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Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects
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The problem of calculating the electric polarizability tenser of objects of arbitrary shape has been
reformulated in terms of path integration and implemented computationally. The method simultaneously yields
the electrostatic capaci@ and the equilibrium charge density. These functionals of particle shape are impor-
tant in many materials science applications, including the conductivity and viscosity of filled materials and
suspensions. The method has been validated through comparison with exacifestiiessphere, the circular
disk, touching spheres, and torit has been found that $Qrajectories yield an accuracy of about four and
three significant figures fo€ and a,, respectively. The method is fast: For simple objects, tt@jectories
require about 1 min on a PC. It is also versatile: Switching from one object to another is easy. Predictions have
also been made for regular polygons, polyhedra, and right circular cylinders, since these shapes are important
in applications and since numerical calculations of high stated accuracy are available. Finally, the path-
integration method has been applied to estimate transport properties of both linear flexible potamdom
walk chains of sphergsand lattice model dendrimer molecules. This requires probing of an ensemble of
objects. For linear chains, the distribution function®fnd of the trace 4,), are found to be universal in a
size coordinate reduced by the chain radius of gyration. For dendrimers, these distribution functions become
increasingly sharp with generation number. It has been foundGhetd «, provide important information
about the distribution of molecular size and shape and that they are important for estimating the Stokes friction
and intrinsic viscosity of macromolecules.
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[. INTRODUCTION identifying more subtle topological features such as the knot
complexity of knotted polymers and the genus and other to-
There are many applications in materials science and elegological characteristics of membraned. At present, nu-
tromagnetism involving boundary value problems for whichmerical approaches based on differential equation or finite
the boundaries have complicated shafiEls Examples in- element methods have not been generally effective when the
clude the computation of the electrostatic capacity, Smoluboundary is intricate. The numerical path-integration meth-
chowski rate constant and translational friction coefficient ofods discussed below will make this important class of prob-
arbitrary objects[2—5] the fluid discharge through a pipe of lems more accessible.
arbitrary cross sectiorif] and the calculation of virial coef- In the present paper, we extend previous numerical path-
ficients for the leading order concentration dependence dftegration calculations of the electrostatic capacity of arbi-
effective material properties of suspensions and compositdéarily shaped objecti2—4] to the calculation of the electri-
containing particles of complex shape,8]. Moreover, the cal polarizability tensora, and apply these calculations to
far-field scattering of objects by electromagnetic radiationthe estimation of the intrinsic viscosify;] and intrinsic con-
[9-11] and sound12] and the propagation of electromag- ductivity [o].. of suspensions of rigid particles and highly
netic [13] and acoustic radiatiofil4] through apertures all conductive particles, respectively. The probabilistic calcula-
involve the calculation of the electrostatic capacity and election also yields the electrostatic capaci@y providing an
tric and magnetic polarizability of complex shapes. Theseestimate of the friction coefficient of a Brownian particle and
same quantities arise in the virial coefficient calculatipfis  the Smoluchowski rate constant for the particle undergoing a
for the transport properties of inhomogeneous materialsdiffusion-limited reaction[1-4]. This simple and general
Therefore, these calculations have many applications t6omputational method yields high accuracy when compared
problems involving the scattering of light or sound from par-With results for exactly soluble particle geometries. It should
ticles having elaborate structur@.g., snowflakes, atmo- have many applications both in materials science and in bio-
spheric dust, particle aggregates in liquid dispersions, anghysics, where the properties of inhomogeneous materials
macromolecules in solutionMoreover, there is an extensive and of particles of complex shape are of interest.
literature devoted to using these shape dependent energy
functionals to classify particle shap®,15]. Such functionals
have already been used to characterize the topology of poly-
mer chaing16] and we expect that they should be useful in

II. REVIEW OF HYDRODYNAMIC-ELECTROSTATIC
PROPERTY RELATIONS

There are many analogies relating the hydrodynamics of
suspensions and flowing fluids, the electrostatic properties of
* Authors to whom correspondence should be addressed. conducting and insulating objects, and the elasticity of com-
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posite materials and elastic shafts under torsion. For ex- y(dispersion= 7(dispersing fluio{1+[ 7]+ o(¢2)},
ample, the hydrodynamic mass tensbrof particles of gen- (

eral shape is proportional to the magnetic polarizability ) o - )
tensor ey, of a conducting particle having the same shapelSince this expansion is analogous to the virial power series
[7,10,17. (The hydrodynamic mass tensor is the true masdor the pressure of a nonideal gas, we [e_fgr toitasa “V'”"a'
plus the “virtual mass” associated with induced fluid motion €XPansion” and to its coefficients as “virial coefficients.
accompanying object movemeft8]) The friction coeffi- [7]) The first virial coefficien{ ] is independent of interpar-

cient of a plate of general shape translating normal to itéicle interaction and is conventionally called the “intrinsic

plane and the force required to displace the interface of aK'S?‘?S'W n the rheology Ilteratl_Jre. S|m|larly, we can d.eflne
a virial expansion for the electrical conductivity of a disper-

elastic material are proportional to the electrostatic capacity. : . :

of the plateC [19]. The rotational friction coefficient of an Sion of randomly dispersed and oriented particles
axisymmetric body is proportional to the component of the (dispersion= o(dispersing fluid{1+[o]p+O(H?)},
hydrodynamic mass tensdd about the axis of symmetry

[20] and generalized axisymmetric potential theory indicates

that this hydrodynamic mass component is proportional tol he “intrinsic conductivity”[7,8] of a dispersion of particles
the capacity of the object rotated symmetrically into twothat are highly conducting relative to the dispersing fluid
higher spatial dimensior{€,21]. The problem of calculating (metal flakes in a polymer matjixs denoted o'].. and for

the torsional rigidity and the elastic strain field within a insulating particles in a relatively conductive fluidil par-
twisted elastic bar is mathematically equivalent to calculatlicles in salt waterthe leading virial coefficient is denoted
ing the fluid flux and velocity field for the Poisseuille flow [oo. The refractl_ve index, th_ermal conductivity, dielectric
flux and velocity field in a pipe of arbitrary cross section qonstant, magnetic perr_neablllty and other trgn_sport proper-
[6,15 and this problem in turn reduces to the solution 0f'ues can be developed in the same type of virial expansion

Poisson’s equation and corresponding electrostatic applice£-7’8’27_29 I . . . .
tions[22]. The flux of an inviscid and viscous fluid through When an electric fiele is applied to a medium contain-

S : . ough g highly conducting particles, a charge distribution devel-
holes in a planar interface is governed by the capacity an

. . ps on the particles. The far-field disturbance is dipolar and
hydrodynamic mass of the holes, respectiid$,24. The  iq gipolar field modifies the effective conductivity of the

virtual mass density of a rov_vi_ng dispe_rsion pf bub_bles isdispersion. The induced electric dipole momenof a per-
exactly related to the conductivity of a dispersion of msulat-fecﬂy conducting particle is determined by the electrical po-
ing particles where the hydrodynamic-electrostatic analogyarizapility tensore, [30],
holds for arbitrary concentratiof25]. Rayleigh also pointed
out that the field equations governing an incompressible pu=(1/47)a, E, (€]
solid at equilibrium are identical to those for the steady flow
of a Newtonian fluid where particle displacement replacegind the magnetic momept,, is similarly related to the mag-
velocity and shear modulus replaces viscosity. Thus, th@etic polarizabilitya,, and the magnetic fieltl. These in-
modulus increment of a solid and the viscosity increment ofduced dipoles for a dilute dispersion of randomly oriented
a fluid, both arising from identical dispersions of rigid inclu- conducting particles are invariant to the macroscopic orien-
sions, are identicdl26]. This is just a sampling of the many tation of the material so that the virial coefficient for the
relations that exist between these field theories. conductivity is invariant to particle orientation. In particular,

There are also many approximate electrostatic- the intrinsic conductivity o].. is proportional to the trace of
hydrodynamic relations of this kind, which are useful in es-the electrical polarizability tensqi7,31]
timating properties dependent on particle shape. In the
present paper, we are particularly interested in two approxi- [o].=[tr(a/dV,], (4)
mations, one relating the electrical polarizability tenagof
a conducting object to the intrinsic viscosfty] of a suspen-
sion of rigid particles having the same shdpg, and the
other relating the electrostatic capaci®y of a conducting
particle and the translational friction coefficiefitof a
Brownian particle having the same shd@3,5. The fric-
tion coefficient and intrinsic viscosity are widely used in
macromolecular characterization, and these hydrodynamic-
electrostatic analogies permit their estimation from numeri-
cal calculations _ohe andp via probqbi_li_stic path—integratio_q while for d-dimensional hyperspheres, Sangi8] obtained
methods. We briefly review the definition of these quantities
to establish our notation and the units utilized in our compu- [ o(conducting sphepd..=d, (50)
tations below.

The viscosity of a dilute particle dispersion of rigid par- and
ticles can be developed formally in a power series in the
particle volume fractionp, [o(insulating spherd.,.,=—d(d—1). (5d)

whereV, is the particle volume and is the spatial dimen-
sion, and the virial coefficient for insulating particles],
corresponds to Eq4) with a,, replacingea, (up to a sign
convention. For spheres, Maxwell32] showed

[o(conducting sphepd..=3, (5a

[o(insulating spherdy,= —3/2, (5b)
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The imposition of a shear field to a dilute dispersion of 10000 F—————r————— "
rigid particles induces a stress dipglstresslet”) field [34] (@)
that modifies the effective viscosity of the dispersion. The I ]
intrinsic viscosity is obtained as an angular average of the o0 | o Exact 5
tensor field describing the perturbation of the flow field by g © Numerical ]

the particle inclusion. Douglas and Garbofzj noted that a
formal angular averaging of the stress dipole describing the—=
hydrodynamic interaction impligsp]«[ o].. since the angu-
lar average of the Green’s function of the Stokes equation is
the Green'’s function of Laplace’s equation. The constant of
proportionality can be fixed from the known result for 0E
d-dimensional hyperspher¢35], .

[7]=(d+2)/2. 6) N A

1 L Lol L Lo
1 10 100 1000 10000

[o].

10000 F————rrrr————

Along with Eq.(5¢) this gives the following angular averag-
ing approximatior| 7]:

[7]=[(d+2)/2d][o]... @)

1000 | °
The approximation Eq(7) has been examined for cases in g o Eﬁﬁncm
which exact results are known: triaxial ellipsoids having ar-
bitrary asymmetn|36], spherical dumbbell particles at arbi- =
trary separatiofi7], and elliptical particles in two dimensions =
[7]. It has also been examined by finite element calculations
for a wide range of both asymmetricube dumbbell over a r
range of fixed separations, circular and rectangular cylinders 10E
and symmetric shapé$sponge,” square ring, square hollow :
tube, “jacks”) selected to have high electrical polarizabilities
and to represent general classes of particle shipeRe- ; N "
sults for all these cases are illustrated in Figs) &nd Fig. (],
1(b) for d=3 andd=2, respectively. Filled circles denote

exact results and open circles indicate finite element calcula- FIG. 1. Intrinsic viscosity versus intrinsic conductivity of con-
tions. Solid lines indicate Ed7) and the broken line in Fig. ducting particles. Solid lines denote the angular averaging predic-
1(a) corresponds to the ratipn]/[o]..=0.8, the limit of tion of Garboczi and Dougldd], Eq.(7). The dashed line indicates
needle and plate ellipsoids of revolutipr]. A compilation the exact result for extended needle- and plate-shaped ellipsoids of

of [ #]/[o].. over extensive data for ellipsoids of revolution revolution. (a) Exact (®) and finite element result€O) in three
gives dimensions. Exact results are for triaxial ellipsoids, ellipsoids of

revolution[7,36], and dumbbells over a range of separations. The
[7]~(0.79+0.04[ 0 ].., (8 finite element calculations are for rectangular parallelepipeds, cir-
cular cylinders, “jacks,” “sponges,” square ring, dumbbell of cubes
in three dimensions. The uncertainty interval indicates thd“dice” ), square hollow tubes in three dimensions and rectangles, a
maximum deviation from the averagj@]. All finite element spherical lens and touching circles in two dimensighsExact(®)
data for the range of shapes indicated above and exact datgd fi_nite elemept_ result®) in two dimensions. Exact results are
for other shapes are consistent with E8). It is apparent for ellipses and f|n|_te element calculations correspond to rectangular
from Fig. 1 that a better approximation is obtained by using®"d Polygonal regions.
the prefactor 0.8 for slender particles and=56833 for less
symmetric “globular” shape$37]. Thus, although Eq.7) is  cially in the polymer science literatureelative to the mass
not exact, it gives an estimate p#] valid to about 5%. concentration rather than the volume fractign Therefore,
Results in two dimensions suggest that Ef. may be  the conventional intrinsic viscosity js7]y=(V,/M)[ 7] for
exact in that case. For instance, it holds exactly for ellipticalv the mass of the body.
shapegsee Fig. 1b)] and is also within the limit of numeri- A particle moving in a fluid induces motion in the fluid
cal uncertainty for finite-element calculations on rectangulaieven in the absence of fluid viscosity. The far-field distur-
shapeg7]. This conjecture requires further investigation, andbance created by this motion is described by a dipolar field.
is significant because “quasi-two-dimensional suspensionsThe mass of the moving particle becomes equivalent to a
can be created by dispersing particles at liquid interfg885  hydrodynamic effective mass tenddrthat is the sum of the
and because two-dimensional suspensions have been studiggte mass and a “virtual mass” tenséf,
by simulation[39].
As defined above]n] and[o] are dimensionless. How-
ever, the intrinsic viscosity is conventionally defin@zbspe- M=V,l+W, 9

100 F

1000 10000
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wherel is the identity matrixthe density of the particle and these paths hif) in some finite time. If the trajectory starts
fluid are assumed to equal unity for simplicity of discussionon () then the particle hitd) with certainty while if the
here. It has been shown rigorous|®,17] thatM=—,,, SO  particle starts a long distance away then it hits with low
that the exact hydrodynamic-electrostatic analodgy]g probability. The equipotential surfaces of constérfor the
=[tr(ay)/dV,]=—[tr(M)/dV,] immediately follows[7]. ~ charged conductor are also constant probability surfaces for
Equation(7) is an approximate counterpart to this relation hitting ). The charge density is proportional to the hit den-
for viscous fluid hydrodynamics. We finally note that the sity of trajectories launched a large distance away. Explicit
electrostatic counterpart & is the polarization tensdinot  numerical calculation o€ is facilitated by embedding in

to be confused with the polarizability tensatsor a,,). The  some closed boundary for which Laplace’s equation can be
hydrodynamic virtual mass is thus a kind of fluid polariza- solved exactly, the simplest of which is a sphg2ed]. We

tion associated with the motion of bodies in fluids. also employ the sphere embedding method in our calculation
The final electrostatic-hydrodynamic analogy that we em-of a, below.
phasize is the relation between electrostatic capacCiof a The determination ofe, also involves the solution of

conducting particle and the translational friction coefficient Laplace’s equation with Dirichlet boundary conditions, al-
of a Brownian particle of the same shape. The total charge othough of coursay, is a tensor. Tensors have not been con-
a conducting particle is proportional to the potential on thesidered previously by path-integral computation so our
body and to the electrostatic capaciBy which is itself a implementation of this calculation should have theoretical as
functional of the particle shape. Our units for capacity arewell as practical interest.

chosen so that the capacity of a spheraelin3 equals the We imagine that the body whose polarizability we wish to
sphere radius. Determination &f involves the solution of calculate sits near the origin and that two point charges of
Laplace’s equation with Dirichlet boundary conditions, as inmagnitude— Q. and+Q_ are placed at sites L along the
the case ofy,. The friction coefficienf of a Brownian par- z axis. These point charges generate the external electric
ticle is invariant to particle rotation since a diffusing particle field. Of course, we require the external field to be uniform
samples all orientations as it moves over large distances. Aver length scales much larger than the body, which is
formal angular averaging of the Oseen hydrodynamic interachieved by letting.— +%, —Q,— —o, andQ_— + o,

action indicates thatis proportional toC [2,3,5,44Q, in such a way that the electric field at the origin remains
_ S constant. Equivalently, we can imagine tiiat positive ran-
f~6my(dispersing liquidC. (10 dom walkerg“positrons”) andQ_ negative random walkers

. ) o (“electrons”) are released, respectively, from the points at
Therefore, within the angular averaging approximation, the. | and that some of these eventually adsorb on the body.

capacityC of a condugting par_ticlequalsthe hydrodynami_c We next consider a sphere of radiBscentered at the
radiusRy; of a Brownian particle of the same shape, sinceqigin. R is arbitrary as long as the body lies completely
this latter is conventionally defined d%m 7. Comparison  inside the sphere. All walkers that eventually reach the body
between Eq(10) and existing analytic results shows that it is st pass through the surface of the sphere. Our knowledge
accurate to about 1% generally and usually much bettet he problem of a point charge outside a grounded spherical
[2,3]. Equation(10) is exact for triaxial ellipsoids and a tabu-  conqductor lets us predict the distribution of random walkers

lation of exact values o€/f is gi_ven by I_-|ubbard and Dou- passing through the spheli#,30]. Specifically,
glas[3]. There are many analogies relati@gxactly to other

transport propertiegthermal capacity, Smoluchowski rate o+ (r)=[Q-8-3Q-B%po(r)+3Q-B%p-(r), (11
constant for diffusion-limited reactions, scattering length in

quantum theory and acoustics, &80 that the determination 9ives the number density of “positrons” and “electrons,”

of C has many further applications than those discussed ifespectively, that pass through the sphere. These are linear

the present papég]. combinations of three normalized distribution functions de-
fined on the surface of the sphere
I1l. NUMERICAL PATH-INTEGRAL CALCULATION OF po(r) = (477R2)71, (12)

ELECTRICAL POLARIZABILITY AND CAPACITY
p+(r)=(47R? " 1(1*cos#h). (13

It has long been known that the capadiycan be calcu-
lated formally by averaging over random walk trajectoriesHere 3=R/L<1, and@is the polar angle. Equation 11 is the
[41]. This interpretation o€ is one of the classical results of O(B?) expansion of the more general formyl,30], but
probabilistic potential theory. The formal solution can besince we takeL —«, only these terms are needed. These
stated in a very simple way that we then generalize to @xpansions indicate, for example, that of Qe positrons
description of electrical polarizabilityr,. We determineC  emitted atz=+L, SQ_ arrive at the sphere, and of these,
mathematically by solving Laplace’s equatioVy=0) 3Q. B? are distributed according {0, , while the remainder
with the boundary conditiong/=1 on the boundary of the are distributed uniformly.
object Q) and —0 at infinite distancg15]. The capacity Monte Carlo techniques can be used to estimate the sta-
defines the asymptotic decay of at large distancesy  tistics of the random walkers at all times following their
~C/R® 2 for d>2. We next consider random walks initi- arrival at the surface of the sphere. Launch a totaN¢?
ated at points outside @@ and consider the probability that positrons from the sphere B with the initial sites selected
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FIG. 2. (Colon lllustrative realization of a random walk sam-
pling path launched from an enclosing surface. The object in this
case is a model branched polymer where spheres are placed at the g 3. (Color) Random walk hit density for a unit cube. The
vertices of the “graph” describing the polymer. The fraction of g, hemispherical patches represent 2000 hits on the cube by ran-
random walk trajectories that hit the polymer rather than the launchyqy, walks launched from an enclosing sphere. Note the increased
sphere determines the electrostatic capacity. The electrostatic po'%‘ensity(charge densitynear the sharp comers of the cube where
izability tensor is obtained similarly except that the launched raNharge density becomes singufar the limit of an infinite number

dom walks are assigned charges according to the position frorgs probing walks, We estimate the capacity of the cube to ®e
which they are launchetsee text for detai)s =0.660692).

according to the, distribution. DefineK | to be the number _ B 214 2

of these that adsorb onto the body, while the remainder are Ge=~[Q-£=3Q F7Jt=8Q p(2K_/N). (20

lost to . Also accumulate the vector sum of all theSe  The total chargeg,+ g, must vanish t@(8?). This occurs

contact points and call the sukh, . Then launchiN/2 elec-  if e set

trons according to the distributiopn_ and letK_ and V_

represent the number of contacts and sum of contact points, Q_=Q,(1+6pult). (21

respectively. Technical details for doing such simulations

have been worked out in a number of caggs4], and inthe ~ The total dipole moment is

next section we describe several techniques. Finally, define _ 5 5
u=+[QB—-3Q.BJv+6Q,BY(V,/N)

1= KN, 19 ~[Q_A-3Q_AJu—6Q_AV_IN), (22
u=(K;=K-)/N, 19 while the electric field insid® is parallel to thez axis with
b= (Vo VO, (19 {hree diagoral components of the polarabilty tonser
w=(V;—=V_)IN. 17) (13,003, a39) = 120R W— (u/t)v]. (23

Furthermore, by placing electrons and positrons on an equal of course, it would be possible to repeat the calculation
footing (p++p_=2p,), we accumulate statistics for the \jth polarizations along the axis andy axis to obtain all the
case in which rgndom walkers are launched uniformly fromgiper components ofy,. However, with slight generaliza-
the sphere. This is exactly the Monte Carlo procedure alijon, it is possible to accumulate statistics on all components
ready developed for the electrostatic capaffty4]. There-  in g single run. Launch a total ®f walks from the sphere at
fore, the capacity of the body is R, with the initial site(x,y,2 chosen anywhere at random on
B the surface of the sphere. Each walker is assigned three in-

C=tR. (18) dependent charges: It is designated asxgpositron with

%robability (1+x/R)/2, otherwise it is designated as an

The total positron charge that accumulates on the body is th o N
electron, and similarly, it is given u charge and a-charge

sum .
according to the values of the other two components. In anal-
Jp=+[Q4+ 8- 3Q. B%t+3Q, B%(2K. IN), (19 ogy with the abqve, we defiriéj* and_Kj‘ to be the number
of j positrons ang electrons, respectively, that adsorb. We let
while the total electron charge is Vﬁ andVj; represent the sums of thth components of the
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displacement vectors at whigtpositrons ang electrons ad-  of D(r) is trivial it is very efficient. For the simplest shapes
sorb. Then defineljz(Kj*—K-’)/N, t=(KJ-++K]-’)/N (tis  we are able to simulate $0ndependent random walks in
independent  of j), v;;=(V;j +V;;)/N, and WiJ:(ijr about 1.5 min on a Pentium Il machine. Calculations on
—V;;)/N. Then the expression for each componentagf chains of 3200 beadésee below were slower, requiring
equals about 35 s to simulate only $@valks. The Zeno algorithm is
also extremely versatile. Since the only model-specific fea-
aij:12wR2[wij—ujvij /], (24)  ture is the functionD(r), the same computer code can be
applied universally simply by plugging in the appropriate
while Eq. (18) still holds for the capacity. D(r) subroutine. The best statistics are obtained when we
use the smallest possible launch sphere.
IV. TECHNICAL DETAILS Thg lattice algorithm We have.also been interested in
applying these techniques to lattice models of macromol-
A calculation generally proceeds through the following ecules and, therefore, have experimented with walks per-
steps untilN walkers total have been launched and their traformed on the same lattidé2]. This approach is hampered
jectories calculate@2—4]. Realizations of the process for a by the absence of analytic Green's functions for lattice
model aggregate and for a cube are shown in Figs. 2 and 8valks. One approach that works reasonably well is to begin
respectively. by selecting a site at random in the continuum on the surface
Step A. Initiate a new random walker somewhere on theof the launch sphere, then jumping directly from there to the
sphere of radiug, the “launch” sphere, and assign its three nearest lattice site. The walker then walks on the lattice until
charges. it either encounters the body or finds itself outside a second
Step B. Letr represent the current position of the walker. sphere, the “turn-back” sphere, concentric with the launch
If r lies outside the launch sphere, move the random walkesphere, but with a radius larger by about ten lattice spacings.
through time until it either returns to the launch sphere orThen the walker is either returned to the launch sphere or
wanders off to infinity. The standard Green’s function for apermitted to escape to infinity using the continuum Green'’s
point charge outside a conducting sphere is Uge80]. function for a charge outside a conducting spHét80]. If it
Step C. Ifr lies on or inside the launch sphere, move theis returned to the launch sphere, it once again jumps to the
walker forward in time by any of several different algo- nearest lattice site and begins walking on the lattice. Gener-
rithms. Several of these are given elsewHdrde and several ally, we find that this algorithm generates errors comparable
are presented below. to the ratio of the lattice spacing to the capacity so that ac-
Step D. If the random walker is found on the surface ofcurate results can only be obtained by extrapolating to very
the body, accumulate the various sum§ and Vﬁ , then fine grids. It works best if a bit is assigned to each lattice site
proceed from step A with a new walker. If it has wanderedto report whether or not that lattice site is part of the body. A
off to infinity, proceed from step A without accumulating any virtue of both the plane and Zeno algorithms is the capacity
statistics. Otherwise proceed from step B with the samédo take larger steps when the walker is farther from the body.
walker. This particular implementation of the lattice algorithm lacks
All the algorithms developed for step C above assumdhat feature and, therefore, its efficiency suffers somewhat.
that the walker lies outside the body, but either on or inside
the I_aunch sphere. In gen(_ara!, we sggk an efficient way of V. ILLUSTRATIVE CALCULATIONS
moving the walker forward in time until it hits the body. The
following paragraphs give three techniques for accomplish- In order to test the technique presented here, we have
ing this. calculated capacities and polarizabilities of a number of bod-
The plane algorithmFor computations on convex poly- ies for which either exact results or independent numerical
hedra, one can move the walker ahead until it first makesalculations are available. There are a limited number of
contact with the plane that contains the nearest face of thehapes that permit exact analytic calculation®fnd a;,
polyhedron, using the Green’s function for a charge near aincluding ellipsoids, tori, pairs of spheres at arbitrary sepa-
infinite conducting pland30]. With finite probability the ration, lenses, spindles, and bo#3—45. Numerical esti-
walker will also be found on the face of the polyhedron andmates, often of very high accuracy, of objects such as the
the trajectory will terminate at this step. Otherwise the com+egular polygons and polyhedra have also been reported
putation continues as outlined above. [46-49.
The Zeno algorithmLet D(r) represent the smallest dis- In these calculations, we determined all nine components
tance fromr to the surface of the body. Move the walker to «a.;; simultaneously according to E¢24). In all cases the
a new site chosen at random on the surface of the sphere ofsultant tensor had the expected “structure,” namely, com-
radiusD(r) centered om and then proceed with step D. Just ponents that were expected, on the basis of symmetry, either
as in Zeno'’s paradox, the walker never actually reaches thi® be mutually equal or zero, were indeed so, to within sam-
surface of the body, but it moves arbitrarily close. Thereforepling error. However, for the sake of brevity, all nine com-
we declare contact whenevBx(r) is less than some small ponents will not be reported here. When the tensor degener-
distances. For complex bodiesD(r) may be difficult to ates to a scalar, we report only the valug ai... When the
calculate, so it is difficult to make general statements aboubody has rotational symmetry about an axis, two valle$,
the efficiency of this algorithm. However, when computationand [ o], , representing axial and transverse contributions,
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TABLE |. Zeno-algorithm calculations on spheres.is the  the nearest-neighbor distance equald 8nd 1, respectively.
sphere radiusg is the position of sphere centdR,is the radius of A [attice “sphere” of radiusr is defined as all lattice sites

launch sphere, anl is the number of trajectories calculated. (x,y,2 such thatx®>+y2+ z?<r2. We performed a number of

- runs over a range of values between 20 and 50 and for
r c R N(Units of 1) ~ CIr [o]. various values of the launch and turn-back radii. In all cases,
1 (0,0,0 1 1.00 1.0000®) 2.99992) the fir\al results could be well represented by these expres-
1 (000 11 1.00 1.00003) 3.00013)  SIONS:
1 ©00 15 1.00 1.0000®) 3.000%5) C/r=0.999-0.51f (diamond, (26)
1 (1,10 1+,2 1.00 1.00001) 3.00%1)
2 (000 3 1.00 0.999 9¢) 2.99945) C/r=1.001-0.37+ (simple cubig, (27)
0.1 (0,02 5 1.06 1.00067) 3.02)
05 (0.5050% 2 1.06 0.999®2) 2.9992) [0].=2.994-4.5f (diamond, (28
0.2 (0,00 4 1.28 0.99984) 3.042)

[0].=3.003-3.1k (simple cubig. (29

respectively, are reported. These may be defined as followgs expected, corrections to the asymptotic continuum limit
assuming the rotation axis of the body is aligned with zhe are inversely proportional ta The leading term extrapolates
axis: to a value accurate to about three significant digits, which is

adequate for many applications.
[a]= (ae)zzj?’vp Lol =[(ae)xxt (ae)yy]/?’vp , (29

with [o];+[o], =[o].. Finally, for regular polygons and ) B. Polyhedra ] )

disks, (@) ;=0 while (ae) = (ee)yy, bUtV,=0 and[o].. The cube is perhaps the most extensively studied shape
diverges. Therefore, we report the single componeny,,  for Which no exact results exist. The calculation of the ca-
=(ag)yy in those cases. pacity of the cube has been characterized as “one of the

Error estimates for all the following examples are calcu-Major unsolved problems of electrostatic theofl] and.
lated from fluctuations observed over a series of runs and af@Stinguished mathematicians have said that “there is little
indicated by a single digit in parentheses following decimalfope of obtaining an exact solution.23,52 Interest in the
data, and represent the uncertainty in the final digit. Thes€UP€ derives both from practical applications and the vexing
error estimates do not include small systematic errors, whicgontrast between the simplicity of the boundary shape and
might arise, for example, from the finiteness of the contacthe mathematical intractability of the electrostatic calcula-
cutoff & or the imperfection of the random number generator.tions- Calculation of the electrical polarizability is an even
(This type of calculation may have independent interest as B0re difficult problem. o
physical model for testing random number generaf66s). Our results for the five regular polyhedra are given in
We performed on the order of d@rajectories in any given Table Il. Table Ill summarizes various estimates of the ca-
calculation, and found that this generally guarantees fivePacity and the polarizability of the cube. Our capacity value
figure accuracy in the capacity and four-figure accuracy irfor th_e cube is consistent with a previous rar_1dom walk cal-
the polarizability. Therefore, POtrajectories should yield culation by Given, Hubbard, and Douglas, using a somewhat

three- to four-figure accuracy, which is adequate in mosglifferent “first-passage algorithm,['53] averaging over 4.7
cases. x 10° trajectories. It also compares well to the so-called sur-

face charge methoBCM) result of Goto, Shi, and Yoshida
[46] that utilizes a sophisticated extrapolation technique to
account for inaccuracies in fields near sharp corners. Brown
Capacities and polarizabilities for a number of different[54], using a finite differences technique, has reported capac-
spheres were calculated by the Zeno algorithm, with calcuity values for each of the five regular polyhedra that agree
lations summarized in Table I. In all cases the contact cutoffvell with ours. Earlier moment method calculations by Re-
was set aie=10 °. The results are in excellent agreementitan and Higging51] and by Cochrafi55] can also be cited.
with the known result€C=r and[o].,=3. The results also Calculations of the polarizability of the cube also have a
demonstrate that the technique is independent of the size tdng history. Edwards and Bladéb6], using an integral
the launch sphere and of the position of the body inside thequation—boundary discretization method, obtained an im-
launch sphere, although better statistics result if the launcpossibly low value([ ]..= 3 is known to be the lowest pos-
sphere is chosen to fit as snugly as possible. Because tlséble value and is only achieved by the sphéré]). Herrick
D(r) calculation for spheres is trivial, each individual calcu- and Seniof57] then made an improved estimate by a similar
lation of 1 trajectories requires less th& h of Pentium Ill  method with a guess of about 1% accuracy. A more recent
processor time. calculation by Eyges and Gianir{®8] gives no error esti-
The lattice algorithm was also performed on a series omate.
spheres in order to test its performance on a well-understood The cube result by Douglas and Garbofzal was ob-
case. Two lattices, the diamond and the simple cubic, wer&ined by finite element calculation using a periodic unit cell
employed. Length units for the two lattices are chosen so thain a digital lattice(simple cubi¢ where no effort was made

A. Spheres
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TABLE Il. Regular polyhedralL is length of edgeR is radius of launch sphere, aidis the number of
trajectories. Other numerical results for the capacity come from the work of Goto, Shi, and YpHjidad
of Brown [49]. Numerical estimates dfo].. for the cube are from Herrick and Senis7], Eyges and
Gianino[58], and Douglas and GarbodZi]. N.A. denotes “no results available.”

C/L C/L
N [o]- o]
Polyhedron Algorithm L R (units of 16) (this work) (other results
Tetrahedron Zeno 2 J3 1.00 0.356 8(B) 0.356
5.0291) N.A.
Cube Plane 1 0.87 2.58 0.66089 0.660674 %)
3.64376) 3.40 to 3.72
Cube Zeno 2 V3 0.93 0.660 7@) 0.660 674 96)
3.644645) 3.40 to 3.72
Octahedron Zeno V2 1 0.94 0.509 48) 0.510
3.55092) N.A.
Icosahedron Zeno 1.05146 1 1.00 0.816334 0.816
3.13054) N.A.
Dodecahedron Zeno 0.71364 1 1.00 1.2463)3 1.238
3.17793) N.A.

to account for the effects of digital resolution. The effect of method is advantageous when the boundary shape is com-
digital resolution can be handled very simply in a way analoplex, so that the computational methods are complementary.
gous to that of the random walk algorithm on lattices. It has We also studied the cube using the lattice algorithm, ob-
been found, as expected, that the deviation of the calculatet@ining

properties from the “true,” infinite resolution result scale as
1/N, whereN is the number of pixels on the edge of the
cubic unit cell[7b,7d. Using this technique, we were able to
greatly improve the finite element calculation and found a

revised value of ].,=3.63(4) for the cube. About three

significant figures of accuracy result in this method, similar
to the lattice random walk algorithm mentioned above. The
revised finite element estimate p&].. is then consistent
within numerical accuracy with the random walk calculation.
This result is very encouraging and suggests that finite ele-
ment calculations can be routinely used to estinmatg, for
objects having modest shape complexity. The random walk

TABLE llI. Various estimates of the capacity and polarizability

of the cube.
Estimate Citation

C/L  0.6606%92) This work.
0.660 681) Given, Hubbard, and Dougl¢53]
0.660 674 %) Goto, Shi, and Yoshidp46]
0.661 Brown[49]
0.655 Reitan and Higgin&1]
0.6596 Cochram55]

[o].. 3.64376) This work
<2 Edwards and Bladg¢b6]
3.54(3) Herrick and Seniof57]
3.40 Eyges and Gianind8|
3.72 Douglas and Garbocf7]

C/L=0.660+0.12L (diamond, (30
C/L=0.659+0.14L (simple cubig, (31
[0].=3.64+1.5L (diamond, (32
[0].=3.63+1.5L (simple cubig, (33

The lattice path integration is again accurate to about
three figures, after ah— oo extrapolation. We believe it pro-
vides insight into the boundary discretization approximation
of finite element techniques. Comparison with E(6) to
(29) indicate that theO(1/L) corrections are smaller for
cubes than for spheres. In effect, the good approximation of
the boundary achievable for the cube reduces the uncertainty
in boundary detection, the counterpartsofn the Zeno algo-
rithm calculations.

The Zeno algorithm was also applied to the truncated
icosahedron, the well-known 60-vertex polyhedron that is
obtained by trisecting the vertices of the regular icosahedron
and that represents bo@y fullerene molecules and soccer
ball-shaped object59]. With N=1.22x 10" ande=10 >,
we obtainedC/R=0.957936), where R is the distance
from the center to any one of the vertices, ahd]..
=3.04098).
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TABLE IV. Regularn gons and circular disk$ is number of sides, with =< indicating a circular disk;
N is number of trajectories;is the distance from center to vertex of polygon and also the radius of the launch
sphere; andd.) is the component of polarizability in the plane of the object. SCM indicates estimates by
the extrapolated surface charge method of Goto, Shi, and Yop#&laEx indicates exact valug43,60.

Clr
Clr (other estimates or CANIS (CANIS

n N (units of 1¢) (this work) exact valuep (this work) (exact values
3 2.4 0.4345R3) 0.434 521 14) (SCW™) 1.83876) N.A.

4 1.0 0.518 7®%) 0.5187182) (SCM) 2.9431) N.A.

5 1.0 0.559 281) 0.559 4411) (SCM) 3.64375) N.A.

6 2.4 0.582 0B) 0.582 226 15) (SCM) 4.09117) N.A.

7 2.4 0.596 0/3) 0.596 242 81) (SCM) 4.38895) N.A.

8 2.4 0.6054®) 0.605469 7%) (SCM) 4.58896) N.A.

w 1.1 0.636 604) 2/7=0.636 620(EX) 5.3331) 16/3=5.3333(EX)

C. Polygons and disks E. Right circular cylinders

The approach works equally well on flat objects. Table IV The right circular cylinder is perhaps the most challenging
summarizes the results for polygons and a circular disk. Alshape for which exact results exigf7]. Table VIl compares
our results in Table IV were obtained using the Zeno algo+the results of the Zeno algorithitwith 10° trajectories for
rithm with e=10"°. Most of the other estimates cited in each cylinder ana=10"°) with exact numerical resultsl
Table IV were done by an extrapolated SQK6], which  andh represent the diameter and height of the cylinder, re-
appears to be very accurate for simple shapes such as tBgectively, and the radius of the launch sphere was set at
polygons, and which agrees well with our results. The capacq(d/2)?+ (h/2)?]*2. C(0) is the capacity of a sphere having
ity of a circular disc is a classical problem in electrostatics,the same volume as the cylinder. The numerical agreement
C=2r/m [60], which compares well to our numerical esti- with the analytic calculations is generally good. The “exact”
mate C=[0.99997(6])(2r/m). The polarizability compo- results are obtained numerically from complex expressions
nent in the plane of the disc is known to bercf,,  and we suspect, given the quality of our comparisons in other
=16r3/3 [43], while the normal component is zero. Our es- cases, that the inaccuracy observed in Table VI arises from
timate is (@) y=[1.0000(3)(16r%3). the evaluation these expressions. We also note that exact ana-
Like the cube, the electrostatic properties of the squargytic results exist[48] for a,, that should provide a good
have been of interest, but also impossible to calculate exaumerical test of path-integral calculations for the magnetic
actly, with a number of calculations of increasing sophisticapolarizability.
tion. These are summarized in Table V. The estimate of
Goto, Shi, and Yoshidf46] obtained using the extrapolated E. Tori
SCM is most accurate. Reitan and Higg[e4] earlier SCM . i . - )
estimate without extrapolation is less accurate. Solomon's A torus is defined as the locus of points within a distance

[62] estimate and Maxwell’'s original estimaes] are also @ Of & circle of radiusb, with a<b. Laplace’s equation is
noted. separable in toroidal coordinates, which permits the develop-

ment of series expansions for the capacity and the polariz-
ability. Belevitch and Boersmpd4] present numerically ex-
act results for a number of different values of the ratib.
There are exact results for the capacity of two spheres ofspecially accurate results are given in the “tight torus”
different radii that are either mutually tangel®4] or that  |imit, a=b and the asymptotic behavior in the “thin loop”
overlap[45]. We computed capacities and polarizabilities of imit a<b is also well understoof44]. Table VIII contrasts
several pairs of touching spheres of respective raditend  the results given in Ref44] with results of the Zeno algo-
r, by the Zeno algorithm witk: = 10"°, and using a launch  rithm, again withN=10% ande =103, for several different
sphere of radius; +r,. Results appear in Table VI. values ofa andb. In all cases, the launch sphere had radius
a+b, andC(0) is the capacitance of a sphere having the

TABLE V. Various estimates of the capacity of the square of same volume as the torus. Again the agreement is excellent.
side 1.

D. Touching spheres

VI. TRANSPORT PROPERTIES OF MACROMOLECULES

0.366 84(4) This work

0.366 789 2(9) Goto, Shi, and Yoshidg46] We now apply these techniques to the estimation of the
0.362 Reitan and Higgins®1] transport properties of both linear polymers and dendrimers.
0.367 Solomor62] This serves the dual purpose of displaying the power of our
0.3607 Maxwell, cited in Ref/15] computational technique on bodies of complex shape and of

obtaining results of significance in materials science.
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TABLE VI. Touching spheres. Exa@ values are from formulas given by Rusgét]. Exact values of

[o]; and[ o], are calculated from formulas given by Felderhof and Palaniapfain

C (simulated [o]; (simulated [o], (simulated
ry ry N (units of 1) C (exac) [o], (exach [o], (exach
1 1 1.12 1.386 4(B) 2.40366) 1.80354)

1.386 29 2.4041 1.8031
1 1/2 1.16 1.098 6B) 1.7225%4) 1.89994)
1.09861 1.7222 1.8995
1 1/3 1.16 1.039 6%) 1.3225%3) 1.95583)
1.03972 1.3228 1.9560
1 1/4 1.16 1.019 8B) 1.16613) 1.97793)
1.01992 1.1663 1.9779
1 1/5 1.15 1.011 4%) 1.096G2) 1.98773)
1.011 40 1.0961 1.9875
1 1/7 1.15 1.004 71®) 1.04022) 1.99523)
1.004 76 1.0404 1.9950
1 1/9 1 1.002 48B) 1.02062) 1.99763)
1.002 43 1.0206 1.9975
1 1/11 1.15 1.001 38) 1.01192) 1.99842)
1.00 140 1.0119 1.9986

A. Linear polymers

between(tr(ae))=(a) and[ 7] were first recognized in cal-

mer chains. In fact, the connections betwderand f and

TABLE VII. Right circular cylindersd is cylinder diametet is
cylinder height, andC(0) is the capacity of sphere having same

integral equation for the translational friction coefficient of a

Gaussian polymer chain of beads reduces exactly to the in-

tegral equation fo€ in the angular averaging approximation.
Consider a random chain &f spheres of radius 1 placed

volume as the cylinder. Data in last column are numerical results 080 that adjacent chain beads are touching. Noncontiguous

Smythe[47].
C/C(0) C/C(0)
o], [a],
[o]L [o]L
d h (this work) (other estimates
1.060974) 1.061
4 2 0.81092) 0.81083
2.81183) 2.8115
1.040914) 1.041
2 2 1.28632) 1.2871
2.11273) 2.1138
1.090 635) 1.091
1 2 2.36345) 2.3655
1.740@4) 1.7410
1.220519) 1.220
1 4 5.0282) 5.0237
1.54344) 1.5434
1.4482) 1.453
1 8 12.13%6) N.A.
1.436980) N.A.

beads are allowed to overlap. This model represents real
polymer chains in solution at the theta temperature where
attractive and repulsive intramolecular interactions largely
compensat§63,64]. Ensembles containing at least 5000 sta-
tistically independent chains were generatedMor 25, 50,
100, 200, 400, 800, 1600, 3200, and 6400. We launched 1000
trajectories from an enclosing launch sphésee Fig. 2 at
each chain in the ensemble utilizing the Zeno algoritkim (
=10"5). With only 1000 trajectories per chain, we estimate
that there is 3 and 15% sampling error in the capacity and
polarizability components, respectively, for any one chain.
(These values were determined by launching many trajecto-
ries at a few chains, as in the examples discussed above
Nevertheless, the ensemble avera¢f@sand (@) should be
much more accurate since each average involves at least 5
X 10° probe trajectories. Computational time was linealjn
the bottleneck at larghl being the computation of the func-
tion D(r). Because of arbitrary overlap among spheres in the
random walk chains, the volumé, is neither easy to com-
pute nor constant throughout the ensemble. However, the
value of V, is immaterial since it is more appropriate to
consider the ensemble averagd af]y, .

We summarize our computations f@ and the average
polarizability in Fig. 4. The dat&Table IX) are well repre-
sented by
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TABLE VIII. Tori. Interior of torus is the set of points within a distaneeof a circle of radiush. Exact
results are from Bolevitch and Boersnjd4]

C/C(0) C/C(0)
Laly, [o]L Laly, [o]L
a b u=alb (this work) (exact results
2.72632) 2.72608
1 20 0.05 0.665(), 87.922) 0.6662, 87.9008
1.400 698) 1.400 68
1 4 0.25 0.660®), 8.2091) 0.660 84, 8.208 81
1.215097) 1.21518
2 5 0.40 0.658@), 4.93987) 0.658 99, 4.939 07
1.151 2@6) 1.15119
1 2 0.50 0.660@), 4.05626) 0.660 160, 4.055 46
1.070584) 1.070580
3 4 0.75 0.673d), 3.07674) 0.673247, 3.076 312
1.048 044) 1.048 077
9 10 0.90 0.687@), 2.816%4) 0.687 524, 2.817 058
1.038634) 1.038675 56
1 1 1.00 0.699Q), 2.70544) 0.6991315, 2.705461 4
(C)y= 0.65MNY2+0.854, (34)  where(---) denotes an ensemble average.

We use the relationéC)=R,, and Eq.(8) to estimate the
hydrodynamic radius and intrinsic viscosity of polymer so-

(tr(@p))=13.76N%+ 49. 2N, (35 lutions. The application of these calculations to flexible mol-
ecules requires the assumption that the properties of a single
107 =T T chain with dynamig flexibility are equivak_ant to the ensemble
= average over a rigid set of molecules. Zimm has argued that
- this is valid[65]. Results are expressed relative to the radius
10° =3 of gyration Ry of the chain(root mean square distance of
= polymer segments from the center of m&68,6€]), which
10 ; can be calculated exactly for this modébl:
A F 7 Ry=(2N/3)Y1—N~2]¥2~ (2N/3)*2 (36)
gt e E
v E = The ratio =R}, /Ry for these chain models equals
Ain3
QI E E ¥, =0.805+ 108N~ 2 37)
10 = TABLE IX. Chains of beadsN is chain length. Square brackets
= 3 indicate powers of ten.
10! g =7 E N © (tr(a)
100— Lol Ll [ I[[III— 25 4.01 2'813]
10! 102 10° 104 50 5.44 7.293]
100 7.41 1.8514]
N 200 10.19 4.904]
FIG. 4. The hydrodynamic radius and intrinsic viscosity of poly- 400 14.06 1.3065]
mer chains are estimated, respectively, from the electrostatic capac- 800 19.50 3.515]
ity (O) and the polarizability®) of perfect conductors having the 1600 27.2 9.715]
same shape as the polymer chains. The mean electrostatic properties 3200 38.0 2.666]
for ensembles of polymers are shown as functionbl.oThe fitted 6400 53.3 7.316]

curves(solid lineg are given by Eqs(34) and (35).
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FIG. 5. Distribution function for the capacity of flexible poly- FIG. 6. Distribution function for the electrical polarizability

mer chains including data fd4==800, 1600, 3200, and 6400, Nor- yace tr(v,) of flexible polymer chains including data fo¢= 800,

malized byN*2. The dashed line gives the value of the mean of the1600, 3200, and 6400, normalized K2 The dashed vertical line
distribution. gives the value of the mean of the distribution.

and shape fluctuations of flexible polymer chains. Computations
based on conformational preaveraging generally overlook
M[7]uRy°=[6.66+23.8N"1?|(1.00x0.5. (38)  “unusual” members of the ensemble in favor of the most
probable configurations. Relatively rare members of the en-
The factor (1.0&:0.5) arises from the uncertainty in E&).  semble can make a disproportionate contribution to any en-
The leading term in E¢(38) is often reported in terms of the semble average because of the nonlinear nature of the ran-
“Flory-Fox number,” ® =69 z]yM NA/RS‘, whereN, is  dom variable being averaged. Figure 5 shows the distribution

Avogadro’s number. Our estimate @f is of C for N=800, 1600, 3200, and 6400, with normalized
by N2 which for long chains scales &, [see Eq.(36)].
®=(2.73+0.14 X 10%, (89  The distribution seems to beniversalwith a small skew-

ness. In Fig. 6, a similar normalization of the polarizability

where the uncertainty again arises from the 5% uncertaintgata shows greater skewness; the mean is about 50% larger
in Eq. (8). The best experimental estimates far and® at  than the mode. Therefore, fluctuation effects are expected to
the theta temperature af€7] 0.79-0.04 and (2.50.1)  be more significant for the polarizability than for the capac-
X 107, Our present estimates also closely correspond to calty. The mean-field preaveraging approximation assumes that
culations for flexible random walk chains based on thea “typical” or highly probable configuration is sufficient for
Kirkwood-Riseman hydrodynamic equations without thethe computation of ensemble averages. In the case of the
configurational  preaveraging approximation[65,68,  random walk capacity, the true avera@eis substantially
n (KR)=0.77£0.03 and ®(KR)=(2.59+0.18)x 10?2 larger (about 10% than the preaveraging estimate, suggest-
(The stated uncertainties are estimates of sampling erroing that rare extended chains have a much larger friction
These values probably also contain systematic fiNiter-  cause the deviation. In the case of the polarizability, the de-
rors) The leading term in Eq(37) is somewhat larger than viation from preaveraging theory goes in the opposite direc-
the valuey,=0.77 found in previous random walk simula- tion. The preaveraged value df is 2.87x 10?3, larger than
tions by Douglas, Zhou, and Hubbdrd] in which the bead Eq. (39). This suggests that more compact chain configura-
radius was one quarter of the bond length rather than ongons are the source of the deviation from mean-field theory.
half and for whichN=101. This discrepancy may be due to Thus, the sign of the departure from mean-field calculations
finite N effects, even though this particular bead radius wasgs property dependent.
employed because it exhibits relatively wedldependence. Chain swelling due to repulsive excluded volume interac-
Further discussion ofy, relative to previous theoretical esti- tions should produce narrower distribution functions @r
mates and measurements is given by Douglas and Freethd the components ofx.. Previous numerical path-
[69]. integration calculations indicate that fluctuations@fabout

This calculation ofC and «, also provides important in- its ensemble average is smaller for self-avoiding chains than
formation about the distribution of chain mobilities and for random walk chain$2]. The distribution of these prop-
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FIG. 7. lllustration of dendrimer moleculesa) Topological
structure. (b) Equilibrium structure of model dendrimer in real

space.

erties and its dependence on excluded volume greatly com- .
plicates the calculation of transport properties. In principle, é
renormalization group theory provides a formal scheme for ¥
treating these fluctuation effects, but the method is less use-2
ful for these problems because of largexpansion coeffi-
cients[70]. While the method does indicate that preaverag-
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FIG. 8. Dimensionless hydrodynamic radigs= R, /Ry of den-

G=5
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FIG. 9. Capacitya) and polarizability(b) distributions of model
dendrimers for generatio’S=2 (broadest 5, and 8(narrowesy,
normalized in each case by the mean. The distribution functions
become sharper with increasitg quantifying the approach to a
spherical shape.

ing errors are substantially larger for simple random walk
chains than for self-avoiding chains, the preaveraging errors
predicted by second orders-expansiofir0O] and the
Kirkwood-Riseman modgb8] are large in comparison to ex-
periments and simulatiof2]. The study of these properties
should be very helpful in developing an adequate analytic
theory of the hydrodynamics of polymers in dilute solutions.
The fluctuations of the chain mobility accompanying the
Brownian motion of the chain beads leads to modification of
chain mobility by a “Taylor dispersion[71] mechanism. An
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5
a T T

, , these dendrimer structures has been generated and we di-
rectly apply our path-integration methgtattice algorithm
to the calculation ofZ and .. The mass of the model den-
drimer is taken to equal the number of occupied lattice sites.
In Fig. 8 we show our results faf, =Ry, /Ry as a function
of G. Consistent with the discussion above, the magnitude of
Y is similar to values expected of flexible polymer chains
whenG is small, and to values expected of uniform spheres,
(5/3)Y?=1.29, when G is large. Furthermore, the ratio
M[ 7]uR;, 3 tends to 1613, [42] as expected of spherical
objects. These results all indicate a crossover from a random
coil-like structure to a relatively uniform sphere with increas-
ing G. Figure 9, showing the progression in the capacity and
polarizability distributions as functions of generation num-
ber, further supports this picture. At lo® there are large
shape fluctuations, but the distributions become narrower as
G increases. The standard deviationGrvaries from about
. ' . ' ' L ' ' ' 6% to about 1% of the mean &varies from 1 to 9, while
6t 2 3 4 5 6 7 8 9 10 the standard deviation in () varies from about 22% to 3%

G over the same range @ values. AtG=2, the tr(ay) distri-
bution is slightly skewed and asymmetric, with mean and
mode differing by about 7%.

Another signature of an increasing dendrimer compact-
ness can be seen in the dependendexdf, on G. Figure 10

understanding of these distributions should be helpful in deShows that[ 7]y passes through a maximum &=6.

veloping a quantitative description of this type of dispersionMaximain[ 7]y vs G are familiar in the literature, occurring

phenomenon. usually arounds=4 to 6[72]. In our units, a dense-packed

sphere on this lattice would hayey],,= 20, sinceV/M =8

and [ »]=5/2. The values in Fig. 10 are all considerably

. i greater than this because the dendrimer is not dense packed.
Dendrimer molecules are highly branched polymersingeed 2q7/7],, can be taken as an estimate of the internal

grown through a successive addition of multifunctional hcking fraction. This also illustrates that relatively large in-

monomers. See Fig. 7 for an illustration of their topologicalinsic viscosities can be achieved using relatively porous,
form. During construction of each generation, multifunc- symmetric objects(See also Ref[7])

tional groups are added to saturation so that, unlike randomly
branched polymers, the topological structure is nearly per-
fect. Undoubtedly, flexibility allows these molecules to relax
to structures more uniformly distributed than the representa- We have developed a general algorithm for simulta-
tion in Fig. 7. Indeed, much recent research is devoted tmeously calculating the capaci€ and electric polarizability
quantifying the geometrical structure of these polymers. Atensore, of conducting objects having general shape. These
low generation numbeG(G<4) the molecules resemble shape functionals have many applications to the scattering
flexible star polymers and we can expect similarities to theof light and sound and are also important for describing
flexible polymer calculations of the previous section. Ateffective properties of particle dispersions and transport
higherG(G>4) the branching constraints begin to predomi- properties of macromolecules. We estimate the translational
nate and structures with relatively uniform segmental densifriction coefficient and intrinsic viscosity of flexible linear
ties form. Stearic interactions on added monomer restrict thpolymers and of dendrimers. We also obtain the distribution
number of generations that can be perfectly formed so théunctions for C and the trace ofe, for flexible chains
high generation (4 G<13) dendrimers tend to be relatively and dendrimer molecules. These distributions are broad
spherical objects with a rough periphery and an interior withfor flexible molecules, but become narrower in dendrimer
some segmental fluctuations. The high generation dendrimmolecules of increasing generation number. We also
ers resemble spongy round balls. In this section we reporalculateC and a, for model shapes for which independent
probabilistic calculations of the hydrodynamic radRisand  calculations are availabléspheres, polyhedra, tori, regular
intrinsic viscosity[ 7]y as a function ofG. Some of these polygons, touching spheres, and circular cylingiénsorder
results have appeared in a previous work devoted to the chate establish the accuracy of our computational method.
acterization of dendrimer structuféZ2]. The numerical path-integral method proves to be quite

The dendrimer molecules are modeled on a diamond latflexible and especially efficient for complex-shaped patrticles
tice to facilitate Monte Carlo simulation of dendrimer con- and should have many biological and materials science
formations for a large range of generations. A large library ofapplications.
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FIG. 10. Intrinsic viscosity of dendrimer molecules as a function
of generation numbe®, with a maximum aG=6.

B. Dendrimer polymers

VII. CONCLUSION
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