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Kinetic theory of fluidized binary granular mixtures
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Balance laws and constitutive relations for a binary granular mixture with unequal granular temperature are
derived. The complete pair distribution function for two colliding spheres was assumed to be the product of
Maxwellian velocity distributions for each phase. The constitutive relations together with the transport equa-
tions form a model for a binary granular mixture with unequal granular temperature. An analytical expression
for viscosity of each phase shows the effect of different masses and granular temperatures of particles.

DOI: 10.1103/PhysRevE.64.061301 PACS nunier45.70—~n, 05.20.Dd, 05.66-k, 03.50.De

[. INTRODUCTION of some of the basic trends. For example, the numerical re-
sults show the phenomenon of the formation of a dense layer
Dispersed particle flows in the form of solid suspensionsof particle phase at the wall, while the gas-solid mixture in
are common features in many industrial processes. Two apihe bulk of two phase flow remains dilute in the circulating
proaches are currently used to model the behavior of th#uidized beds of monodispersed particles. A real particle
dispersed phase: a “trajectoryl agrangian approach where system, however, consists of particles of various sizes and
individual particles are tracked through a random flow fielddensities. These particles may segregate by size and density.
by solving their equation of motion; and a “two-fluid” model Jenkins and Mancinf8] proposed a model for the binary
approach(Eulerian in which the carrier and the dispersed mixture of particles. They assumed that the two species of
phase are described by a set of continuum equations reprparticles in the mixture have an average granular tempera-
senting conservation of mass, momentum, and energy of eiure. Sher{9] adopted the simplest averaging and predicted
ther phase within a fixed element volume. It is well knownthe shear and normal stresses in the simple shear of spheres
that the semi-empirical approaches widely used to derivevith different diameters. Farrekt al. [10] speculated that
two-fluid equations do not provide models that are free ofthe assumption of equal granular temperature may not be
empirical parameters, such as viscosity. true. Experimental data by Yang and Arastoopflf] in a
The first attempt to derive the system of continuum equariser with dilute gas-solid flow shows that particles of differ-
tions for the dispersed phase from the analysis of microscalent diameters possessed unequal turbulent energy. Experi-
motion and interaction of particles was based on the kinetienents with a binary mixture consisting of 170 micrometer
theory of particle collisions borrowed from the kinetic theory steel particles and 450 micrometer glass beads were done by
of dense gaseésee, for example, Ref$1—4]). The main  Gidaspowet al.[12] in a liquid-solid fluidized bed. Figure 1
difference between the granular particles and a molecular gashows the experimental apparatusyAay densitometer and
is that energy is lost in collisions between grains. The motiora calibrated conductivity meter were used to measure con-
of a fluidized particle is composed of a mean component andentrations of steel and glass particles. The velocity distribu-
a fluctuating component. Savagéal. [1] used the term of tions of steel and glass particles were measured by a CCD
granular temperature to quantify the random motion of parcamera. Using the PIV technique fully described by Gi-
ticles about the mean velocity. The granular temperature igdaspowet al. for gas-solid flow in a risef13] and for liquid-
defined as the average of the sum of the squares of the threelid fluidization[14]. Figure 2 shows typical vertical and
fluctuating velocity components. The equations of motions asateral velocity distributions of steel particles in the binary
well as the collision integrals involved in the problem havemixture. Figure 3 shows the granular temperatures of steel
been obtained for identical, smooth, nearly elastic spheregnd glass in the mixture and those for steel and glass alone.
and for plane flows of identical, rough, and inelastic disksThe experimental data clearly show that the equipartition of
[2,3]. Such a closed system of continuum equations is usekinetic energy does not hold. The granular temperatures of
to model the gas-particulate turbulent flow in numerous enthe steel particles and the glass beads in the mixture are not
gineering and industrial applicatioiisee, for example, Refs. equal. The granular temperature of steel particles in the mix-
[5-7]), and clearly leads to qualitatively correct predictionsture is larger than that of steel particles alone. The granular
temperature of the glass particles in the mixture is only
slightly less than that of the glass beads alone. Hence a sepa-
*Corresponding author. Email address: Huilin.Lhi@usa.net rate balance of granular temperature is needed.
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FIG. 3. Test of equipartition of oscillating kinetic ener(glass
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FIG. 1. Two-dimensional liquid-solid fluidized bed with instru- Particle mass 1.19<10" "kg; steel particle mass2.0x 10 “kg).

ments for particle velocity and concentration measurements. product of the single particle velocity distribution function

for each species. Rather than determining the single particle
velocity distribution as approximate solutions to the kinetic
We treat particles of two different species, normally equations governing their evolution, we simply suppose that
called phasesA and B. The particles of each species are they are Maxwellian. Savaget al. [1] and Lunet al.[3] do
assumed to be smooth, inelastic, homogenous, spheregssentially the same in deriving their constitutive relations
Those of A have a diameted,, number densityn,, and for identical, smooth, nearly elastic, spheres.
massm,, those ofB have diameted, , number density,, Consider a collision between particle number 1 of species
and massm,. i and particle number 2 of specigswherei andk may be
We assume that each species in the binary mixture has eitherA or B. Letc,; andc; be the velocity of particle number
different granular temperature. The collisional fluxes andl immediately before and after a collision, respectively. Let
sources of momentum and energy involve the pair distribue, andc, be defined in the same way for particle number 2.
tion functions for colliding pairs of particles. We suppose The number of binary collisions between particles 1 and 2 is
that these distribution functions can be expressed as thgiven by

II. BINARY COLLISIONS IN DILUTE FLOW

|
Nik:f J J FIE (V1 Cai 1 2k Cok) - (Conjic- K) dfy dk iy dcyy, 1)
|
03 03 where the distribution is defined such that
1 Standucin velue =228 o |  Memalue=086ems f{¢'dey; dry deyy dra is the probability for finding a pair of
] ~ ] particles 1 and 2 in the volumgr {; dr,, with velocitiescy;
"% 02 | g 02 and c,,, k is the unit vector directed from the center of
s ] < particle 2 to the center of particle 1 at collisiom, is the
) ] 2 mean particle diameter of particle 1 andcg, is the relative
2 o1 2 01 velocity particle 1 and particle 2. With the assumption of
= ] = ! chaos, the pair distribution is related to the single particle
] L ] velocity distribution functions as
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FIG. 2. Typical velocity distribution of a steel particle in a bi- _ _ _ _ _
nary mixture (liquid velocity=2.47 cm/s; measured positiod ~ We must specify the form of the single particle velocity dis-
=6.7cm. tribution. Here we simply suppose that they are Maxwellian:
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m; 312 m; 2 100
fl(c,r,t)—ni(m) ex 2—0i(ci ui)“|, (3) | —- 9; =0.4x10®
--------- 9 0.8x10® /
whereu; and 6; are the mean velocity and the granular tem- 2 11— 91 = 1.6x10° /
perature for specieis Mg 1 ——6;= Gk //
< /
6,=m;(C?)/3, (4) E 1 m=1.0x10 Vs
50 - m=1.0x10
whereC; is the fluctuating velocity for spherégelative to ~ 4 €,=0.999 / ,
the hydrodynamic velocity. In contrast with the one thermal §~ ik / .
temperature for gasd45,16 and one granular temperature o . /
for binary granular mixtur¢8], we assumed that each spe- z | Rt ,4/'/
cies has a different granular temperature. With this in mind, X //,g/"--/’/’ -
the number of binary collisions can then be written as z - ////
e
7Td|knnkmmk3/2 0 IIIII'érlllslil 8
Nix= “2n)? ( 0, Gk) j f f Ca1ik 02x10°% 0.8x10° 1.4x10° 2x10°
0 (kgmz/sz)
Xex;{ LI JERLLLIE (5) )
26; U 26y 2k |7 ke FIG. 4. Computed collisional numbers of a binary granular
mixture.
Transforming to the relative velocitg,,j, and to the mass-
center velocityG, using the collisional relations in a similar Ill. THE CONSERVATION EQUATIONS
manner as done by Chapman and Cow(ih§], and expand- _ ) i )
ing it in a Taylor series, the integral can be written as The binary mixture will be described by a Boltzmann
equation for each component with the influence of external
m, | 32 forcesF [4,15]:
NmZZdﬁmn4 ! ) | [ | exi-act-pe3,, ) ) )
K(1- 2B Gyt G2 G By o © s fienbta —ofi(g,r,th+F 7 fi(c,r,t)
where the coefficients, B, andD are = I 1)+ (). ©
The terms)(f;,f;) andJ(f;,f;) represent the change in the
_ M Gt My B _ mMimy(6i— 6 distribution function due to the collisions between particles
26,6, 2my 6,6, ' of species-i andi-j, respectively.
Given a typical property); = ¢;(c) of particlei, its mean
mymy(m; 6+ My ;) @ (#;) is defined by

Zm 0 0k ' 1
<wi>=;f ACHIOES
wherem, is the sum ofm, andmy,. Carrying out the inte- !

gration by parts, the result is where the dependence of the mean upoandt is to be

\/— 3 understood. By multiplying the Boltzmann equation by a
N_k:_WdZ n_nk<mimk) 1 quantity ¢; and integrating ovec;, a transport equation for
g T gig ) AYD? the quantityy; can be found:
x 1_3_+6B_2_10 B> ene (8) ani( )
AD  _AD (AD)? : ot +V. ni<Ciwi>+; Pe ik
If 6;=6, and B=0, the expression8) reduces to the one . i D> N, (10)
used for gase$§15] and for particulate$4,8] with the as- ! cik

sumption of equal granular temperature of binary mixture.

Figure 4 shows the collisional numbers of binary granulanWhen we focus attention on a control volume fixed in
mixture as a function of granular temperatutgfor param-  spaces, the last two terms on the left-hand side give the av-
eters close to the experiment. The collisional numbers inerage rate of change of¢; due to net influx to the element
crease with increasing granular temperature of spdciés  of particles bearing; and due to collisional flux with par-
the figure, the curve for the collisional number of equalticles of speciek. The two terms on the right-hand side
granular temperature); = 6,, is presented for comparison. provide the explicit change @f due to an external force and
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the average rate of change mfi/; due to collisional source The factorg;, is the equilibrium radial distribution function
with particles of specie&. The collisional flux and source of two spheres, one of specieand the other of specids at
are, respectively, contact. The expression for the radial distribution at contact

. for mixtures of hard spheres that is in best agreement with

o di , numerical simulations is that of Mansocet al. [17]. For
Peik="7 k4012>0(¢/1i_ Yrai) (K- Crzgp) binary mixture it can be written as
1 1 1 3d;d & dide \2 &
@ Zg e T _ L idk idi
Xkt (r 2dlkk’clllr+ 2d|kk-C2k dk dcy; dey, Oik 1—v+di+dk(1—v)2 ditd (1—»)3
(11) (16)
2 where¢=4(n,d?+n,d?)/3 andw is the total volume frac-
N, ik:_'kJ (P + Ph— i— ) (K- Cipj) tion. Expanding the distribution function in Taylor series, it
2 Jkeeps0 gives
X KR (r—digk,cpi 1, cp)dk deg dege. (12) 1 1
. . fi(f)(r_—dp,ikkycl,i ;r+_dp,ikkyc2,k)
The balance laws for the mixture are obtained by assum- 2 2
ing the corresponding balance laws for the singles species.
When ¢;=m;, the mass balance for specieesults in =gik[fi(r,c1i)fk(r,02k)
i(n-m-)+V-(n-m-u-)=0 (13 1 Fi(r,c2i0)
o it im; U; . +Edp,ikkfi(racli)fk(r-CZK)Vlnm . (17

If ¢;=m;c; in Eq. (10), the balance of linear momentum for

species is obtained: For a Maxwellian distribution the kinetic part of the stress

tensor for specieswas defined as

J
St (EipiW) TV - (eipitit) ==V (Pci+Pci) +&ipiF P(k?i>:nimi<ci(o)ci(o)>:f nmCCfods. (18
+N(mic). (14

Carrying out the integration, the first approximations for the
Here P, and P, are the pressure tensor of the transport andstress tensor gives the equation of state, that is,
collisional contributions. Let; = mici2/2, with some familiar
manipulations and the use 6f,C?)=36;, the balance of P =Pil=(n;6)]1, (19
fluctuation energy for specieds as follows:
where | is a unit tensor. From the transport equation for
kinetic energy, the first approximation to the heat flux for

3| d
E E(niei)—’_v'(niuiei) :(Pk,i+PC,i):Vui_V(qk,i+qC,i) species' is given by

+eipi(FiCi) + Ngi %miciz)- qf(f’i)=f§1nimicizcifi(°)dci. (20)
(15 . | _
But note thaf C;')=0 for every odd integek. Thus the first
V. CONSTITUTIVE RELATIONS approximation to the heat flux gives
In order to calculate the collisional terms appearing in the q)=0. (21)

balance laws, definite forms of the pair distributions at con-

tact are needed. If it is assumed that collisions between two Substitution of Eq(17) into Eq.(11) gives an expression
particles are only slightly influenced by the presence of othefor the collisional stress tensor shown below:

particles, the pair distribution functions can be expressed in

terms of the product of two single particle velocity distribu-

tion functions[4,8,15: Pci:§k: (PeiktP2iw)
1 1 1
2 . ’
fiel r=5 dp,ick.ca; ’r+§dp,ikkycz,k) =2k _Edikgikf f f (1= ¢1)
Clz'k>o
1 1
= gikfi( r— Edp,ikkrcli)fk r+ Edp,ikkaZK) : X £ K (Cogic- K)dK dyy ey
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—%gikdizkfff(‘ﬁii_‘ﬁli)

C1o° k>0

xffkaIn k(clz,k k)dkdcl,d02k] (22)

The collisional dynamics showed that

m
¢~ Cri=— *(1+e)(k:Cippk. (23
(0]

Letting 4=
given by Chapman and Cowlind5], the first term in Eq.
(22) becomes

PC|k (1+e|k)d|kglk jf021ka frdcydeyd,

(24

whereeg;, is the restitution coefficient between spediesd
k, f, and f, are the velocity distribution of speciésand k

which are assumed to be Maxwellian. Evaluating this inte-
gral using the same method as for the number of collisions,

the result becomes

n; m; Nyemye
m0A3/2D 52

) . , mm,| 92
Pc,ik:4_8(1+ €ik) dik ik 0.6,

B B? BS
10(AD)3/2+' o

(25

If 6;=60,, this expression reduces to the one found by Jen-

kins and Mancini8]. The total pressure in phaseés given
by

P-—na+2 P ik (26)
and the mixture pressure is of course given by
P= 2n0+22pc,k 27

The second term in Eq22), Pg,n« is integrated ovek by

using the second integration identity provided by Chapman

and Cowling[15]. This gives

P2 __pt di [ 2mimy(6;+ 6% |2
cik™ cik 3" 3 7T0i 0k(mi 0i+mk0k)
6
X EVSUi-i-V-UiI , (28

whereV* means the rate of shear tensor.
The momentum source contribution in E@.4) can be
written

m,Cy; and using some integration identities

PHYSICAL REVIEW E64 061301

Ni(micyi) = dif+ b5 (29
where
m;my
b= rln_dizk(l"_eik)f (K- Cpoj)?
o k-c15>0
X kfifk dk dcli dCQk, (306)
mm, d3 .
2 itk Mik ik 2
2 KTk g 4 g K-y,
Pdik m, 2 ( ) k.012>0( 12k)
fi
X kf,fka In—dk dClidC2k . (30b)

fi

Following directly the same procedure as used by Chapman
and Cowling[15], the final results are

3 2mimk(mi0i+mk0k) v2
| | wew

¢|k c |kd ngai ak
(313
In 9k
¢i2k: mk[vm_ 3V(|n0i)
n Hi 0k (le In Gi mkV In Gk)
(m; Oy +my 6y 0; Ok
N 5 Hi 0k mkV In t9i miV In 0k
3 (m; 6;+ my6) 6 Ok '
(31b

The energy dissipation in E415) is given by

N( mcz) ENC.k< mcl.) ;(VH%Z),

(32
where
d2 mm
1_ ik Tk 2 Coni )3 .
Yi 4 m, (e|k 1) k~012>0(k ClZ,lk) flfkdkdcll dCZki
(33a
d2> mm
2_ ik Tk 2 Crni)3
Yi 8 m, (e 1)fk_C12 0(k Ci2jk)
f
X kf,f v Inf—kdk dcy; dey. (33b)
i

These integrals can be evaluated using the integral theorems
and the same technique as used by GidaspGw

1 \/_ 1— mimy [ mimy| 32 ning

yi=——di(1-e)g—— m. |\ 6.6, AYD?
x| 1 —3B + 68° —3721083 + 34
JAD AD (AD) ’ (349
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4 m (0+6k)
7}2 (1 elk)Pc|k07V U .

(m; 6;,+m,6,) (34b)

The collisional heat flux for speciésn Eqg. (15) is given
by

qc,ik:_Ek (O i+ doik) (39
where
dik ,
Uik = > K(Cigji- K) Fi fi( b — ) dk dey deyy
C1p k>0
(363
2 1.
Ocik=— Zdik K(Cioji- K) fifi(dhai— 1)
c1p k>0
x (k- cy;)dk dey; deyy . (36b)

Following the same procedure as used for calculating the

energy dissipatiof4,15], the finial results are

9 m
q;l:,ik: 5 Pcl;,ik(1+ €ix) m (u—

(0]

(373

Ui,

mkai 9k 1/2
2’7Tmi(mi lgi + mkﬁk)

qg,ik: - P:—:,ikdik(l+eik)[ (

In Hk
V|n—+3v
In0
s 0; 6 )1/2 M
2amm(m; 6; + m,6,) M G+ My B
7 !
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FIG. 5. Computed collisional stress component as a function of
a function of mass ratio.

granular temperature.
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FIG. 6. Profiles of the energy dissipation component of a binary
granular mixture.

mVing, mVin ﬁk) . 5 ( My 0, 0y )3/2
0; Ok V27 \ mi(m; 6;+my6y)
mViIng, mViné,

- . (37b
o, 0,

Again the above expressioni5), (28), (31), (34), and
(37) reduce to similar expressions as found by Jenkins and
Mancini[8] for ;= 6,.. Figures 5 and 6 show the collisional
stress component and the energy dissipation components of
the binary granular mixture as a function of the granular
temperature. The granular temperatures of speicigsob-
tained from Eq/(15). It can be seen that both the collisional
stress component and the energy dissipation component are

$ 4~  m=1.0x10"
8x10° —- -
T T g=toxio®
g 5 -
& 6x10™
g i
= 4x10
:-2,/ i
\.% 1 6.=10x10"
J -8
B 107 775 038
T
00 VT
0.0 50 10.0
m,/m;
FIG. 7. Profiles of the computed collisional stress component as
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FIG. 8. Profil f th issipati t func- _ . . L
. G. 8. Pro fies ot the energy dissipation component as a func FIG. 9. Variation of computed particulate viscosity with granu-
tion of mass ratio.

lar temperature.

increased with increasing the granular temperature of species . . -

k. In these figures, the c?urvesg of the coIIisF;onaI stress pcomgoefﬂment of gases. They are of the fornmi4 1/m; . Simi-

ponent and the energy dissipation component for equ prly the granular temperatures haye thg form of figid|t|ve

granular temperature), = 6, , are also given. resistances, s'uch asti+ 1/6;. The viscosity of phasein
Figure 7 shows the collisional stress component as a fund®€ N Phases is as follows:

tion of particle mass ratios. Fa@t < 6, , the collisional stress

component first decreases with the ratio of masses, then in- N

creases with the ratio of masses. However, wiend, , the Mec,i ZKZl M,k - (39

collisional stress component increases, reaches a maximum,

then decreases with increasing the ratio of particle mass. For

the 6,= 6,, the collisional stress component is independeniThe mixture viscosity is the sum of the phase viscosities

of the ratio of masses. Figure 8 shows the energy dissipation

component as a function of the ratio of particle masses. It can 1.0

be seen that fow,=0.4 the energy dissipation component )

i -8

first decreases with the ratio of masses, reaches a minimum, —/'\ - ek =2.0x10
then increases with increasing ratio of particle masses. As the : —_ ek =1.6x10’8
granular temperaturd, increases, the energy dissipation ’g ] \ _ 8

component decreases with the ratio of particle masses. = 4 L Oy =1.0x10
The theory given above can also be used to predict the g . \ S ek =0.8x10°%
transport properties of particulate phases such as viscosities, g 7 /\ \ 8

conductivities, and diffusivities. From E@28), it gives us ~ 05 - \ \ - ek =0.4x10
the following viscosity coefficient: & \ \ ei =1,0x10'8
ﬁg i m;=1.0x1 08

_ _27Tdi4nink(1+eik)gik(mimkai O 6+ 0) | 12 e 7 €;,=0.999
Feik™ 15 27(m; 6, + m6y)° = .
(3]
=
( m(2) t9i ak ) 82 T
X
(mi 0i+mk0k)(mi 0k+ mkﬁi) 0.0 . I T ; I T I T T
B2 B® 0.0 5.0 10.0
X[1-3—+6-—<—10——=3p+ - |. (38 ’ ’ ’
( JAD AD T(AD)¥ (38 m,/m,
In the viscosity expressiof88) the masses have a form simi-  FIG. 10. Computed particulate viscosity as a function of mass

lar to that in the standard expression for the binary diffusionratio.
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N N increases, the particulate viscosity of specidscreases with
we=2>, > Meik- (40)  increasing the ratio of particle masses.
i=1 k=1

V. CONCLUSION

For the Maxwellian distribution assumed here the kinetic G lar t ¢ f barticl £ diff i d
viscosity is zero. This restricts the application to dense mix- ranuiar temperature of particles of difierent masses an

ture, such as the experimental mixture of glass beads arﬁjameters suspended _in the fluids are k_nO\_/vn to differ b.y
steel particles described here. many orders of magnitude due to the dissipation of their

Figure 9 shows the particulate viscosity of spedies a kinetic energy. To describe such motion balances of mass,

function of the granular temperature. The particulate viscosimomentum, and the fluctuating kinetic enefgyanular tem-

ties decrease with increasing granular temperature of speci@grat_ure have been derived for ea_ch part|_c|e_ phase. Th_e dis-
k. The value of the particulate viscosity drops rapidly in theSipation of energy is due to effective restitution coefficients.

range of small values of granular temperature of spekies A new analytical exp_ression for the visqosity of eaph partigle
then, gradually goes down with increasing granular tempertha,S,e and for the mixture allows a quick calculation of vis-
ture. In the figure, the computed results of the particulaté:.OSItles from megsurements of granular temperatures of par-
viscosity for the condition of equal granular temperatuie, t|cle_s of several SIZes a_nd density, as previously reported for
= 0y, Is also given. Figure 10 shows the particulate viscosit)Part'CleS of a uniform size and density.

of species as a function of the ratio of particle masses. It
can be seen that whety= 0.4 the particulate viscosity com-
ponent increases with the ratio of particle masses, reaches a This work was supported in part by the National Science
maximum, then decreases with increasing ratio of particlé&~oundation(USA) and the National Science Foundation of
masses. However, as the granular temperature of spkciesChina through Grant No. 10072019.

ACKNOWLEDGMENTS

[1] S. B. Savage and D. J. Jeffrey, J. Fluid MethQ, 255(1981). (1986.
[2] J. T. Jenkins and S. B. Savage, J. Fluid Mek30, 187(1983. [11] Y. Yang and S. Arastoopour, A.l.Ch.E. 36, 523(1996.
[3] C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, J.[12] D. Gidaspow, L. Huilin, and E. Mangdunpublishegl

Fluid Mech.140, 223(1984. [13] D. Gidaspow and L. Huilin, A.I.Ch.E. 32, 2503(1996.
[4] D. Gidaspow,Multiphase Flow and Fluidization: Continuum [14] D. Gidaspow and L. Huilin, A.l.Ch.E. Symp. Serig47, 12
and Kinetic Theory Description@\cademic Press, New York, (1997.
1994). [15] S. Chapman and T. G. Cowlinghe Mathematical Theory of
[5] J. L. Sinclair and R. Jackson, A.l.Ch.E.3b, 1473(1989. Non-uniform Gases3rd ed. (Cambridge University Press,
[6] J. A. Pita and S. Sundaresan, A.l.Ch.E33. 1009(1991). Cambridge, 1970
[7] J. Ding and D. Gidaspow, A.I.Ch.E. 36, 523(1990. [16] J. Lopez-Lemus and R. M. Velasco, Physica 285 539
[8] L. T. Jenkins and F. Mancini, J. Appl. Mech4, 27 (1987. (1997.
[9] H. H. Shen, Part. Sci. Technd, 37 (1984. [17] G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W.
[10] M. Farrell, C. K. K. Lun, and S. B. Savage, Acta Me@3, 45 Leland, Jr., J. Chem. Phy54, 1523(1972.

061301-8



