PHYSICAL REVIEW E, VOLUME 64, 061501

Relaxation of surface charge on rotating dielectric spheres:
Implications on dynamic electrorheological effects
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We have examined the effect of an oscillatory rotation of a polarized dielectric particle. The rotational
motion leads to a redistribution of the polarization charge on the surface of the particle. We show that the
time-averaged steady-state dipole moment is along the field direction, but its magnitude is reduced by a factor
that depends on the angular velocity of rotation. As a result, the rotational motion of the particle reduces the
electrorheological effect. We further assume that the relaxation of the polarized charge is arised from a finite
conductivity of the particle or host medium. We calculate the relaxation time based on the Maxwell-Wagner
theory, suitably generalized to include the rotational motion. Analytic expressions for the reduction factor and
the relaxation time are given and their dependence on the angular velocity of rotation will be discussed.
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[. INTRODUCTION the reduction factor and the relaxation time on the angular
velocity of rotation will also be calculated.

The prediction of the strength of the electrorheological
(ER) effect is still a main concern in theoretical investigation Il. STEADY-STATE DIPOLE MOMENT

of ER fluids [1-5]. An ER fluid is a suspension of highly  consider a dielectric sphere under the influence of an

polarized particles in an insulating host. The ER effect origi-o o yic fie|q Eo=Eoz; its induced dipole moment is given
nates from the induced interaction between the polarized par- - A . . .
Y: Po= Poz. Assume that it is under a rotational motion of

ticles in an ER fluid. Upon the application of an intense I . ) i ) )
electric field, the particles in ER fluid aggregate into chains@ngular velocityw = — wy. For a rotating dielectric sphere in
and then aggregate into columns in a short response tinf@ electric field, the rotational motion leads to a displace-
[3,4]. The rapid field-induced transition between the fluid menlt th'ts F’P'af'zﬁd chargfesh on .thel surface of sphere. As a
and solid phase makes this material important both for widd€Sult, there is a change of the dipole moment, described by
industrial applications and for experimental and theoreticat>X P. The surface charges also suffer from relaxation of
investigation. various kinds, and the rate of change of the dipole moment is

In deriving the induced interactions between particles, exdescribed by- (p—po)/7, wherer is a relaxation time. The
isting theories assume that the particles are afffest(. In  two effects have to be balanced against each other, resulting
a realistic situation, the fluid flow exerts force and torque orin a steady-state dipole momept which deviates from the

the particles, setting the particles in both translational anéquilibrium dipole momenﬁo. Let the resultant dipole mo-

rotational motions. For instance, the shear flow in an ERment bef)=p §<+p §/+p 2. The rate of change of the dipole
suspension exerts a torque on the particles, which leads t0oment is gi(ven gy ‘

rotational motion of the particles about their centgtg].

Recent experiments gave evidence that the induced forces ~
. . . dp . . 1. .
between the rotating particles can be different from the val- i Xp——=(p—Po), )
-

ues predicted by existing theorifs2].

To gain some insight into the phenomenon, we have re- . ) o
cently formulated a theoretical model, which describes thevhere the first term on the right-hand side is due to the
relaxation of the polarized charge on the surface of a unifotational motion and the second term is due to a relaxation
formly rotating particle[13]. We showed that the rotational Process, in which the relaxation-timeis determined by the
motion of the particles reduces the induced forces betweejeta"‘?‘ of the r(_elaxatlon process. In component form, the dif-
the particles. We called the reduction of interparticle force erential equation reads
due to the rotational motion of the particles the dynamic ER
effects[13]. In this paper, we extend the consideration to an bxz P wp,, byz _ &, bzz WPy— _(pz— Po) )
arbitrary rotational motion. In particular, we will obtain the T T T
steady-state dipole moment of a rotating sphere under a sinu-
soidal oscillatory shear motion. We further assume that thdhe equation forp, may be readily integrated to yield,
relaxation of the polarized charge is due to a finite conduc=pyoe ", whereJ(t)=[{dt/. Sincer (can be time de-
tivity of the particle or host medium. We will derive an ana- pendentis real and positivep, vanishes asgoes to infinity.

lytic expression for the relaxation time. The dependence offo solve the equations fqu, and p,, we use the complex
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notation: letp=p,+ip, and p,=ip,, p can be found by As aresult, the motion of particles reduces the ER effect. We

solving the following differential equation: define the reduction factd as
dp | 1\~ Po R= <pz>:; 38
G-l @ b LT ®
With the initial conditionp=p, whent=0, Eq.(2) admits a yfl;gd;c“o” is even more significant at high frequencies,
standard solution ~ HURT
- _ _ [te t/ 1 I1l. CALCULATION OF RELAXATION TIME
pe'—po=po | —dt, |=f (——iw)dt, 3 o .
0T o\7 So far, our proposed relaxation time has no explicit ex-

pression. If the relaxation process is originated from a finite
where | is the integration factor. For a uniform rotational conductivity of the particle or host medium, then we can
motion, w=w, is a constant] =t/7 —iwet, EQ. (3) can be calculate the relaxation time based on the Maxwell-Wagner
solved theory of leaky dielectric§l4]. For a(nonrotating spherical
5 inclusion embedded in a host medium, the expression is
= _ Po s —t(l—iwgn)/T
p 1_ion(l iwgTe 07Ty, e

€)

€1+ 2€n
o1+ 20’

As t goes to infinity, we obtain the steady-state solution for a . .
uniform rotation where €, €, (01,0, denote the dielectric constafton-

ductivity) of the sphere and host medium, respectivelyis
~ the permittivity of free space. For typical values of the per-
p= L. (4) mittivities and conductivities of common ER fluids, the re-
1-lwor laxation time ranges from microseconds to milliseconds, and

) ) the dynamic ER effect can be observed in experiments.
In general, the analytic solution of E(®) can be found only In order to account for the impact of a rotational motion

for a few simple cases and the integral must be evaluate 0N ti i i
numerically. We concentrate on the steady-state solution at ganilr,em::f;ltlgihgigiﬁﬂﬁ? (I)? tigl (s%)hz)r/elee
sufficiently long time and Eq(3) may indeed be solved €x- gjready showed that the dipole moment is reduced by a fac-
actly. By using the L'Hepital's rule, we find tor R. If we assume that the polarization is uniform through-
| - out the sphere, which can be achieved when the oscillating

Po ) frequency is high, we may write;=1+Ry; in Eq. (9).

Physically, it means that the effective polarization of the
sphere is reduced as a result of the rotational motion, leading
to a reduction of the effective dielectric constant of the
sphere. After some simplifications, we obtain

~ o~ i e
P=pPolM——"= n y
tHwTeII 1_|(l)7'

wherel denotes the time derivative of We have assumed
that 7 is real and positive bub may be an arbitrary function
of time. Equation(5) is the general result for arbitrary rota-
tional motion, being of the same form as Ed). However, rErt ————
the transient solution has to be calculated numerically. V1+63k22
For a dielectric sphere undergoing a simple harmonic os-

cillation, 6(t) = 6, sint), the angular velocity is given by where
w(t)=6= 0ok coskt). From Eq.(5), the steady-state dipole

moment is T = eo(

To™ Tw

(10

1+2€p,

— and T19=¢€
o1+ 20 00

€1+ 2€p
o1+ 20"
Po i — Ok cog kt)

p=-— Po . (6 It may be shown that=, for kép=0 and7— 7. for ké
1—i6pkTcogkt) 1+ 65k22co(kt) — oo, Equation(10) is a self-consistent equation ferand we
may calculate the relaxation time self-consistently.
The time dependence of the dipole moment is still periodic.
Note that although the sphere is undergoing a simple har- IV. NUMERICAL RESULTS
monic oscillation, the dipole moment does not exhibit a
simple harmonic motion. If is independent of time, we can ~ To examine the dependence of the reduction faBtan

calculate the time average of the dipole moment the angular velocitykf,, we plot R vs ké, in Fig. 1 for
several different values af,. Without loss of generalityi.e.,
(p,) (p,) 1 in terms of some unit relgxation timewe c_hooserwz 1 and
=0 and = —. (7) To=2, 4, and 8, respectively. The reduction factor decreases
Po Po 1+ 6gker rapidly with the increase d€6,, which means that the dipole
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moment is greatly reduced when both the oscillation fredocal minimum att=x/k. When the oscillation amplitude
guencyk and the oscillation amplitudé, become large. increases, the local minimum value decreases, showing a
Next, we see how the relaxation time dependskay. large variation op, /py. Next, we concentrate on the parallel
From Eq.(10), 7 is bounded betweer, and ... The lower component [f,/py). When the oscillation amplitude in-
bound 7., is reached wherkf, tends to infinity, which is creasesp,/py reduces in general, although the maximum
achieved at large frequency. For a larger valuergfthe  value is always equal to unity. These results are expected
relaxation time decreases more rapidly wit#y,. The condi- from Eq.(7),
tion of high-oscillation frequency reads

P o g P21
k> i (12) Po Po 1+ 9(2)k27'2 .

Too
Hence, on the averagép,)/p, must decrease when we in-
The time evolution of the dipole moment is worth studying. crease the oscillation amplitudg.
In Fig. 2, we plot the steady-state solution of the perpendicu- Now, we examine the case for a constant amplitéglbut
lar componenp,/py and parallel componerg,/p, against  varying frequency. This is a realistic case, since in experi-
time. We setry=2 andr,.=1, 7is then calculated from Eq. ment, we can hardly increase the amplitude but we may eas-
(10). We first sekk=1 and vary the oscillation amplitudg. ily change the frequency. In the right panel of Fig. 1, we
In the left panel of Fig. 2, we plap,/pg andp,/pg against  choosed,= /4 andk=1 and 3. The results for constakt
time for 6y=ml4, 6,=m/2, and 6=, respectively. For and constant, show similar time dependence. Howewvgy,
each value off,, the magnitude of the perpendicular com- and p, show a larger variation in their magnitudes, if we
ponent @,/pgy) has a maximum value of 0.5 and it has aincrease the value & It should be remarked that we have

k=1 8,=m/4
1.0 T T 1.0 T T T

FIG. 2. The reduced dipole momept, /pg
andp,/p, plotted as a function of time for vari-
ous frequency dependent(7y=2,7,=1).
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assumed that the oscillation frequency is high so that thend use it to study the interaction between particles and the

relaxation time is nearly constant during the motion. oscillating fluid, and derive formulas of the force and torque
exerted on particles for a suspensid’].
V. DISCUSSION AND CONCLUSION In this paper, hydrodynami@iD) interaction effects have

] not been considered. However, electrorheological fluids are
Here, a few comments on our results are in order. As oUfpcally very concentrated suspensions and in considering dy-
steady-state solution is general, one can extend the calculgamic effects, it seems that HD effects can be strong. This is
tions to an arbitrary rotational motion. We have shown thaty f,ture problem.
the motion of particles reduces the strength of the dipole |n conclusion, we have investigated the problem of how
moment. It is natural to further calculate the interparticleihe dipole moment of a dielectric sphere varies with time for
force between two rotating spheres. We expect that the intefyy arbitrary rotational motion. We have developed a formal-
particle force will be reduced substantially because the forcgm for the rotational motion of the sphere and derived the
between parallel dipoles changes from attractive to repulsiveg|axation time by using the mean-field theory. We have
when their orientation varies from the transverse to the longhown that the time-averaged steady-state dipole moment is
gitudinal field case. o along the field direction, but its magnitude is reduced by a
So far, our derivation of relaxation time is based on thefacior that depends on the frequency of oscillation. As a re-
mean-field theory. We may extend the Maxwell-Wagnergyt, the motion of particles reduces the ER effect. We further
theory to the polarization relaxation EJf oscillating particles. cg|culate the relaxation time based on the Maxwell-Wagner
In this case, we should add a teppuv to the polarization theory. The dependence of the reduction factor and the relax-
current density, wherpp is the polarized charge density and ation time on the angular velocity of rotation has also been
v=wXT is the rotating velocity. However, it is not possible discussed.
to convert the extra term into a dielectric constant and the
generalization becomes more complicated due to the nonuni- ACKNOWLEDGMENTS
form polarized charge density inside the rotating spherical
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