2 such that
consistent scheme derived by Loweal. [9] and Heemels the potential is obtained as the iterative solution of the fol-
et al.[10] can be used. lowing equation:
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- - we obtain the following equations fgrs and fs:
cI)h-%— 1(r rt) -

S | (=6
AP )

1 2 > - Cgy 2 N
2 atpszzﬁtps_v'15+(9tv'15+773(V pstzsV-p VD

Cc -
+477|B75“ > Zsps(r,t)”
s=+,—

+2,0,V - psV D), (22
+(1—w)Dy(r b). 17)
hd 1 hd 1 hd
In this equation we have denoted the iteration timehlithe I s= = C2¥sV pst C¥sV pst 5(93] st EVZJ s
unit for an iteration step is again set to unitiFor a sufficient
number of iteration step®,, converges tab. We have found —c2,y5zspsV . (23)

that a suitable choice fap is 1.45 that guarantees stability
and optimal acceleration. The gradientCBfthat we need in  To achieve Eqs(22) and(23) we have used the lattice sums

Egs.(15) and(16) is given by [4]
W 18
S YT ,
Vh(r)=-2 —Sd(r-c)ci. (18 S ClaCip=Ca8.p, (24
! 24Csv i=1

Note that we use in Eqg17) and (18) the same discrete 18 1

space as the velocity space in the Iattice—BoIt.zmann equa- > CiaCigCisCis== (OupOyst Suydpst 8us0s,). (25
tions. This means that the truncation error that is caused due =1 3

to the discrete representation of the derivatives is of fourth _ _ _

order in contrast to a second order truncation error on a Equations(22) and (23) are the starting point for the
simple cubic lattice with six vectof;} pointing to the near- Chapman-Enskog expansion that introduces a macroscopic
est neighbors from a given lattice node. The stability andspace scale bVlz— er and two macroscopic time scales by
efficiency of the SOR algorithm are further optimized by t;=e€t andt,=e“t. Thet; scale describes fast convection
making use of a partially decoupled red-black Gauss-Seidgirocesses whereas on the slovgrscale the diffusion of

schemg 24]. vorticity takes place. Thus, the Chapman-Enskog expansion
enables us to consider the latter time scales separately. It was
IV. CHAPMAN-ENSKOG EXPANSION for the first time applied to lattice gases by Frishal.[25].

We now express the derivatives by means’ pofty, and
By means of a Chapman-Enskog expansion we show ip

this section that the set of discrete equations from the pre-2
ceding section indeed recover the Eds, (3), and(8) in the V=eV,, (26)
continuous limit.

. .As a first step We-rewrlte E(i$15) an9(16) for the den- 0= €0, + €20, 27)
sities ps and the partial currentg,= ypsj/p’, ! 2

) Wiy o o R and put them into Eqg€22) and(23). If we collect terms of
ps(r,t)=2i f p(F—Ci t—1)+j(r—c; ,t—1)-c; the same order im we obtain on thes! scale

Zg - R atlps: - V1' j-)s , (28
+§ps(r—c,, 1)V(I>(r c,, -1)-¢|, (19

O J 5=~ Cays(Vipst ZspsV 1 ®). (29

WiYs > > s > > >
rt c, —1)ci+js(r—c;,t—1)-cic; . ) o .
I = Z 24 [ps(r—c, Jatlsr=c )-cieil Equation(28) is the continuity equation for mass conserva-

5 R . o tion. If one takes the sum overon both sides of Eq(29)
—CoYsZsps(M ) V(r,t). (200 one obtains the “fast” part of the linearized Navier-Stokes

) - - equation for the total mass curreﬁt
If we now expand the functions of the forfifr —c;,t—1)

(f=ps.js,pV®) around positiorr and timet up to second
order, o J= 2 (Vpst2epsV1D). (30)

f(r—c t—1)=f(r,t)+| —d,—c;,V,+ %(ﬂt The first term on the right-hand side of this equation is the

negative gradient of the pressure and the second term the

) electrostatic body force.
+ciaVa)2}f(r,t), (21) On the€? scale we have
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2 0.08
1 2 > Csv 2 o3 S-n
atzpsziatlps+ &tlvl' st > ¥s(VipstzsVipsV ), < 0.07 1
(31) 0.06
0.05 4,
., 1, 1_,. 0.04 {1
‘9t21 s— CSV’YsﬁthlPs"' Eatlj st EV Js- (32 0.03 1%
0.02
From EQgs.(28)—(32) we see that the transport of the ion 0.01 4.7
densities to equilibrium can be either achieved by convection 0.00 ¥
or by diffusion. So, if&tlfs vanishes Eq(29) is solved by the ’ ’ ' r

Boltzmann distribution, Eq(5). And by using Egs(28) and

o . 2. FIG. 1. Th dial ionic densiti d ion wath
(29), Eq. (31) for the densities simplifies to © radial fonic densilies around a macroion

=4.5 forZ=100 as determined directly from(F) (filled symbols

(33 for the counterions and open symbols for the cojarsd by calcu-

lating it from the electrostatic potentidlines); see text, for the
eindicated Debye lengthsy .

(9tzps:0-

This equation implies that the fluid is incompressible on th
t, scale. In this case there is no diffusion on thescale ) _
because the ionic densities have already come to their equite. Furthermore, we discuss the dependence of the sedi-
librium on the fastett; scale. On the other hand, if we as- mentation velocity on the charge of the spheres. We then
sume that the second derivativemfwith respect tat; van- ~ COmpare our results to experimental data.

ishes then Eq(31) becomes a diffusion equation with the  Before we show the results for the sedimentation velocity
diffusion constanD = c2 vJ/2 for ions of types. The diffu- we discuss to what extent the calculated electrostatic poten-
SV "

sion process relaxes the densities(s= +,—) again to the EaIT ar_ld the _|fon|c de25|t||es aroundr? macroion ?re influenced
equilibrium distribution(s). y lattice artifacts. The latter may have several reasons. We

We still have to discuss Eq32) for the mass current on use a simple way to introduce the charge of a macroion. We

thet, scale. It is reasonable to assume that the derivatives (ﬁssign 'its _chargz by dist_ributing the densities on the ""?t“ce
- nodes inside the macroion such that the net charge, i.e., the
ps andj s with respect ta, are small on the, scale. So we

) . sum over all these nodes, is equal2oThis may have the
may neglect the first two terms in E(B2). Furthermore, e oo ot that the effective charge distribution on the surface of
have to sum oves on both sides of Eq(32) n order to the macroion is anisotropic because the inner nodes form
obtain the equation of motion for the total curr¢ntn thet,  only an approximative representation of a sphere that can, of

scale course, be improved by increasing its radiasAnother
drawback that is due to the lattice lies in the range of the
dy f= Evzj*_ (34) ele_ctrostatic potential. The Debye length, measyred in Ia'_[tice
2 61t units, must be at least larger than one. Otherwise, the simu-

) ) . . ] lation becomes unstable because one has strong discontinui-
Moreover, if we combine this equation with EQ9) for  ties in the ionic densities between two lattice points close to
variations on the; scale we obtain the following equation: the surface of the macroion.
The importance of these artifacts can be checked by de-
sz*_ Cgv vV pe— Cgvz yzp VD, (35 termining the radial ionic .densmqg(r') around a spher]cal
s s macroion, i.e., the densities for the ions of typat a dis-

tancer from the center of the sphere. In the absence of arti-
So, we recover Eq(8) for the total current whereby the factsp(r) should obey

kinematic viscosityr is one-sixth and the equation for the
pressure depends on the parameters

1

at;:6

ps(r)=psexp(—zsd (). (37)

p=C§V2 YsPs - (36)
S In Fig. 1 we show an example of the(r) calculated di-
rectly (symbols and from the right-hand side of E@37)
(solid lineg for a macroion with a radiua=4.5 and charge
Z=100. The length of the simulation box is=80 and the
density of the neutral fluid is set tp,=20. The Debye
length is varied by changing the sum of the mean ionic den-

In this section we present the results for the sedimentatiosities from X,ps=0.0063 @p=5.6) to Zs;p=0.1 (\p
velocity of an array of charged spheres in an electrolyte so=1.4) whereby the Bjerrum length Ig=0.4. We can infer
lution. We show that our method gives correct results in thafrom Fig. 1 that the ionic densities as calculated directly
it recovers an analytical formula that is valid in the limit of agree very well with those calculated from the right-hand
an isolated, weakly charged sphere in an unbounded electreide of Eq.(37) even for a Debye length as small as,

Note that fory,;= vy, this is just the equation of state for an
ideal gas.

V. THE SEDIMENTATION VELOCITY
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=1.4. This means that=4.5 is a reasonable choice for the UL, $= e 710
radius of a macroion that keeps lattice artifacts small at least 0.9999 {1+, 40,
for A\p=1.4. "
Now we consider one charged macrosphere in a unit cell 0.9997
of lengthL with a fixed position. It represents one particle in
an array of spheres on a simple cubic lattice because it inter- 0.9995
acts with its own periodic images. The volume fraction of the
macroions is given by = (47a3%)/(3L3). In order to inves- 0.9993
tigate sedimentation phenomena we have to introduce a
gravitational force in the LB equations. After a time of the 0'99910_0 05 10 15 50
order 7s=L?/veg (v is effective, kinematic viscosity of the xa

fluid in the presence of the spherethe steady state is _

reached for which one determines the average flow velocit)é FIG. 2. U/U, for the volume fractiongp=0.0046, 0.0018, and
in the unit cell. We divide the latter by the average flow 2-000 76 as a function ofa. The charge of the macroion is set to
velocity of the corresponding neutral system and yield the?- =10 The solid line IS the Egsu“ from Booth's thgory. T_he Inset
ratio U/U of the sedimentation velocities in the charged ana.Sh°W§U/U° asa fu.nCt'on Ofp™*for xa=0.5. Tlr,'f solid fine in the

. inset is the fit function 0.999 2690.002 455 @~

the neutral system, respectively. For the larger systems con-
sidered, we did not wait until the system came to its steady
state, because we know that the time dependence of the ap- £=1+c222. (40)

parent sedimentation velocity ., {t) is given by Uo

The coefficientc, can be calculated analytically by solving
1—exp<—i”. (38) the electrokinetic equations of motiofl), (3), ang (8)
T whereby the Poisson equation is solved in the Debyekidu
limit. The final expression forc, has the following form

By computing numerically the time derivative of E(B8) (26,27,
one obtains a simple exponential function with the two un-

Uapdt) =U

S

known quantitied) and 74 that we computed from fits of the > Zp D1t

logarithm of this exponential function. With this procedure it N kgTlg s f(xa) (41)
was possible to determing within a time of the ordett 2 72ma’y — ka),

~ 1420. We checked the accuracy of our fitseat 0.0018 by g Zsps

comparing them to the exact steady state results, and we

obtai?ed identical results fdd/U, as a function ofka (« where;S denotes the mean density of the ions of tgdar

=\p). ) away from the center of the macroion,is the shear viscos-
In the following we show that our LB method recovers anijty f(xa) is a function of exponential integrals of different

analytical result folu/Uq which was first derived by Booth  grqern E (x)=x""1[*dt t "exp(~t).

[26], and later slightly modified by Ohshine al.[27].} It is Cn X

valid in the limit of infinite dilution and small charge of the

1
macroions, i.e., a weakly charged macroion in an electrolyte f(xa)= ————{e?**¥[3E,(ka) —5E¢(ka)]?

with infinite extension. What do we expect in this case? Due 1+(xa)
to the external force the ionic concentrations around the mac- Ka 2xa

: : ! . +8e“Y Es(ka)—Es(ka)| — e 4E3(2ka
roions that form the electrical double layer deviate from their [Es(ka)~Es(xa)] [4E5(2wa)
equilibrium values. The double layer loses its spherical sym- +3E4(2xa)—7TEg(2xa)]}. (42

metry due to the fluid motion that results in an electrical _ _ _
dipole field pointing in the direction opposite to the motion We have determinetd/U, as a function of«a for different
of the macroion and thus reduces its sedimentation velocityolume fractions. The radius of the macroion is fixedato

Booth’s calculation starts with the ansatz =4.5. Moreover, the diffusivities of the ionic species in the
fluid are chosen to b®;=0.165 for the counterions and
o D,=0.25 for the coions. The rati®,/D,=0.66 corre-
iz 1+ E c Z¥ (39) sponds to that oD,/D¢ in sodium chloride. The Bjerrum
Uo k=1 length is again set tb;=0.4. In order to varyka from 0.15

to 1.5 we have to changg.ps from 0.000 25 to 0.022 11,
and takes into account only terms in the lowest nonvanishingespectively. This is small compared to the density of the
order inZk, neutral fluid,p,=20. So by changinga we do not change

the viscosity of the fluid significantly.

Figure 2 shows the results for a surface chatgelO of
'However, Booth’s result agrees with the one of Ohshihal.  the macroion. We demonstrate below that this value is small
for an 1-1-electrolyte. We are only interested in this special case itnough for the approximatiof28) to hold. First, we infer
this paper. from Fig. 2 that the relative reduction of the sedimentation
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velocity due to the charges is only of the order of faat Uy, : '_0 0(|)076| E—
Z=10 in thep range considered)/U, exhibits a minimum 0.99 1% #=5

that moves to higher values @&fa with increasinge. The \\_ -
occurrence of such a minimum is reasonable since an in- 0.97 1 ‘\ \\Y_,./”’ A
crease ofka is accompanied with two competing effects. On “’\\ 7
the one hand, the electrostatic potenflabecomes stronger 095 A\ //

due to an increasing salt concentration but, on the other \

hand, it becomes also more short ranged because of a de- 0.93 1 "\ i
creasing Debye length, and thus, it affects only the flow near ST B e ozt
the macroion. The value of the minimum iU, decreases O e T 08 B8 10 15 T4

with decreasingr and seems to move towards the one of the

Ka

Booth curve forp— 0. This also holds for the amplitude and
the shape oU/U, for ¢—0. In order to give quantitative 0.04 : : e Fa—
evidence that our calculation would recover Booth’s result 1-UJ, § ¢=0.00076 /xa=05
we plot in the inset of Fig. 2U/U, as a function ofp' at 0.03 1 / ‘
xa=0.5, i.e., around the position of the minimum. The fit in ]
this figure with a straight line indeed approaches the Booth 0.02 1
result, i.e., atp=0. ]

Up to now we have shown only the results fofU, for a 0.01 |
small charge of the macroiafi=10. But it is of course in- ]
teresting to check up to which valuesothe approximation
(40) holds. If Eq.(40) would be exact, one could renormalize 000 ™ 360 660 500 1200
U/U, as a function ofxa for a given chargeZ=27,4to a z

new chargeZ=2Z,,, by multiplying 1—U/Uq by Z2,,/Z%4.
In this way we have renormalized our data #6+10 at¢ =100 andz=130 (filled symbolg. The open symbols show data
=0.00076 toZ=100 andZ=130, and we compare these for Z=10 that are renormalized ®= 100 andZ= 130 (see text
data sets in Fig. (3 with the corresponding simulation re- (b) 1—U/U, as a function o for the indicated values ofa. The
sults for the latter two values df. We see that we have solid lines show the following fit functions:g(Z)=2.916
strong corrections to the results as expected from Booth'& 107 °Z%—6.086< 10 +Z*—1.173x 10" *°Z° for xa=0.16, g(2)
theory, especially around the minimum WU,. First the =5.182<107°Z?-2.810<10"*%Z*+5.801X10"*Z° for «a
amplitude of the minimum is underestimated by the renor-=9->: gl(ZS)ZTi'Oz& ﬁojfz_g'ig‘u 10|_n§]4+t1'592x 10_1526 .
m_allzed curves and also the position of the_m|n|mum is at a5 (;‘athe latter ;rea;sffnctilgsz.s ow only the term proportional fo
slightly larger value. To study the corrections to Booth’s
theory more quantitatively we plot in Fig(l3, 1-U/Ug as
a function ofZ for ka=0.16,0.5, and 1.5. The solid lines in
this figure are fits of the forny(Z)=c,Z?+c,Z*+ceZ°. We have developed a LBM for the simulation of the dy-
From the comparison of the different functiogéZ) to the ~ namics of suspensions of charged colloidal particles. In this
corresponding ones with only the leading term proportionamethOd a set of nonhnear, coupled glectrokmeuc equations is
to 72 [dashed curves in Fig.(B] we can conclude that the _solved thg_t consists of convectlve_ dlffu_S|on equqtlons for the
corrections to Booth’s theory become important for50. 10N densitiesps (s=+,—), the linearized Navier-Stokes
Finally we address the question whether our results are iequations for the mass currentand the Poisson equation

agreement with a dynamic light scattering experiment byfor the electrostatic potentigb. Furthermore, a neutral fluid
Schumacher and van de VE28]. They measured the diffu-

FIG. 3. (@) U/Uy at ¢=0.00076 as a function oka for Z

VI. CONCLUSIONS

sion constanD for a system of gold particles in distilled U

water. Note thaD/D,, is equal toU/U,. The radius of the 0.95 o Schumacheretal T
gold particles was around 20 nm and their volume fraction 0.97 \‘ c—--e$=o:ooo7é, Z=100
(2x107°)%. Different data sets were determined by chang- TN

ing the value of«ca with different salts. We consider here the 0.95 \\ e X
experimental data points measured with sodium chloride that \ //

are shown in Fig. 4 in comparison to our simulation data at 0937 %\ yd I
¢=0.0046 and atp=0.00076 forZ=100. It is interesting 0.91 1 ‘§ L
that the experimental data can be very well described by the ) \ kA

simulation curve forp=0.0046 although the experiment was 0.89 b : , :

done at a very small volume fraction of gold particles and the 00 04 08 12 16 20
curve fore=0.000 76 deviates strongly from the experimen- ka

tal data. More systematic experiments, e.g., for different vol- FIG. 4. U/U, at ¢=0.000 76 andp=0.0046 as a function of
ume fractions, would be necessary to clarify this discrepancyka for Z=100 in comparison to experimental ddtdosed circles
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characterized by the densipy, can be introduced in order to For aboutZ>50, corrections to the Booth theory become
keep the viscosity in the fluid essentially constant. Theimportant. Up toZ=130 our simulation data can be well
propagation ofps and f is computed by means of one- described by an expansion up to or@ These numerical
particle distribution functions for each species. But in  data could be used to test theories that go beyond the Booth

contrast to the normal LBNb, and| are not simply given as 'evel. We mention that very recently also a mode coupling
zeroth and first moments of tme’s, respectively. This is due th€ory with hydrodynamic interactions was shown to be in

to the coupling of the ionic part of the fluid to the gradient of 2greement with Booth’s theof29]. This theory is also able

& that leads to an additional diffusive term in the propa a_to consider colloidal systems at finite volume fractions.
propaga-— 4 ) BM for charged colloids is well suited to study their

tion of the ion densities and & body force term in the PrOPa5hort-time dynamics and the flow around macroions. It is not

gation of the mass current The electrostatic potential is regtricted to steady state problems but one can also determine
determined from the ion densities by means of a P0issofjme dependent quantities such as velocity autocorrelation
equation solver for which we use a successive overfnction of a tagged macroion in a colloidal suspension. Also
relaxation scheme. Our method is fast, stable, and easy {@yriicle shapes, which are different from a spherical one can
implement. We have verified our numerical scheme byje easily introduced in our LBM. Moreover, the introduction
means of a Chapman-Enskog expansion. of walls is rather simple, which makes it possible to study

As an application we applied our method to determine thgnarged colloidal particles in confined geometries.
reduced sedimentation velocity/U, for an array of charged

spheres on a simple cubic lattice. We determibetl; as a
function of the dimensionless parameiex for different vol-
ume fractions of macroiong. We compared our results with
an analytical formula first derived by Booth that is valid in ~ We thank F. Capuani for a critical reading of the manu-
the limit of a weakly charged, isolated macroion in an un-script. The work of the FOM Institute is part of the scientific
bounded electrolyte. Booth's theory starts with an expansioprogram of FOM and is supported by the Nederlandse Or-
of U/Ug, in powers of the macroion chargeof which the  ganisatie voor Wetenschappelijk OnderzgskVO). J.H. ac-
lowest nonvanishing ordeZ? is taken into account. We gave knowledges financial support by the Deutsche Forschungsge-
evidence that we recover Booth’s result in the limit-0. meinschaftGrant No. HO 2231/1-1
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