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Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects
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The problem of calculating the electric polarizability tensorae of objects of arbitrary shape has been
reformulated in terms of path integration and implemented computationally. The method simultaneously yields
the electrostatic capacityC and the equilibrium charge density. These functionals of particle shape are impor-
tant in many materials science applications, including the conductivity and viscosity of filled materials and
suspensions. The method has been validated through comparison with exact results~for the sphere, the circular
disk, touching spheres, and tori!, it has been found that 106 trajectories yield an accuracy of about four and
three significant figures forC and ae , respectively. The method is fast: For simple objects, 106 trajectories
require about 1 min on a PC. It is also versatile: Switching from one object to another is easy. Predictions have
also been made for regular polygons, polyhedra, and right circular cylinders, since these shapes are important
in applications and since numerical calculations of high stated accuracy are available. Finally, the path-
integration method has been applied to estimate transport properties of both linear flexible polymers~random
walk chains of spheres! and lattice model dendrimer molecules. This requires probing of an ensemble of
objects. For linear chains, the distribution function ofC and of the trace (ae), are found to be universal in a
size coordinate reduced by the chain radius of gyration. For dendrimers, these distribution functions become
increasingly sharp with generation number. It has been found thatC and ae provide important information
about the distribution of molecular size and shape and that they are important for estimating the Stokes friction
and intrinsic viscosity of macromolecules.

DOI: 10.1103/PhysRevE.64.061401 PACS number~s!: 66.20.1d, 41.20.2q
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I. INTRODUCTION

There are many applications in materials science and e
tromagnetism involving boundary value problems for whi
the boundaries have complicated shapes@1#. Examples in-
clude the computation of the electrostatic capacity, Smo
chowski rate constant and translational friction coefficient
arbitrary objects;@2–5# the fluid discharge through a pipe o
arbitrary cross section;@6# and the calculation of virial coef
ficients for the leading order concentration dependence
effective material properties of suspensions and compos
containing particles of complex shape@7,8#. Moreover, the
far-field scattering of objects by electromagnetic radiat
@9–11# and sound@12# and the propagation of electroma
netic @13# and acoustic radiation@14# through apertures al
involve the calculation of the electrostatic capacity and el
tric and magnetic polarizability of complex shapes. The
same quantities arise in the virial coefficient calculations@7#
for the transport properties of inhomogeneous materi
Therefore, these calculations have many applications
problems involving the scattering of light or sound from pa
ticles having elaborate structure~e.g., snowflakes, atmo
spheric dust, particle aggregates in liquid dispersions,
macromolecules in solution!. Moreover, there is an extensiv
literature devoted to using these shape dependent en
functionals to classify particle shape@2,15#. Such functionals
have already been used to characterize the topology of p
mer chains@16# and we expect that they should be useful
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identifying more subtle topological features such as the k
complexity of knotted polymers and the genus and other
pological characteristics of membranes@1#. At present, nu-
merical approaches based on differential equation or fi
element methods have not been generally effective when
boundary is intricate. The numerical path-integration me
ods discussed below will make this important class of pr
lems more accessible.

In the present paper, we extend previous numerical p
integration calculations of the electrostatic capacity of ar
trarily shaped objects@2–4# to the calculation of the electri
cal polarizability tensorae and apply these calculations t
the estimation of the intrinsic viscosity@h# and intrinsic con-
ductivity @s#` of suspensions of rigid particles and high
conductive particles, respectively. The probabilistic calcu
tion also yields the electrostatic capacityC, providing an
estimate of the friction coefficient of a Brownian particle a
the Smoluchowski rate constant for the particle undergoin
diffusion-limited reaction@1–4#. This simple and genera
computational method yields high accuracy when compa
with results for exactly soluble particle geometries. It shou
have many applications both in materials science and in
physics, where the properties of inhomogeneous mate
and of particles of complex shape are of interest.

II. REVIEW OF HYDRODYNAMIC-ELECTROSTATIC
PROPERTY RELATIONS

There are many analogies relating the hydrodynamics
suspensions and flowing fluids, the electrostatic propertie
conducting and insulating objects, and the elasticity of co
©2001 The American Physical Society01-1
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MANSFIELD, DOUGLAS, AND GARBOCZI PHYSICAL REVIEW E64 061401
posite materials and elastic shafts under torsion. For
ample, the hydrodynamic mass tensorM of particles of gen-
eral shape is proportional to the magnetic polarizabi
tensoram of a conducting particle having the same sha
@7,10,17#. ~The hydrodynamic mass tensor is the true m
plus the ‘‘virtual mass’’ associated with induced fluid motio
accompanying object movement@18#! The friction coeffi-
cient of a plate of general shape translating normal to
plane and the force required to displace the interface o
elastic material are proportional to the electrostatic capa
of the plateC @19#. The rotational friction coefficient of an
axisymmetric body is proportional to the component of t
hydrodynamic mass tensorM about the axis of symmetry
@20# and generalized axisymmetric potential theory indica
that this hydrodynamic mass component is proportiona
the capacity of the object rotated symmetrically into tw
higher spatial dimensions@2,21#. The problem of calculating
the torsional rigidity and the elastic strain field within
twisted elastic bar is mathematically equivalent to calcu
ing the fluid flux and velocity field for the Poisseuille flo
flux and velocity field in a pipe of arbitrary cross sectio
@6,15# and this problem in turn reduces to the solution
Poisson’s equation and corresponding electrostatic app
tions @22#. The flux of an inviscid and viscous fluid throug
holes in a planar interface is governed by the capacity
hydrodynamic mass of the holes, respectively@23,24#. The
virtual mass density of a flowing dispersion of bubbles
exactly related to the conductivity of a dispersion of insul
ing particles where the hydrodynamic-electrostatic anal
holds for arbitrary concentrations@25#. Rayleigh also pointed
out that the field equations governing an incompress
solid at equilibrium are identical to those for the steady fl
of a Newtonian fluid where particle displacement repla
velocity and shear modulus replaces viscosity. Thus,
modulus increment of a solid and the viscosity incremen
a fluid, both arising from identical dispersions of rigid incl
sions, are identical@26#. This is just a sampling of the man
relations that exist between these field theories.

There are also many approximate electrostatic-
hydrodynamic relations of this kind, which are useful in e
timating properties dependent on particle shape. In
present paper, we are particularly interested in two appr
mations, one relating the electrical polarizability tensorae of
a conducting object to the intrinsic viscosity@h# of a suspen-
sion of rigid particles having the same shape@7#, and the
other relating the electrostatic capacityC of a conducting
particle and the translational friction coefficientf of a
Brownian particle having the same shape@2,3,5#. The fric-
tion coefficient and intrinsic viscosity are widely used
macromolecular characterization, and these hydrodynam
electrostatic analogies permit their estimation from num
cal calculations ofae andC via probabilistic path-integration
methods. We briefly review the definition of these quantit
to establish our notation and the units utilized in our com
tations below.

The viscosity of a dilute particle dispersion of rigid pa
ticles can be developed formally in a power series in
particle volume fractionf,
06140
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h~dispersion!5h~dispersing fluid!$11@h#f1O~f2!%,
~1!

~Since this expansion is analogous to the virial power se
for the pressure of a nonideal gas, we refer to it as a ‘‘vir
expansion’’ and to its coefficients as ‘‘virial coefficients
@7#! The first virial coefficient@h# is independent of interpar
ticle interaction and is conventionally called the ‘‘intrins
viscosity’’ in the rheology literature. Similarly, we can defin
a virial expansion for the electrical conductivity of a dispe
sion of randomly dispersed and oriented particles

s~dispersion!5s~dispersing fluid!$11@s#f1O~f2!%,
~2!

The ‘‘intrinsic conductivity’’ @7,8# of a dispersion of particles
that are highly conducting relative to the dispersing flu
~metal flakes in a polymer matrix! is denoted@s#` and for
insulating particles in a relatively conductive fluid~oil par-
ticles in salt water! the leading virial coefficient is denote
@s#0 . The refractive index, thermal conductivity, dielectr
constant, magnetic permeability and other transport pro
ties can be developed in the same type of virial expans
@7,8,27–29#

When an electric fieldE is applied to a medium contain
ing highly conducting particles, a charge distribution dev
ops on the particles. The far-field disturbance is dipolar a
this dipolar field modifies the effective conductivity of th
dispersion. The induced electric dipole momentm of a per-
fectly conducting particle is determined by the electrical p
larizability tensorae @30#,

m5~1/4p!ae•E, ~3!

and the magnetic momentmm is similarly related to the mag
netic polarizabilityam and the magnetic fieldM . These in-
duced dipoles for a dilute dispersion of randomly orient
conducting particles are invariant to the macroscopic ori
tation of the material so that the virial coefficient for th
conductivity is invariant to particle orientation. In particula
the intrinsic conductivity@s#` is proportional to the trace o
the electrical polarizability tensor@7,31#

@s#`5@ tr~ae!/dVp#, ~4!

whereVp is the particle volume andd is the spatial dimen-
sion, and the virial coefficient for insulating particles@s#0
corresponds to Eq.~4! with am replacingae ~up to a sign
convention!. For spheres, Maxwell@32# showed

@s~conducting sphere!#`53, ~5a!

@s~ insulating sphere!#0523/2, ~5b!

while for d-dimensional hyperspheres, Sangani@33# obtained

@s~conducting sphere!#`5d, ~5c!

and

@s~ insulating sphere!#`52d~d21!. ~5d!
1-2
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INTRINSIC VISCOSITY AND THE ELECTRICAL . . . PHYSICAL REVIEW E 64 061401
The imposition of a shear field to a dilute dispersion
rigid particles induces a stress dipole~‘‘stresslet’’! field @34#
that modifies the effective viscosity of the dispersion. T
intrinsic viscosity is obtained as an angular average of
tensor field describing the perturbation of the flow field
the particle inclusion. Douglas and Garboczi@7# noted that a
formal angular averaging of the stress dipole describing
hydrodynamic interaction implies@h#}@s#` since the angu-
lar average of the Green’s function of the Stokes equatio
the Green’s function of Laplace’s equation. The constan
proportionality can be fixed from the known result f
d-dimensional hyperspheres@35#,

@h#5~d12!/2. ~6!

Along with Eq. ~5c! this gives the following angular averag
ing approximation@7#:

@h#'@~d12!/2d#@s#` . ~7!

The approximation Eq.~7! has been examined for cases
which exact results are known: triaxial ellipsoids having
bitrary asymmetry@36#, spherical dumbbell particles at arb
trary separation@7#, and elliptical particles in two dimension
@7#. It has also been examined by finite element calculati
for a wide range of both asymmetric~cube dumbbell over a
range of fixed separations, circular and rectangular cylind!
and symmetric shapes~‘‘sponge,’’ square ring, square hollow
tube, ‘‘jacks’’! selected to have high electrical polarizabiliti
and to represent general classes of particle shapes@7#. Re-
sults for all these cases are illustrated in Figs. 1~a! and Fig.
1~b! for d53 and d52, respectively. Filled circles denot
exact results and open circles indicate finite element calc
tions. Solid lines indicate Eq.~7! and the broken line in Fig
1~a! corresponds to the ratio@h#/@s#`50.8, the limit of
needle and plate ellipsoids of revolution@7#. A compilation
of @h#/@s#` over extensive data for ellipsoids of revolutio
gives

@h#'~0.7960.04!@s#` , ~8!

in three dimensions. The uncertainty interval indicates
maximum deviation from the average@7#. All finite element
data for the range of shapes indicated above and exact
for other shapes are consistent with Eq.~8!. It is apparent
from Fig. 1 that a better approximation is obtained by us
the prefactor 0.8 for slender particles and 5/6>0.833 for less
symmetric ‘‘globular’’ shapes@37#. Thus, although Eq.~7! is
not exact, it gives an estimate of@h# valid to about 5%.

Results in two dimensions suggest that Eq.~7! may be
exact in that case. For instance, it holds exactly for ellipti
shapes@see Fig. 1~b!# and is also within the limit of numeri-
cal uncertainty for finite-element calculations on rectangu
shapes@7#. This conjecture requires further investigation, a
is significant because ‘‘quasi-two-dimensional suspensio
can be created by dispersing particles at liquid interfaces@38#
and because two-dimensional suspensions have been st
by simulation@39#.

As defined above,@h# and @s# are dimensionless. How
ever, the intrinsic viscosity is conventionally defined~espe-
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cially in the polymer science literature! relative to the mass
concentration rather than the volume fractionf. Therefore,
the conventional intrinsic viscosity is@h#M5(Vp /M )@h# for
M the mass of the body.

A particle moving in a fluid induces motion in the flui
even in the absence of fluid viscosity. The far-field dist
bance created by this motion is described by a dipolar fie
The mass of the moving particle becomes equivalent t
hydrodynamic effective mass tensorM that is the sum of the
bare mass and a ‘‘virtual mass’’ tensorW,

M5VpI1W, ~9!

FIG. 1. Intrinsic viscosity versus intrinsic conductivity of con
ducting particles. Solid lines denote the angular averaging pre
tion of Garboczi and Douglas@7#, Eq.~7!. The dashed line indicate
the exact result for extended needle- and plate-shaped ellipsoid
revolution. ~a! Exact ~d! and finite element results~s! in three
dimensions. Exact results are for triaxial ellipsoids, ellipsoids
revolution @7,36#, and dumbbells over a range of separations. T
finite element calculations are for rectangular parallelepipeds,
cular cylinders, ‘‘jacks,’’ ‘‘sponges,’’ square ring, dumbbell of cube
~‘‘dice’’ !, square hollow tubes in three dimensions and rectangle
spherical lens and touching circles in two dimensions.~b! Exact~d!
and finite element results~s! in two dimensions. Exact results ar
for ellipses and finite element calculations correspond to rectang
and polygonal regions.
1-3
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MANSFIELD, DOUGLAS, AND GARBOCZI PHYSICAL REVIEW E64 061401
whereI is the identity matrix~the density of the particle an
fluid are assumed to equal unity for simplicity of discussi
here!. It has been shown rigorously@9,17# that M52am so
that the exact hydrodynamic-electrostatic analogy@s#0
5@ tr(am)/dVp#52@ tr(M )/dVp# immediately follows @7#.
Equation~7! is an approximate counterpart to this relati
for viscous fluid hydrodynamics. We finally note that th
electrostatic counterpart ofW is the polarization tensor~not
to be confused with the polarizability tensorsae or am!. The
hydrodynamic virtual mass is thus a kind of fluid polariz
tion associated with the motion of bodies in fluids.

The final electrostatic-hydrodynamic analogy that we e
phasize is the relation between electrostatic capacityC of a
conducting particle and the translational friction coefficienf
of a Brownian particle of the same shape. The total charge
a conducting particle is proportional to the potential on
body and to the electrostatic capacityC, which is itself a
functional of the particle shape. Our units for capacity a
chosen so that the capacity of a sphere ind53 equals the
sphere radius. Determination ofC involves the solution of
Laplace’s equation with Dirichlet boundary conditions, as
the case ofae. The friction coefficientf of a Brownian par-
ticle is invariant to particle rotation since a diffusing partic
samples all orientations as it moves over large distance
formal angular averaging of the Oseen hydrodynamic in
action indicates thatf is proportional toC @2,3,5,40#,

f '6ph~dispersing liquid!C. ~10!

Therefore, within the angular averaging approximation,
capacityC of a conducting particleequalsthe hydrodynamic
radiusRH of a Brownian particle of the same shape, sin
this latter is conventionally defined asf /6ph. Comparison
between Eq.~10! and existing analytic results shows that it
accurate to about 1% generally and usually much be
@2,3#. Equation~10! is exact for triaxial ellipsoids and a tabu
lation of exact values ofC/ f is given by Hubbard and Dou
glas@3#. There are many analogies relatingC exactly to other
transport properties~thermal capacity, Smoluchowski rat
constant for diffusion-limited reactions, scattering length
quantum theory and acoustics, etc.! so that the determination
of C has many further applications than those discusse
the present paper@2#.

III. NUMERICAL PATH-INTEGRAL CALCULATION OF
ELECTRICAL POLARIZABILITY AND CAPACITY

It has long been known that the capacityC can be calcu-
lated formally by averaging over random walk trajector
@41#. This interpretation ofC is one of the classical results o
probabilistic potential theory. The formal solution can
stated in a very simple way that we then generalize t
description of electrical polarizabilityae . We determineC
mathematically by solving Laplace’s equation (¹2c50)
with the boundary conditionsc51 on the boundary of the
object V and c→0 at infinite distance@15#. The capacity
defines the asymptotic decay ofc at large distances,c
;C/Rd22 for d.2. We next consider random walks init
ated at points outside ofV and consider the probability tha
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these paths hitV in some finite time. If the trajectory start
on V then the particle hitsV with certainty while if the
particle starts a long distance away then it hits with lo
probability. The equipotential surfaces of constantc for the
charged conductor are also constant probability surfaces
hitting V. The charge density is proportional to the hit de
sity of trajectories launched a large distance away. Expl
numerical calculation ofC is facilitated by embeddingV in
some closed boundary for which Laplace’s equation can
solved exactly, the simplest of which is a sphere@2,4#. We
also employ the sphere embedding method in our calcula
of ae below.

The determination ofae also involves the solution o
Laplace’s equation with Dirichlet boundary conditions, a
though of courseae is a tensor. Tensors have not been co
sidered previously by path-integral computation so o
implementation of this calculation should have theoretica
well as practical interest.

We imagine that the body whose polarizability we wish
calculate sits near the origin and that two point charges
magnitude2Q1 and1Q2 are placed at sites6L along the
z axis. These point charges generate the external ele
field. Of course, we require the external field to be unifo
over length scales much larger than the body, which
achieved by lettingL→1`, 2Q1→2`, and Q2→1`,
in such a way that the electric field at the origin rema
constant. Equivalently, we can imagine thatQ1 positive ran-
dom walkers~‘‘positrons’’! andQ2 negative random walkers
~‘‘electrons’’! are released, respectively, from the points
6,L and that some of these eventually adsorb on the bo

We next consider a sphere of radiusR centered at the
origin. R is arbitrary as long as the body lies complete
inside the sphere. All walkers that eventually reach the bo
must pass through the surface of the sphere. Our knowle
of the problem of a point charge outside a grounded spher
conductor lets us predict the distribution of random walk
passing through the sphere@4,30#. Specifically,

s6~r !5@Q6b23Q6b2#r0~r !13Q6b2r6~r !, ~11!

gives the number density of ‘‘positrons’’ and ‘‘electrons
respectively, that pass through the sphere. These are li
combinations of three normalized distribution functions d
fined on the surface of the sphere

r0~r !5~4pR2!21, ~12!

r6~r !5~4pR2!21~16cosu!. ~13!

Hereb5R/L!1, andu is the polar angle. Equation 11 is th
O(b2) expansion of the more general formula@4,30#, but
since we takeL→`, only these terms are needed. The
expansions indicate, for example, that of theQ1 positrons
emitted atz51L, bQ1 arrive at the sphere, and of thes
3Q1b2 are distributed according tor1 , while the remainder
are distributed uniformly.

Monte Carlo techniques can be used to estimate the
tistics of the random walkers at all times following the
arrival at the surface of the sphere. Launch a total ofN/2
positrons from the sphere atR, with the initial sites selected
1-4
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INTRINSIC VISCOSITY AND THE ELECTRICAL . . . PHYSICAL REVIEW E 64 061401
according to ther1 distribution. DefineK1 to be the number
of these that adsorb onto the body, while the remainder
lost to `. Also accumulate the vector sum of all theseK1

contact points and call the sumV1 . Then launchN/2 elec-
trons according to the distributionr2 and let K2 and V2

represent the number of contacts and sum of contact po
respectively. Technical details for doing such simulatio
have been worked out in a number of cases@2–4#, and in the
next section we describe several techniques. Finally, defi

t5~K11K2!/N, ~14!

u5~K12K2!/N, ~15!

v5~V11V2!/N, ~16!

w5~V12V2!/N. ~17!

Furthermore, by placing electrons and positrons on an e
footing (r11r252r0), we accumulate statistics for th
case in which random walkers are launched uniformly fr
the sphere. This is exactly the Monte Carlo procedure
ready developed for the electrostatic capacity@2–4#. There-
fore, the capacity of the body is

C5tR. ~18!

The total positron charge that accumulates on the body is
sum

qp51@Q1b23Q1b2#t13Q1b2~2K1 /N!, ~19!

while the total electron charge is

FIG. 2. ~Color! Illustrative realization of a random walk sam
pling path launched from an enclosing surface. The object in
case is a model branched polymer where spheres are placed
vertices of the ‘‘graph’’ describing the polymer. The fraction
random walk trajectories that hit the polymer rather than the lau
sphere determines the electrostatic capacity. The electrostatic p
izability tensor is obtained similarly except that the launched r
dom walks are assigned charges according to the position f
which they are launched~see text for details!.
06140
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qe52@Q2b23Q2b2#t23Q2b2~2K2 /N!. ~20!

The total charge,qp1qe , must vanish toO(b2). This occurs
if we set

Q25Q1~116bu/t !. ~21!

The total dipole moment is

m51@Q1b23Q1b2#v16Q1b2~V1 /N!

2@Q2b23Q2b2#v26Q2b2~V2 /N!, ~22!

while the electric field insideR is parallel to thez axis with
magnitude (Q11Q2)/L2. Dividing one by the other gives
three diagonal components of the polarizability tensor

~a13,a23,a33!512pR2@w2~u/t !v#. ~23!

Of course, it would be possible to repeat the calculat
with polarizations along thex axis andy axis to obtain all the
other components ofae. However, with slight generaliza
tion, it is possible to accumulate statistics on all compone
in a single run. Launch a total ofN walks from the sphere a
R, with the initial site~x,y,z! chosen anywhere at random o
the surface of the sphere. Each walker is assigned three
dependent charges: It is designated as anx positron with
probability (11x/R)/2, otherwise it is designated as anx
electron, and similarly, it is given ay charge and az-charge
according to the values of the other two components. In a
ogy with the above, we defineK j

1 andK j
2 to be the number

of j positrons andj electrons, respectively, that adsorb. We
Vi j

1 andVi j
2 represent the sums of thei th components of the

is
the

h
lar-
-
m

FIG. 3. ~Color! Random walk hit density for a unit cube. Th
dark hemispherical patches represent 2000 hits on the cube by
dom walks launched from an enclosing sphere. Note the increa
density ~charge density! near the sharp corners of the cube whe
charge density becomes singular~in the limit of an infinite number
of probing walks.! We estimate the capacity of the cube to beC
50.660 69(2).
1-5
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MANSFIELD, DOUGLAS, AND GARBOCZI PHYSICAL REVIEW E64 061401
displacement vectors at whichj positrons andj electrons ad-
sorb. Then defineuj5(K j

12K j
2)/N, t5(K j

11K j
2)/N ~t is

independent of j!, v i j 5(Vi j
11Vi j

2)/N, and wi j 5(Vi j
1

2Vi j
2)/N. Then the expression for each component ofae

equals

s i j 512pR2@wi j 2ujv i j /t#, ~24!

while Eq. ~18! still holds for the capacity.

IV. TECHNICAL DETAILS

A calculation generally proceeds through the followi
steps untilN walkers total have been launched and their t
jectories calculated@2–4#. Realizations of the process for
model aggregate and for a cube are shown in Figs. 2 an
respectively.

Step A. Initiate a new random walker somewhere on
sphere of radiusR, the ‘‘launch’’ sphere, and assign its thre
charges.

Step B. Letr represent the current position of the walke
If r lies outside the launch sphere, move the random wa
through time until it either returns to the launch sphere
wanders off to infinity. The standard Green’s function for
point charge outside a conducting sphere is used@4,30#.

Step C. Ifr lies on or inside the launch sphere, move t
walker forward in time by any of several different alg
rithms. Several of these are given elsewhere@4#, and several
are presented below.

Step D. If the random walker is found on the surface
the body, accumulate the various sumsK j

6 and Vi j
6 , then

proceed from step A with a new walker. If it has wander
off to infinity, proceed from step A without accumulating an
statistics. Otherwise proceed from step B with the sa
walker.

All the algorithms developed for step C above assu
that the walker lies outside the body, but either on or ins
the launch sphere. In general, we seek an efficient way
moving the walker forward in time until it hits the body. Th
following paragraphs give three techniques for accompli
ing this.

The plane algorithm. For computations on convex poly
hedra, one can move the walker ahead until it first ma
contact with the plane that contains the nearest face of
polyhedron, using the Green’s function for a charge near
infinite conducting plane@30#. With finite probability the
walker will also be found on the face of the polyhedron a
the trajectory will terminate at this step. Otherwise the co
putation continues as outlined above.

The Zeno algorithm. Let D(r ) represent the smallest dis
tance fromr to the surface of the body. Move the walker
a new site chosen at random on the surface of the sphe
radiusD(r ) centered onr and then proceed with step D. Ju
as in Zeno’s paradox, the walker never actually reaches
surface of the body, but it moves arbitrarily close. Therefo
we declare contact wheneverD(r ) is less than some sma
distance«. For complex bodies,D(r ) may be difficult to
calculate, so it is difficult to make general statements ab
the efficiency of this algorithm. However, when computati
06140
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of D(r ) is trivial it is very efficient. For the simplest shape
we are able to simulate 106 independent random walks i
about 1.5 min on a Pentium III machine. Calculations
chains of 3200 beads~see below! were slower, requiring
about 35 s to simulate only 103 walks. The Zeno algorithm is
also extremely versatile. Since the only model-specific f
ture is the functionD(r ), the same computer code can b
applied universally simply by plugging in the appropria
D(r ) subroutine. The best statistics are obtained when
use the smallest possible launch sphere.

The lattice algorithm. We have also been interested
applying these techniques to lattice models of macrom
ecules and, therefore, have experimented with walks p
formed on the same lattice@42#. This approach is hampere
by the absence of analytic Green’s functions for latt
walks. One approach that works reasonably well is to be
by selecting a site at random in the continuum on the surf
of the launch sphere, then jumping directly from there to
nearest lattice site. The walker then walks on the lattice u
it either encounters the body or finds itself outside a sec
sphere, the ‘‘turn-back’’ sphere, concentric with the laun
sphere, but with a radius larger by about ten lattice spacin
Then the walker is either returned to the launch sphere
permitted to escape to infinity using the continuum Gree
function for a charge outside a conducting sphere@4,30#. If it
is returned to the launch sphere, it once again jumps to
nearest lattice site and begins walking on the lattice. Ge
ally, we find that this algorithm generates errors compara
to the ratio of the lattice spacing to the capacity so that
curate results can only be obtained by extrapolating to v
fine grids. It works best if a bit is assigned to each lattice s
to report whether or not that lattice site is part of the body
virtue of both the plane and Zeno algorithms is the capa
to take larger steps when the walker is farther from the bo
This particular implementation of the lattice algorithm lac
that feature and, therefore, its efficiency suffers somewh

V. ILLUSTRATIVE CALCULATIONS

In order to test the technique presented here, we h
calculated capacities and polarizabilities of a number of b
ies for which either exact results or independent numer
calculations are available. There are a limited number
shapes that permit exact analytic calculation ofC and ae,
including ellipsoids, tori, pairs of spheres at arbitrary se
ration, lenses, spindles, and bowls@43–45#. Numerical esti-
mates, often of very high accuracy, of objects such as
regular polygons and polyhedra have also been repo
@46–49#.

In these calculations, we determined all nine compone
aei j simultaneously according to Eq.~24!. In all cases the
resultant tensor had the expected ‘‘structure,’’ namely, co
ponents that were expected, on the basis of symmetry, e
to be mutually equal or zero, were indeed so, to within sa
pling error. However, for the sake of brevity, all nine com
ponents will not be reported here. When the tensor dege
ates to a scalar, we report only the value of@s#` . When the
body has rotational symmetry about an axis, two values,@s# i

and @s#' , representing axial and transverse contributio
1-6
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respectively, are reported. These may be defined as follo
assuming the rotation axis of the body is aligned with thz
axis:

@s# i5~ae!zz/3Vp ,@s#'5@~ae!xx1~ae!yy#/3Vp , ~25!

with @s# i1@s#'5@s#` . Finally, for regular polygons and
disks, (ae)zz50 while (ae)xx5(ae)yy , but Vp50 and@s#`

diverges. Therefore, we report the single component (ae)xx
5(ae)yy in those cases.

Error estimates for all the following examples are calc
lated from fluctuations observed over a series of runs and
indicated by a single digit in parentheses following decim
data, and represent the uncertainty in the final digit. Th
error estimates do not include small systematic errors, wh
might arise, for example, from the finiteness of the cont
cutoff « or the imperfection of the random number genera
~This type of calculation may have independent interest a
physical model for testing random number generators@50#!.
We performed on the order of 108 trajectories in any given
calculation, and found that this generally guarantees fi
figure accuracy in the capacity and four-figure accuracy
the polarizability. Therefore, 106 trajectories should yield
three- to four-figure accuracy, which is adequate in m
cases.

A. Spheres

Capacities and polarizabilities for a number of differe
spheres were calculated by the Zeno algorithm, with ca
lations summarized in Table I. In all cases the contact cu
was set at«51025. The results are in excellent agreeme
with the known resultsC5r and @s#`53. The results also
demonstrate that the technique is independent of the siz
the launch sphere and of the position of the body inside
launch sphere, although better statistics result if the lau
sphere is chosen to fit as snugly as possible. Because
D(r ) calculation for spheres is trivial, each individual calc
lation of 108 trajectories requires less than 2 h ofPentium III
processor time.

The lattice algorithm was also performed on a series
spheres in order to test its performance on a well-unders
case. Two lattices, the diamond and the simple cubic, w
employed. Length units for the two lattices are chosen so

TABLE I. Zeno-algorithm calculations on spheres.r is the
sphere radius,c is the position of sphere center,R is the radius of
launch sphere, andN is the number of trajectories calculated.

r c R N ~Units of 108! C/r @s#`

1 ~0,0,0! 1 1.00 1.000 00~0! 2.9999~2!

1 ~0,0,0! 1.1 1.00 1.000 03~3! 3.0001~3!

1 ~0,0,0! 1.5 1.00 1.000 07~8! 3.0005~5!

1 ~1,1,0! 11A2 1.00 1.0001~1! 3.001~1!

2 ~0,0,0! 3 1.00 0.999 94~7! 2.9994~5!

0.1 ~0,0,2! 5 1.06 1.0005~7! 3.0~1!

0.5 ~0.5,0.5,0.5! 2 1.06 0.9997~2! 2.999~2!

0.2 ~0,0,0! 4 1.28 0.9998~4! 3.04~2!
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the nearest-neighbor distance equals 31/2 and 1, respectively.
A lattice ‘‘sphere’’ of radiusr is defined as all lattice site
~x,y,z! such thatx21y21z2<r 2. We performed a number o
runs over a range ofr values between 20 and 50 and f
various values of the launch and turn-back radii. In all cas
the final results could be well represented by these exp
sions:

C/r 50.99920.51/r ~diamond!, ~26!

C/r 51.00120.37/r ~simple cubic!, ~27!

@s#`52.99424.5/r ~diamond!, ~28!

@s#`53.00323.1/r ~simple cubic!. ~29!

As expected, corrections to the asymptotic continuum lim
are inversely proportional tor. The leading term extrapolate
to a value accurate to about three significant digits, which
adequate for many applications.

B. Polyhedra

The cube is perhaps the most extensively studied sh
for which no exact results exist. The calculation of the c
pacity of the cube has been characterized as ‘‘one of
major unsolved problems of electrostatic theory’’@51# and
distinguished mathematicians have said that ‘‘there is li
hope of obtaining an exact solution.’’@23,52# Interest in the
cube derives both from practical applications and the vex
contrast between the simplicity of the boundary shape
the mathematical intractability of the electrostatic calcu
tions. Calculation of the electrical polarizability is an eve
more difficult problem.

Our results for the five regular polyhedra are given
Table II. Table III summarizes various estimates of the
pacity and the polarizability of the cube. Our capacity val
for the cube is consistent with a previous random walk c
culation by Given, Hubbard, and Douglas, using a somew
different ‘‘first-passage algorithm,’’@53# averaging over 4.7
3109 trajectories. It also compares well to the so-called s
face charge method~SCM! result of Goto, Shi, and Yoshida
@46# that utilizes a sophisticated extrapolation technique
account for inaccuracies in fields near sharp corners. Bro
@54#, using a finite differences technique, has reported cap
ity values for each of the five regular polyhedra that ag
well with ours. Earlier moment method calculations by R
itan and Higgins@51# and by Cochran@55# can also be cited.

Calculations of the polarizability of the cube also have
long history. Edwards and Bladel@56#, using an integral
equation—boundary discretization method, obtained an
possibly low value.~@s#`53 is known to be the lowest pos
sible value and is only achieved by the sphere@57#!. Herrick
and Senior@57# then made an improved estimate by a simi
method with a guess of about 1% accuracy. A more rec
calculation by Eyges and Gianino@58# gives no error esti-
mate.

The cube result by Douglas and Garboczi@7a# was ob-
tained by finite element calculation using a periodic unit c
on a digital lattice~simple cubic! where no effort was made
1-7
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TABLE II. Regular polyhedra.L is length of edge,R is radius of launch sphere, andN is the number of
trajectories. Other numerical results for the capacity come from the work of Goto, Shi, and Yoshida@46# and
of Brown @49#. Numerical estimates of@s#` for the cube are from Herrick and Senior@57#, Eyges and
Gianino @58#, and Douglas and Garboczi@7#. N.A. denotes ‘‘no results available.’’

Polyhedron Algorithm L R
N

~units of 108!

C/L
@s] `

~this work!

C/L
@s] `

~other results!

Tetrahedron Zeno 2A2 A3 1.00 0.356 80~3! 0.356
5.029~1! N.A.

Cube Plane 1 0.87 2.58 0.660 69~2! 0.660 674 9~6!

3.6437~6! 3.40 to 3.72

Cube Zeno 2 A3 0.93 0.660 72~4! 0.660 674 9~6!

3.6446~5! 3.40 to 3.72

Octahedron Zeno A2 1 0.94 0.509 45~3! 0.510
3.5509~2! N.A.

Icosahedron Zeno 1.051 46 1 1.00 0.815 84~3! 0.816
3.1305~4! N.A.

Dodecahedron Zeno 0.713 64 1 1.00 1.246 48~5! 1.238
3.1779~3! N.A.
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to account for the effects of digital resolution. The effect
digital resolution can be handled very simply in a way ana
gous to that of the random walk algorithm on lattices. It h
been found, as expected, that the deviation of the calcul
properties from the ‘‘true,’’ infinite resolution result scale
1/N, whereN is the number of pixels on the edge of th
cubic unit cell@7b,7c#. Using this technique, we were able
greatly improve the finite element calculation and found
revised value of@s#`53.63(4) for the cube. About thre
significant figures of accuracy result in this method, simi
to the lattice random walk algorithm mentioned above. T
revised finite element estimate of@s#` is then consisten
within numerical accuracy with the random walk calculatio
This result is very encouraging and suggests that finite
ment calculations can be routinely used to estimate@s#` for
objects having modest shape complexity. The random w

TABLE III. Various estimates of the capacity and polarizabili
of the cube.

Estimate Citation

C/L 0.660 69~2! This work.
0.660 68~1! Given, Hubbard, and Dougles@53#

0.660 674 9~6! Goto, Shi, and Yoshida@46#

0.661 Brown@49#

0.655 Reitan and Higgins@51#

0.6596 Cochran@55#

@s#` 3.6437~6! This work
,2 Edwards and Bladel@56#

3.54~3! Herrick and Senior@57#

3.40 Eyges and Gianino@58#

3.72 Douglas and Garboczi@7#
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method is advantageous when the boundary shape is c
plex, so that the computational methods are complemen

We also studied the cube using the lattice algorithm,
taining

C/L50.66010.12/L ~diamond!, ~30!

C/L50.65910.14/L ~simple cubic!, ~31!

@s#`53.6411.5/L ~diamond!, ~32!

@s#`53.6311.5/L ~simple cubic!, ~33!

The lattice path integration is again accurate to ab
three figures, after anL→` extrapolation. We believe it pro
vides insight into the boundary discretization approximat
of finite element techniques. Comparison with Eqs.~26! to
~29! indicate that theO(1/L) corrections are smaller fo
cubes than for spheres. In effect, the good approximation
the boundary achievable for the cube reduces the uncerta
in boundary detection, the counterpart of« in the Zeno algo-
rithm calculations.

The Zeno algorithm was also applied to the trunca
icosahedron, the well-known 60-vertex polyhedron that
obtained by trisecting the vertices of the regular icosahed
and that represents bothC60 fullerene molecules and socce
ball-shaped objects@59#. With N51.223107 and «51025,
we obtainedC/R50.957 93(6), where R is the distance
from the center to any one of the vertices, and@s#`

53.0409(8).
1-8
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TABLE IV. Regularn gons and circular disks.n is number of sides, withn5` indicating a circular disk;
N is number of trajectories;r is the distance from center to vertex of polygon and also the radius of the la
sphere; and (ae)xx is the component of polarizability in the plane of the object. SCM indicates estimate
the extrapolated surface charge method of Goto, Shi, and Yoshida@46#. Ex indicates exact values@43,60#.

n N ~units of 108!
C/r

~this work!

C/r
~other estimates or

exact values!
(ae)xx/r

3

~this work!
(ae)xx/r

3

~exact values!

3 2.4 0.434 52~3! 0.434 521 1~4! ~SCM! 1.8387~6! N.A.
4 1.0 0.518 79~6! 0.518 718~2! ~SCM! 2.943~1! N.A.
5 1.0 0.559 28~4! 0.559 441~1! ~SCM! 3.6437~5! N.A.
6 2.4 0.582 02~3! 0.582 226 7~5! ~SCM! 4.0911~7! N.A.
7 2.4 0.596 07~3! 0.596 242 3~1! ~SCM! 4.3889~5! N.A.
8 2.4 0.605 43~3! 0.605 469 73~6! ~SCM! 4.5889~6! N.A.
` 1.1 0.636 60~4! 2/p50.636 620~Ex! 5.333~1! 16/355.3333~Ex!
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C. Polygons and disks

The approach works equally well on flat objects. Table
summarizes the results for polygons and a circular disk.
our results in Table IV were obtained using the Zeno al
rithm with «51025. Most of the other estimates cited i
Table IV were done by an extrapolated SCM@46#, which
appears to be very accurate for simple shapes such a
polygons, and which agrees well with our results. The cap
ity of a circular disc is a classical problem in electrostati
C52r /p @60#, which compares well to our numerical es
mate C5@0.999 97(6)#(2r /p). The polarizability compo-
nent in the plane of the disc is known to be (ae)xx
516r 3/3 @43#, while the normal component is zero. Our e
timate is (ae)xx5@1.0000(3)#(16r 3/3).

Like the cube, the electrostatic properties of the squ
have been of interest, but also impossible to calculate
actly, with a number of calculations of increasing sophisti
tion. These are summarized in Table V. The estimate
Goto, Shi, and Yoshida@46# obtained using the extrapolate
SCM is most accurate. Reitan and Higgins@61# earlier SCM
estimate without extrapolation is less accurate. Solomo
@62# estimate and Maxwell’s original estimate@15# are also
noted.

D. Touching spheres

There are exact results for the capacity of two sphere
different radii that are either mutually tangent@54# or that
overlap@45#. We computed capacities and polarizabilities
several pairs of touching spheres of respective radiusr 1 and
r 2 by the Zeno algorithm with«51025, and using a launch
sphere of radiusr 11r 2 . Results appear in Table VI.

TABLE V. Various estimates of the capacity of the square
side 1.

0.366 84~4! This work
0.366 789 2~9! Goto, Shi, and Yoshida@46#

0.362 Reitan and Higgins@61#

0.367 Solomon@62#

0.3607 Maxwell, cited in Ref.@15#
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E. Right circular cylinders

The right circular cylinder is perhaps the most challeng
shape for which exact results exist@47#. Table VII compares
the results of the Zeno algorithm~with 108 trajectories for
each cylinder and«51025! with exact numerical results.d
and h represent the diameter and height of the cylinder,
spectively, and the radius of the launch sphere was se
@(d/2)21(h/2)2#1/2. C(0) is the capacity of a sphere havin
the same volume as the cylinder. The numerical agreem
with the analytic calculations is generally good. The ‘‘exac
results are obtained numerically from complex expressi
and we suspect, given the quality of our comparisons in ot
cases, that the inaccuracy observed in Table VI arises f
the evaluation these expressions. We also note that exact
lytic results exist@48# for am that should provide a good
numerical test of path-integral calculations for the magne
polarizability.

F. Tori

A torus is defined as the locus of points within a distan
a of a circle of radiusb, with a<b. Laplace’s equation is
separable in toroidal coordinates, which permits the deve
ment of series expansions for the capacity and the pola
ability. Belevitch and Boersma@44# present numerically ex-
act results for a number of different values of the ratioa/b.
Especially accurate results are given in the ‘‘tight toru
limit, a5b and the asymptotic behavior in the ‘‘thin loop
limit a!b is also well understood@44#. Table VIII contrasts
the results given in Ref.@44# with results of the Zeno algo
rithm, again withN5108 and«51025, for several different
values ofa andb. In all cases, the launch sphere had rad
a1b, and C(0) is the capacitance of a sphere having t
same volume as the torus. Again the agreement is excel

VI. TRANSPORT PROPERTIES OF MACROMOLECULES

We now apply these techniques to the estimation of
transport properties of both linear polymers and dendrim
This serves the dual purpose of displaying the power of
computational technique on bodies of complex shape an
obtaining results of significance in materials science.

f

1-9
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TABLE VI. Touching spheres. ExactC values are from formulas given by Russell@54#. Exact values of
@s# i and @s#' are calculated from formulas given by Felderhof and Palaniappan@45#.

r 1 r 2 N ~units of 108!
C ~simulated!

C ~exact!
@s# i ~simulated!

@s# i ~exact!
@s#' ~simulated!

@s#' ~exact!

1 1 1.12 1.386 41~8! 2.4036~6! 1.8035~4!

1.386 29 2.4041 1.8031

1 1/2 1.16 1.098 62~6! 1.7225~4! 1.8999~4!

1.098 61 1.7222 1.8995

1 1/3 1.16 1.039 69~5! 1.3225~3! 1.9558~3!

1.039 72 1.3228 1.9560

1 1/4 1.16 1.019 87~5! 1.1661~3! 1.9779~3!

1.019 92 1.1663 1.9779

1 1/5 1.15 1.011 41~4! 1.0960~2! 1.9877~3!

1.011 40 1.0961 1.9875

1 1/7 1.15 1.004 79~3! 1.0402~2! 1.9952~3!

1.004 76 1.0404 1.9950

1 1/9 1 1.002 49~3! 1.0206~2! 1.9976~3!

1.002 43 1.0206 1.9975

1 1/11 1.15 1.001 38~2! 1.0119~2! 1.9984~2!

1.00 140 1.0119 1.9986
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A. Linear polymers

Chains of spherical beads are often used to model p
mer chains. In fact, the connections betweenC and f and

TABLE VII. Right circular cylinders.d is cylinder diameter,h is
cylinder height, andC(0) is the capacity of sphere having sam
volume as the cylinder. Data in last column are numerical result
Smythe@47#.

d h

C/C(0)
@s# i

@s#'

~this work!

C/C(0)
@s# i

@s#'

~other estimates!

1.060 97~4! 1.061
4 2 0.8109~2! 0.810 83

2.8118~3! 2.8115

1.040 91~4! 1.041
2 2 1.2863~2! 1.2871

2.1127~3! 2.1138

1.090 63~5! 1.091
1 2 2.3634~5! 2.3655

1.7400~4! 1.7410

1.220 51~9! 1.220
1 4 5.028~2! 5.0237

1.5434~4! 1.5434

1.448~2! 1.453
1 8 12.133~6! N.A.

1.4369~80! N.A.
06140
y-
between̂ tr(ae)&5^a& and @h# were first recognized in cal
culations on chains of beads@5#. The Kirkwood-Riseman
integral equation for the translational friction coefficient of
Gaussian polymer chain of beads reduces exactly to the
tegral equation forC in the angular averaging approximatio

Consider a random chain ofN spheres of radius 1 place
so that adjacent chain beads are touching. Noncontigu
beads are allowed to overlap. This model represents
polymer chains in solution at the theta temperature wh
attractive and repulsive intramolecular interactions larg
compensate@63,64#. Ensembles containing at least 5000 s
tistically independent chains were generated forN525, 50,
100, 200, 400, 800, 1600, 3200, and 6400. We launched 1
trajectories from an enclosing launch sphere~see Fig. 2! at
each chain in the ensemble utilizing the Zeno algorithm«
51025). With only 1000 trajectories per chain, we estima
that there is 3 and 15% sampling error in the capacity a
polarizability components, respectively, for any one cha
~These values were determined by launching many traje
ries at a few chains, as in the examples discussed abo!.
Nevertheless, the ensemble averages^C& and ^a& should be
much more accurate since each average involves at lea
3106 probe trajectories. Computational time was linear inN,
the bottleneck at largeN being the computation of the func
tion D(r ). Because of arbitrary overlap among spheres in
random walk chains, the volumeVp is neither easy to com
pute nor constant throughout the ensemble. However,
value of Vp is immaterial since it is more appropriate
consider the ensemble average of@h#M .

We summarize our computations forC and the average
polarizability in Fig. 4. The data~Table IX! are well repre-
sented by

of
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TABLE VIII. Tori. Interior of torus is the set of points within a distancea of a circle of radiusb. Exact
results are from Bolevitch and Boersma.@44#

a b u5a/b

C/C(0)
@s# i , @s#'

~this work!

C/C(0)
@s# i , @s#'

~exact results!

2.7263~2! 2.72608
1 20 0.05 0.6656~8!, 87.92~2! 0.6662, 87.9008

1.400 69~8! 1.400 68
1 4 0.25 0.6607~2!, 8.209~1! 0.660 84, 8.208 81

1.215 09~7! 1.215 18
2 5 0.40 0.6586~2!, 4.9398~7! 0.658 99, 4.939 07

1.151 20~6! 1.15119
1 2 0.50 0.6603~2!, 4.0562~6! 0.660 160, 4.055 46

1.070 58~4! 1.070 580
3 4 0.75 0.6734~1!, 3.0767~4! 0.673 247, 3.076 312

1.048 04~4! 1.048 077
9 10 0.90 0.6876~2!, 2.8169~4! 0.687 524, 2.817 058

1.038 63~4! 1.038 675 56
1 1 1.00 0.6992~2!, 2.7054~4! 0.699 131 5, 2.705 461 4
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^C&>0.657N1/210.854, ~34!

^tr~ae!&>13.76N3/2149.2N, ~35!

FIG. 4. The hydrodynamic radius and intrinsic viscosity of po
mer chains are estimated, respectively, from the electrostatic ca
ity ~s! and the polarizability~d! of perfect conductors having th
same shape as the polymer chains. The mean electrostatic prop
for ensembles of polymers are shown as functions ofN. The fitted
curves~solid lines! are given by Eqs.~34! and ~35!.
06140
where^¯& denotes an ensemble average.
We use the relationŝC&>Rh and Eq.~8! to estimate the

hydrodynamic radius and intrinsic viscosity of polymer s
lutions. The application of these calculations to flexible m
ecules requires the assumption that the properties of a si
chain with dynamic flexibility are equivalent to the ensemb
average over a rigid set of molecules. Zimm has argued
this is valid@65#. Results are expressed relative to the rad
of gyration Rg of the chain~root mean square distance o
polymer segments from the center of mass@63,66#!, which
can be calculated exactly for this model@66#:

Rg5~2N/3!1/2@12N22#1/2'~2N/3!1/2 ~36!

The ratioch[Rh /Rg for these chain models equals

Ch50.80511.05N21/2, ~37!

ac-

ties

TABLE IX. Chains of beads.N is chain length. Square bracke
indicate powers of ten.

N ^C& ^tr(ae)&

25 4.01 2.83@3#

50 5.44 7.22@3#

100 7.41 1.851@4#

200 10.19 4.90@4#

400 14.06 1.306@5#

800 19.50 3.51@5#

1600 27.2 9.71@5#

3200 38.0 2.66@6#

6400 53.3 7.31@6#
1-11
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and

M @h#MRg
235@6.66123.8N21/2#~1.0060.5!. ~38!

The factor (1.0060.5) arises from the uncertainty in Eq.~8!.
The leading term in Eq.~38! is often reported in terms of th
‘‘Flory-Fox number,’’ F5623/2@h#MMNA /Rg

3, whereNA is
Avogadro’s number. Our estimate ofF is

F5~2.7360.14!31023, ~39!

where the uncertainty again arises from the 5% uncerta
in Eq. ~8!. The best experimental estimates forch andF at
the theta temperature are@67# 0.7960.04 and (2.560.1)
31023. Our present estimates also closely correspond to
culations for flexible random walk chains based on
Kirkwood-Riseman hydrodynamic equations without t
configurational preaveraging approximation@65,68#,
ch ~KR!50.7760.03 and F~KR!5(2.5960.18)31023.
~The stated uncertainties are estimates of sampling e
These values probably also contain systematic finiteN er-
rors.! The leading term in Eq.~37! is somewhat larger than
the valuech>0.77 found in previous random walk simula
tions by Douglas, Zhou, and Hubbard@2# in which the bead
radius was one quarter of the bond length rather than
half and for whichN5101. This discrepancy may be due
finite N effects, even though this particular bead radius w
employed because it exhibits relatively weakN dependence
Further discussion ofch relative to previous theoretical est
mates and measurements is given by Douglas and F
@69#.

This calculation ofC andae also provides important in
formation about the distribution of chain mobilities an

FIG. 5. Distribution function for the capacityC of flexible poly-
mer chains including data forN5800, 1600, 3200, and 6400, no
malized byN1/2. The dashed line gives the value of the mean of
distribution.
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shape fluctuations of flexible polymer chains. Computatio
based on conformational preaveraging generally overl
‘‘unusual’’ members of the ensemble in favor of the mo
probable configurations. Relatively rare members of the
semble can make a disproportionate contribution to any
semble average because of the nonlinear nature of the
dom variable being averaged. Figure 5 shows the distribu
of C for N5800, 1600, 3200, and 6400, withC normalized
by N1/2, which for long chains scales asRg @see Eq.~36!#.
The distribution seems to beuniversalwith a small skew-
ness. In Fig. 6, a similar normalization of the polarizabili
data shows greater skewness; the mean is about 50% la
than the mode. Therefore, fluctuation effects are expecte
be more significant for the polarizability than for the capa
ity. The mean-field preaveraging approximation assumes
a ‘‘typical’’ or highly probable configuration is sufficient fo
the computation of ensemble averages. In the case of
random walk capacity, the true averageC is substantially
larger ~about 10%! than the preaveraging estimate, sugge
ing that rare extended chains have a much larger frict
cause the deviation. In the case of the polarizability, the
viation from preaveraging theory goes in the opposite dir
tion. The preaveraged value ofF is 2.8731023, larger than
Eq. ~39!. This suggests that more compact chain configu
tions are the source of the deviation from mean-field theo
Thus, the sign of the departure from mean-field calculatio
is property dependent.

Chain swelling due to repulsive excluded volume intera
tions should produce narrower distribution functions forC
and the components ofae. Previous numerical path
integration calculations indicate that fluctuations ofC about
its ensemble average is smaller for self-avoiding chains t
for random walk chains@2#. The distribution of these prop

e

FIG. 6. Distribution function for the electrical polarizabilit
trace tr(ae) of flexible polymer chains including data forN5800,
1600, 3200, and 6400, normalized byN3/2. The dashed vertical line
gives the value of the mean of the distribution.
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erties and its dependence on excluded volume greatly c
plicates the calculation of transport properties. In princip
renormalization group theory provides a formal scheme
treating these fluctuation effects, but the method is less
ful for these problems because of large«-expansion coeffi-
cients@70#. While the method does indicate that preavera

FIG. 7. Illustration of dendrimer molecules.~a! Topological
structure. ~b! Equilibrium structure of model dendrimer in rea
space.

FIG. 8. Dimensionless hydrodynamic radiusch5Rh /Rg of den-
drimers as function of generation numberG.
06140
-
,
r
e-

-

ing errors are substantially larger for simple random w
chains than for self-avoiding chains, the preaveraging er
predicted by second order«-expansion@70# and the
Kirkwood-Riseman model@68# are large in comparison to ex
periments and simulation@2#. The study of these propertie
should be very helpful in developing an adequate anal
theory of the hydrodynamics of polymers in dilute solution
The fluctuations of the chain mobility accompanying t
Brownian motion of the chain beads leads to modification
chain mobility by a ‘‘Taylor dispersion’’@71# mechanism. An

FIG. 9. Capacity~a! and polarizability~b! distributions of model
dendrimers for generationsG52 ~broadest!, 5, and 8~narrowest!,
normalized in each case by the mean. The distribution functi
become sharper with increasingG, quantifying the approach to a
spherical shape.
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understanding of these distributions should be helpful in
veloping a quantitative description of this type of dispers
phenomenon.

B. Dendrimer polymers

Dendrimer molecules are highly branched polym
grown through a successive addition of multifunction
monomers. See Fig. 7 for an illustration of their topologic
form. During construction of each generation, multifun
tional groups are added to saturation so that, unlike rando
branched polymers, the topological structure is nearly p
fect. Undoubtedly, flexibility allows these molecules to rel
to structures more uniformly distributed than the represe
tion in Fig. 7. Indeed, much recent research is devoted
quantifying the geometrical structure of these polymers.
low generation numberG(G,4) the molecules resembl
flexible star polymers and we can expect similarities to
flexible polymer calculations of the previous section.
higherG(G.4) the branching constraints begin to predom
nate and structures with relatively uniform segmental de
ties form. Stearic interactions on added monomer restrict
number of generations that can be perfectly formed so
high generation (4,G,13) dendrimers tend to be relative
spherical objects with a rough periphery and an interior w
some segmental fluctuations. The high generation dend
ers resemble spongy round balls. In this section we re
probabilistic calculations of the hydrodynamic radiusRh and
intrinsic viscosity@h#M as a function ofG. Some of these
results have appeared in a previous work devoted to the c
acterization of dendrimer structure@42#.

The dendrimer molecules are modeled on a diamond
tice to facilitate Monte Carlo simulation of dendrimer co
formations for a large range of generations. A large library

FIG. 10. Intrinsic viscosity of dendrimer molecules as a funct
of generation numberG, with a maximum atG56.
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these dendrimer structures has been generated and w
rectly apply our path-integration method~lattice algorithm!
to the calculation ofC andae . The mass of the model den
drimer is taken to equal the number of occupied lattice si

In Fig. 8 we show our results forch5Rh /Rg as a function
of G. Consistent with the discussion above, the magnitude
ch is similar to values expected of flexible polymer chai
whenG is small, and to values expected of uniform spher
(5/3)1/2>1.29, when G is large. Furthermore, the rati
M @h#MRh

23 tends to 10p/3, @42# as expected of spherica
objects. These results all indicate a crossover from a rand
coil-like structure to a relatively uniform sphere with increa
ing G. Figure 9, showing the progression in the capacity a
polarizability distributions as functions of generation num
ber, further supports this picture. At lowG there are large
shape fluctuations, but the distributions become narrowe
G increases. The standard deviation inC varies from about
6% to about 1% of the mean asG varies from 1 to 9, while
the standard deviation in tr(ae) varies from about 22% to 3%
over the same range ofG values. AtG52, the tr(ae) distri-
bution is slightly skewed and asymmetric, with mean a
mode differing by about 7%.

Another signature of an increasing dendrimer compa
ness can be seen in the dependence of@h#M on G. Figure 10
shows that @h#M passes through a maximum atG56.
Maxima in@h#M vs G are familiar in the literature, occurring
usually aroundG54 to 6 @72#. In our units, a dense-packe
sphere on this lattice would have@h#M520, sinceV/M58
and @h#55/2. The values in Fig. 10 are all considerab
greater than this because the dendrimer is not dense pac
Indeed 20/@h#M can be taken as an estimate of the inter
packing fraction. This also illustrates that relatively large
trinsic viscosities can be achieved using relatively poro
symmetric objects.~See also Ref.@7#!

VII. CONCLUSION

We have developed a general algorithm for simul
neously calculating the capacityC and electric polarizability
tensorae of conducting objects having general shape. Th
shape functionals have many applications to the scatte
of light and sound and are also important for describ
effective properties of particle dispersions and transp
properties of macromolecules. We estimate the translatio
friction coefficient and intrinsic viscosity of flexible linea
polymers and of dendrimers. We also obtain the distribut
functions for C and the trace ofae for flexible chains
and dendrimer molecules. These distributions are br
for flexible molecules, but become narrower in dendrim
molecules of increasing generation number. We a
calculateC andae for model shapes for which independe
calculations are available~spheres, polyhedra, tori, regula
polygons, touching spheres, and circular cylinders! in order
to establish the accuracy of our computational meth
The numerical path-integral method proves to be qu
flexible and especially efficient for complex-shaped partic
and should have many biological and materials scie
applications.
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