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Stochastic effects in a thermochemical system with Newtonian heat exchange
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We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted
gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemi-
cal reaction and neglecting consumption of reactants. The master equation includes a transition rate for the
thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas
particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle
velocity distribution can be neglected. The transition function for the thermal process admits a continuous
spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential
form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the
Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system
size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality
during the ignition period. The results of the stochastic description are successfully compared with those of
direct simulations of microscopic particle dynamics.
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[. INTRODUCTION In this paper, we develop a treatment of stochastic effects
in the Newtonian energy exchange. We study, in particular,
Fluctuations in far-from-equilibrium chemical systems arethe Semenov thermochemical systdi¥]: A dilute gas
a subject of extensive studies due to their effects on nonlinclosed in a container and subject to energy balance due to an
ear dynamics that are manifested at the macroscopic level. ixothermal chemical reaction in the bulk and the Newtonian
investigations of stochastic properties, particularly conveheat transfer through a boundary surface. The temperature of
nient is the master equation formaligt-3], which provides ~ Walls of the container is assumed constant, fixed by an ap-
a description of fluctuations in terms of macroscopicPropriately fast energy exchange with an external thermostat.
coefficients—like reaction rates or diffusion constants—and?s in the previous studies that focused on the stochastic ther-
allows us to avoid going into the complexity of underlying mal effects in chemical systent9,10], it is convenient to
microscopic dynamics. This mesoscopic approach is well esonsider the simplest feasible reaction scheme
tablished for reaction-diffusion processes in isothermal sys-
tems[4], for which the master equation is extensively ap-
plied and verified by the results of microscopic simulations A+A—A+A+heat. 1)
[5—7]. However, for thermal processes, the mesoscopic treat-
ment is much less developed. The master equation has been
formulated for energy fluctuations in a system with a uni-Following the Semenov approximation, it amounts to neglect
form temperature gradieni8], but the result in its explicit the depletion of reactants. In order to justify this approxima-
form was inferred only with a reference to the deterministiction, one may regard Eql) as an overall scheme for a
dynamics. Along the lines applied to the description of dif-two-step process: In a first step, the ground-stgds ex-
fusion process, fluctuating energy flows were expressed inited to a higher-energy stafeby irradiation by an external
terms of local thermodynamic variables. Another model oflight source or interaction with the boundaries of container.
transport considered was the transfer of mass and energy infde energy of excitation is subsequently released in bimo-
diluted gas by the Knudsen mechani$®10]. The results lecular reactive collisions according to the second step
obtained for spatial correlations of temperature in this simplet A—Agy+ A+ heat. Reaction heat is transformed into trans-
system were successfully compared with the microscopitational energy of products. If the activation process is much
simulations[11]. For the fully microscopic level, molecular faster than the second step, then the ground-gigt@ro-
dynamics results were reported for oscillatdfy?] and ex-  duced in this second step is immediately excited.tdaking
citable[13] thermochemical systems in contact with a ther-into account the disparity of time scales of the two steps, the
mostat. A number of studies were also concerned with adiaintermediate formA, may be eliminated from the kinetic
batic chemical systems, but under the adiabatic constrainschemd15], leading to the overall reactidi). Accordingly,
the thermal state is not independent but is determined conthe intermediate specidy, is also not considered in the sto-
pletely by chemical conditions. chastic approach. Note that the energy pumping from the
exterior acts as a constraint maintaining the system out of
equilibrium. The heat of reactiofi) is dissipated to the ther-
*Email address: bogn@ichf.edu.pl mostat in the process of Newtonian cooling. In the Semenov
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model, the system is assumed homogeneous. For gasedusve a biased Maxwellian velocity distribution, that is the
species, this approximation is justified if the mean free patiMaxwellian one scaled by the velocity, normal to the wall.
is comparable with the size of the system so that the boundt is related to the effect that particles with a higher-velocity
ary layer extends over the whole volume. Then, a particleomponent in the direction are more susceptible to collide
transfers energy between the wall and any part of the systemith the wall. This is exactly the property expressed in the
effectively in a single free flight, without energy dissipation Boltzmann collision integral: the wall is “seen” by the gas
in intermediate collisions. Under such conditions, even thanolecules as a gigantic, immobile particle. The particles hit-
innermost parts of the system are effectively in direct therting the wall are accommodated to the temperaifyy®f the
mal contact with the walls of the container. Considering thiswall with the probabilitys,, which is a steric factor for
rarefied gas system, we neglect the effect of the temperatuthermal adaptation. Thu§s,v,,(v)dv is a total accommo-
jump at the boundary16], which must be included in the dation rate of particles striking with velocity the entire
continuum description of thermal transfer in the inhomoge-surfaceS of the wall. The accommodated particles are im-
neous Semenov syster7]. mediately emitted from the wall and the distribution of their
In the next section, we derive the master equation for theelocitiesv’ is given accordingly by the biased Maxwellian
probability distribution function of temperature of the gas-related to the temperaturg, of the wall. The normalized
eous Semenov system. Besides the usual term for the chenfibrm of this distribution function is
cal reaction, it also includes a specific transition function
related to the Newtonian heat exchange with the thermostat. , 1(m)? , mo’'2 ,
As any analytical treatment of this equation is extremely bulv ):Z(m loxlexp — 2kTW)’ v, <0. 3
difficult, we resort to Monte Carlo simulations. In Sec. Il
we present the method of simulations based on the mastdhe transition{v—v’} of particle velocity in an inelastic
equation, as well as simulations of the diluted gas system afollision involves(i) accommodation of the particle at the
the microscopic level, which was used to ascertain the develvall surface andii) its subsequent emission with the corre-
oped stochastic description. In order to find conditions insponding final velocity. Consequently, the rate of transitions
which significant stochastic effects can be expected, we corw(v—v') for particle velocities is composed of two factors:
sider in Sec. IV the qualitative features of the deterministicthe total accommodation rags, v, «(v)dv for particles with
dynamics of the Semenov system. The results of the twéncident velocities around, and the probabilityp,,(v')dv’
simulation methods for the system in the explosive regimahat after accommodation the particle emitted from the wall
are presented in Sec. V. Conclusions and the main results @fs a velocity arouns!’
this study are summarized in the last part of the paper.

w(v—V")dvdv' =Ssveu(V)dvX ¢y (V' )dV’

Il. THE MASTER EQUATION m |32 mo?2
Stochastic effects in the dynamics of the thermochemical SS&”(zTrkT) vxexr< B 2kT)
system are related to the statistics of inelastic collisions of 5 "
particles—either reactive with heat release or associated with 1 (m lo!ex — mo dvdv’ 4)
accommodation and energy exchange with the walls of the 27\ kT, Ux 2kT,, '

container. Our main assumption is that inelastic collisions are

much less frequent than elastic ones, which are thus suffifhe transition rate for the system energy fréhio &£ in-

ciently effective to maintain the Maxwellian form of the par- cludes the rates of transitiomgv—v’) for all combinations

ticle velocity distribution corresponding to the instantaneousf initial and final velocities that satisfy the energy constraint

temperaturel of the system. E—E& =A/2)(mv2—mv’?). Thus, the rate of energy transi-
Inelastic collisions with the walls of the container contrib- tions in the Newtonian heat exchange is calculated from Eq.

ute to energy transfer between the system and the thermosté) as follows:

which is described by a specific, nonstandard term in the

master equation. The rate, at which particles strike a unit , m |32 mo?

surface of the wall, is given by the flux of particles in the We(£—~&") =S8N fv o\ 27k UxER T kT

outward direction at the wall surface. To be concrete, we take §

the positivex direction as outward normal to the surface 1 m)\2 mo'?

element; a particular orientation is not relevant here since the L 2kT,, loxlexp — 2kT,,

Maxwellian distribution is isotropic. The rate,,(v) of col-

lisions with the wall for particles with velocity aroundis

then X6

!
X<027T

1
E(mvz—mu'2)—(5—5'))dvo|v'.

mo?

3/2 (5)
vout(v)dv=n<m_) vxexp(—m dv, v,>0,

2 Due to the energy constraint in E(), the out- and in-flux

of heat are not independent in the calculatiom{E—E'").
where n denotes the number density of particles. Alterna-Rather, the heat influx from the thermostat arises as a re-
tively, this equation indicates that particles striking the wallsponse to the accommodation of energy at the boundary of
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the system, and its magnitude is imposed by the energy cotfixed portion of energy is released in a reactive collision. The
straint. Both of these flux components contribute jointly al-reaction hea@ results in the increase of temperature by
ways to a single, elementary energy transiton&’. There-

fore, our treatment of stochastic effects in the Newtonian AT,=Q/3Nk. (7)
heat transfer does not follow the approach applied usually to

diffusion in the master equatidi,4]. In that usual descrip- The transition rates are determined by the frequency of reac-
tion, adapted previously also to thermal procedses1(], tive collisions, calculated for the assumed Maxwellian veloc-
any volume element is treated as an independent source By distributions of CO”ldlng particles. The rate of the ther-
outflux of matter(or energy, which results in an e|ementary ma”y activated reaction includes the Arrhenius factor
transition. Rates of transitions depend then only on locafollowing from the barrier of activation enerdg*, and the
thermodynamic variables for the volume element giving risesteric factors, related to the probability of reaction imposed
to the flux, unlikew,(€—&') in Eq. (5), which depends on by the independent, steric condition. The transition rateTfor
both the temperature of the system and the thermostat. Félue to chemical reactio(il) with these conditions is given
the assumed Maxwellian form of the velocity distribution, by

temperature is relate_d to the energy of the id(_aal gag by T\ 172 £

= (3/2)NKT, yvhereN is thg number of particles in the sys- W,(T—>T+ATF)=Vn20(—) s, exp{ _ _) ®)
tem. Integration of Eq(5) yields then the rate of temperature m kT

transitionAT=T'—T in the Newtonian thermal exchange . ) )
whereo denotes the total collisional cross section, ahis

kT \¥*2 TT, the volume of the system. The exclusion correction of the
We(T—=T+AT)=Sgn 3 order of 1IN<1 has been omitted in E¢8).
2mm) (T+Ty,) . . g .
It is convenient to introduce the complete transition func-
3 tion w, which includes bothwv, for continuous transitiond T
(T+Tw)| 5N |AT| due to the heat exchange aw{ for fixed shiftsAT, related
X\ 2+ to reaction
TTy
3 |AT| W(T—=T+AT) =wW(T—=T+AT)+ W (T—=T+AT,)
—=—N—|] for AT<O,
3 ex‘]( N ) X S(AT—AT,). 9
XEN

ex% _ §NA_T) for AT>0. Using this complete transition function defined for the con-
2 Ty tinuous variableA T, the master equation for the distribution
6) function of temperature in the thermochemical system may
be cast in the following form:

The transition function given in E6) is mostly confined to

the interval —T/N<AT<TW/N, which Corresponds to an iP(T t):f d(AT) P(T_AT t)W(T_ATHT)

energy portion of the order dfT (kT,), transferred in a at ' AT<T '

single inelastic particle-wall collision. T>T,,, transitions

with AT<0 are more probable than the opposite ones with —P(T,t) f d(AT)W(T—T+AT).

AT>0, and vice versa. This results in the average trend that AT>-T

constitutes the deterministic description of the Newtonian (10)

heat transfer: the temperatufef the system tend&t linear

rate in the first approximatiorto the thermostat temperature The limits of the integrals in Eq10), imposed by the con-
TW- The deterministic dynamiCS is considered in some deta|a|t|on of positive temperatureS, are rather forma]v@t‘sis
further in Sec. IV. extremely small fodT~T,T,,. The above master equation
The transition functionw, for the Newtonian heat ex- provides a well-founded ground to study fluctuations in the
change gives a continuous spectrum of temperature chang€gmenov system, however, its complicated integro-
AT, unlike discrete Changes of partiCle numbers involved irUifferentia| form makes hope|ess any more rigorous ana|yti_
standard master equations for reaction-diffusion systemga| treatment. We study the stochastic effects in the thermo-
[1,4]. That usual approach has been adopted in the very firghemical system by means of Monte Carlo simulations
approximation for the master equation with the term forappropriately based on E@10). These mesoscopic results
Newtonian coolind 18]. The simplest description consists of are verified by comparison with the simulations of the di-
assuming discrete temperature jumps of some fixed lengthyted gas system at the microscopic level, in which the ve-

but the frequency of such hopping may only be determineqgqcity of each individual particle is followed.
by matching average rates to the deterministic description

[18]. Reference to the dete_rministic dynamics was also nec- Ill. METHODS OF MONTE CARLO SIMULATIONS
essary to obtain the explicit form for rates of thermal fluc-
tuations in a system with uniform heat fld8]. Monte Carlo(MC) simulations provide a convenient al-

In contrast to the Newtonian heat transfer, exothermal reternative approach when analytical results are not available.
action (1) gives discrete transitions of, because always a The simulation method of stochastic dynamics governed by a
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master equation for discrete populations of chemical species $N|AT
is well founded 19]. However, it must be generalized here in Po(X)=Xexp —X), X=-———ouo.
the case of Eq(10) which involves a continuous spectrum T
for temperature transitions due to the Newtonian heat ex-
change. Extending the standard approach, one may treat tﬁé)r
integral overAT in Eq. (10) as a limit of sums over finite KT |12 2772
intervalsd(AT). In this senseAT is a continuous parameter gSZS%n( ) w 3/ Wios,
for a variety of thermal processes, each with a specific fixed 2mm/  (T+Ty)
temperature chang&T.

AT>0,

The simulation algorithm relies on the rule for generation 3INAT
of a single elementary transition, in which the system passes ps(X)=exp(—X), Xx= T
from an initial temperaturel at timet to a final T+AT v
reached at+ At. The total transition rate from the initial KT \¥2 T2
state is = y
g4 S%n( 27Tm) (T+ Tw)z/ Wtotv
kT 1/2
Wtot(T):j d(AT)W(T—>T+AT)=S%n<2W—m) % NAT
Pa(X)=Xexp—X), X= (13
A4KT 1/2 E* TW
+Vn? —) S exy{——), 11 o .
U( Tm ' kT (1D The next transition is generated starting from the updated

] . temperatureT’ =T+ AT at current timet’ =t+ At, and the
where the first term results from the Newtonian heat exsequence of transitions forms then a stochastic trajectory of
change and the second one from the exothermal reactiof(t). The averages are calculated for ensembles of such tra-
Accordingly, the waiting time to exit from the state with jectories.
temperatureT is At=1MW,q(T), or more exactly, it may — The validity of the simulation results based on the master
be sampled from the exponential distribution equation are examined by comparing with simulations of the
Wior(T)exd —Wio(T)At] characteristic for the Markovian dynamics at the microscopic level. We use the direct simu-
processe$20]. While time is incremented bjt, a process |ation Monte CarldDSMC) method developed by Bir21]
effective for the transition is chosen with the probablllty Pro-to simulate the evolution of the diluted gas system_ In a
pOftiOﬂal to its contribution to the total transition rate given homogeneous System, the positions of the partides may be
in Eq. (11). Thus, the chance to select the reaction isdisregarded, and their velocities are the only relevant vari-
W, /Wi, similar to the standard meth¢d9], and the asso- gples. The form of the Boltzmann collision integral implies
ciated temperature incrementAsT, . the rule of selectiofi21] of random (1/2y n?a(|vy—v;|)At

The selection of a transfer process related to the Newtomairs of particles k,1) colliding in a time stepAt shorter
ian heat exchange means a choice of temperature cheiige than the mean time of free flight. We employ the molecular
sampled according to the continuous transition functign  model of reactive hard spheres, widely used in microscopic
given by Eq.(6). To make the sampling easier, we can noticesimulations[22,23 and kinetic theory studief24—2§ of
thatw, consists of two branches, one for positive and one folchemical systems. The total cross sectior wd? is the
negativeAT; further, each of these two branches is a com-same as for hard spheres with diametebut a part of it is
bination of the easy-for-sampling probability distributions connected with reaction. A collision is reactivie with the
exp(—x) andx exp(—x) for x~[AT|. Using this partition in  probability given by the steric facta; , and(ii) if the rela-
four (in total) functions, a two-step sampling following from tive velocity (v,—V,) along the direction connecting centers
the decomposition of probability distributions(AT)/W;o:  of particlesk,| at impact exceeds a certain threshold value
is easily applied. First, one of the four cases is selected witly*  The frequency of reactive collisions in this line-of-
the probabilityg; , which is the weight it contributes ¥/,  centers model is given by E¢B) with the activation energy
and subsequentlyAT is sampled from the corresponding E* = (1/2).g* 2, wherew=m/2 is the reduced mass. After a
normalized probability distributionp;(AT). Equation (6)  reactive collision, the kinetic energy of the particles that re-
yields the following probabilitiesy; and distributionsp; of  acted is increased by the value of the reaction l@atn

AT: ForAT<O, generation of collisions of particles with the system bound-
7 ) aries, we assume that the container is cubic, and so collisions
g :S%n( KT 2171y, W (12) with the walls inx, y, andz directions are chosen with equal
. 2mm/) (T+T,)°% v probability. Treating the container walls just like an immo-
bile target with a cross sectioB random (1/3)S(|v,|)At
2N|AT] particles are selected to collide with the surface normal to the
pi(X)=exp(—X), Xx= — x direction, and analogously for the two other orientations.
Particles hitting the walls are either specularly reflected or
KT \¥2 T2 thermally agc_ommo.dated vv_ith the probabilﬁ,y. In fact, we
gzZSSan< ) 2/ Wiot neglect collisions with elastic reflection, because they do not
2mm/)  (T+Ty) have any thermal effect nor contribute to Maxwellization of
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the particle velocity distribution. Velocities of particles emit- ae 4KT) 12 E*
ted after thermal accomodation are sampled from the nor- a:na(—) QVns exp( - ﬁ)
malized biased Maxwellian distribution given in E®) ap- mm

propriate for collision direction.

Before proceeding to a description of the simulation re- _ LSsak(T—T )
sults, we consider in more detail the properties of the dynam- o "
ics of the thermochemical Semenov system. In particular, we
are looking for the conditions in which considerable stochasAs in the stochastic description, it is useful to introduce tem-
tic effects may be expected. perature instead of energy of the system. Convenient dimen-

sionless thermal variables may be defined by

. (19

IV. REGIMES OF SYSTEM DYNAMICS o="TIT,, (19

The features of the dynamics are easily captured in the
framework of the deterministic description, which involves e=E*/KTy, (20)
only the average rates of energy transitions. Heat production
by the exothermal reactiofl) in the bulk yields a source an
term in the energy balance equation. The average frequency
of reactive collisions gives the following rate of heat release: q=Q/KTy. (21)

de\ \  _ , [4kT\Y? E*
(a)r =QVn 0(?) srex;{—ﬁ). (14

The term related to the energy exchange with the thermost - .
is given by the average net energy flux at the wall surfaceigubSt'tUt'ons(lg)_(ZD and (22) reduce the number of inde-

The average heat outflux accommodated on the walls of thBendent relev_ant pa_\rameters. _The deterministic equation in
container is calculated by means of the particle velocity diserms of the dimensionless variables has the following form:

tribution for temperaturd of the system

Hereafter, we also use the dimensionless time scale

@)1/2 Q

tdnos, s — —t. (22

kKTw

de 1 g
—=_olexg — | —y(6-1)]. (23)
mo?2 m |32 mo?2 dt 3 0
=-—Ssn — Uy 5= exp-—==|d . L _
(Te)out 8 Lx>o 2 U"(ZwkT) xp( 2kT) Y This equation involves only two parameters: the activation
KT\ 172 energye and the reduced coefficient for the Newtonian heat
__ Rt exchange
Sshn wm) KT. (15
S\ kT, s
- . S Y=V o o (24
Similarly, the heat influx to the system is obtained from the vV Q s
velocity distribution at temperaturg,, for particles emitted
from the wall after accommodation Where)\=(\/§na)‘1 denotes the molecular mean free path.

Parametery gives some measure of the efficiency of New-
32 mo2 tonian cooling with respect to heat production by the exo-
ex;{ )dv

2
<u7£>in:SSanwf m_v|vx|(L — thermal reaction. The prefactafé of the two terms in Eq.
vy<0 2 27KT,, 2kT,, (23) appears because the kinetic theory calculation reveals
)1,2 that the collision rates depend on the square root of tempera-
KTy

w

2k
=Ssny -

(16)  ture[16]. In the standard macroscopic description of the Se-
menov model, this weak dependence\&his omitted but it
has already been included in previous microscopic treat-

Concentrationn,, in the distribution for emitted particles ments of thermochemical systeifis7,12,13.

given in Eq.(16) is determined by the condition of vanishing ~ Equation(23) may also be obtained from the stochastic

of the mass flux. Equatiotw ).+ (vy)in=0 with the ve-  description. Using the master equation given in &), the

locity distributions specific for the incident and emitted mol- evolution of the average scaled temperai{fg is given by
ecules results in the following relation:

d
—(6)= daf d(AG)P(6—A6,t)W(O—A6—6)0
dt 6>0 Ao<6

N(KT) 2= ny,(kT,) "2 17)
The source terni14) and the exchange tern$5) and(16), —f doP(6,t) f d(Ao)w(o—0+A0)0.
subject to condition(17), yield the following deterministic f=0 ao==0
equation of energy balance: (25
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Bistability may appear only ife>4, in the range ofy
bounded by the critical values, <y<y. . For higher val-
ues,y>v, , the system evolves at a moderate rate towards a
0 ! single stationary temperature that lies on the extinction
/ (lower) branch of the steady states. The opposite, below-
bistability domainy<y is the explosion region: the tem-
perature of the system grows in a characteristic, explosive
manner and reaches the stable steady stabm the combus-
tion (uppe) branch.

V. STOCHASTIC EFFECTS IN THE EXPLOSIVE REGIME

Stochastic effects are manifested most prominently in re-
2 4 6 gimes sensitive to even small perturbations, such as the vi-
0 cinity of bifurcations[1,4]. Fluctuation-induced transitions
) ] .. . between stable states in bistable systé®84] are widely
FIG. 1. The two terms of the right-hand side of the deterministicgy,gie stochastic phenomena of this kind. Less attention has
Eq. (23): exp(-¢/6) for e=4.5, and the liney(6—1) for (& v oo attracted by effects that may arise when system dynam-

=0.095 andb) 7=0.1066. In Ca.séa)’ the single intersection point . ics is in the vicinity of a bifurcation, but still in a monostable
of the two curves gives the unique stable state on the combustlope ime. This is the case we are interested in the present pa-
branch. In caséb), there are three intersection points, the two ex- 9 ) p P

treme ones represent the stable stationary solutibisability), per:+we study the.dynam|c§ of the+ Semenov systeﬂ ffor
while the intermediate one corresponds to the unstable state. ~ — Yc | <, though in the regiory<y below the bistability
domain. As the system evolves from the initial condition
After the change of variabl®’=6—A# in the gain term, 9(0_)=1, the temperature Increases, attracted by the unique
Eq. (25) may be transformed into stationary state on the combustion branch. However, the rate
of this growth drastically falls down when the system passes

d through the region ob where the two curves in Fig. 1 come
ail0= L>od 9P(97t)L0>70d(A‘9)W( 0—6+A0) nearly to the tangential point corresponding to bifurcation. At
this instant, the right-hand side of E3) reaches the ex-
X[(6+A6)—0]. (26)  treme, smallest values of the minimum, which is scaled by

the small parametefy— y.|. The system passes then the
The deterministic dynamiCS is obtained by admlttlng that thQnduction Stage' at which the dynamics ﬁft) is governed
probability distribution is extremely narrow so that the ap-within the long-time interval by a slow mode. The character-
proximationP(8,t)~(6—(6)) may be used. It reads istic violent evolution at the explosive stage comes only after
q the system has crossed the induction barrier. The effects of
Ry - fluctuations on the system dynamics are the strongest in the
dt<0> an>—ad(A0)W(<0>_}<6>+A0)A0' @0 induction period, when the deterministic trend is relatively
the weakest. Stochastic properties of explosive thermochemi-
Using Egs.(6), (8), and(9) for the transition rate, and per- cal systems have been considered in theoref@a9] and
forming integration ovel #, we obtain Eq(23). experimental[30] works. In this paper on the features of
The schematic plot in Fig. 1 explains the well-known stochastic explosive dynamics, we examine the validity of
qualitative feature$14,27,28 of the solution of determinis- the master equation given by E@0), which includes the
tic Eq. (23). The regime of the deterministic dynamics de- specific term for the Newtonian cooling. In particular, we
pends on the relation between the production of reaction heatish to check the predictions based on EtD) by compar-
and the Newtonian cooling, given by the first and secondng them with the results of microscopic DSMC simulations.
term of the right side of Eq(23), respectively. The line We study the explosive system fer=4.5, =5, andy
y(6—1) and the curve exp{e/f) may have either one or =0.096, close to the bifurcation poinf =0.09957. . ., for
three intersection pointgl4] which correspond to the sta- this . These parameters determine completely the condi-
tionary solutions of Eq(23). Thus, the system has either a tions of the deterministic and stochastic dynamics. In the
unique stable steady state or two stable states separated byrftroscopic simulations, we take the lendttof the cubic
unstable one. The bistability arises and vanishes at the bifugontainer equal to ®; this fixes the geometrical factor i
cation points, at which the ling(6—1) becomes tangential and consequently only one of the probability factors, let us
to exp(—«/6) at somed,, . For a givere, this condition yields  chooses;, , is left as an independent parameter that scales the
the following critical values ofy: rates of the bulk and surface thermal processes. The reaction
) steric factors, should be small in order to ensure that reac-
izl 1+ /1_‘_1 ex 1 1+ /1_‘_1 tive collisions are relatively rare, so that dominant elastic
Ye Tyt 1T € 2%~ el | collisions are enough effective to restore the Maxwellian
(28 form of the velocity distribution function.
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6

mean valug 6(t)). Equation(29) yields then the following
equation for the dispersion of stochastic trajectories around
the mean value:

d 2 2 2
F(FD) (o) >=f d(AOW((6)—(6)+A0)(A0)>.
(30

N

w

Further approximation may be applied in the induction pe-
riod, because the temperature remains then nearly constant
and the right-hand side of E¢30) may be evaluated at a

mean valued in this time interval. Thus, Eq30) describes
— the diffusive spreading o around the mean valug) ac-

j ]
0 500 1000 1500 cording to
t

FIG. 2. Temperature® as a function of time for the explosive E((6—<0>)2>=2D* (31)
system withs =4.5 andy=0.096. The solid line shows the solution d o

of the deterministic Eq(23), and the dashed lines give two ex-

amples of simulation results based on the master equatioryl for Where the time-independent diffusion coefficient is calcu-
=10000. The dashed-dotted line is a linear fit #{t) at the in-  lated using the transition rate given in E). It reads,

duction stage.

1 o _

Figure 2 depictsé(t) calculated from the deterministic Dﬁzﬁ\/?[ ¥(3-46+36°)+qe '] (32)
Eq. (23) and two examples of stochastic trajectories obtained
from the MC simulations based on the master equation. The the induction period lasts for time,,, then the final mean
long induction stage with its characteristic very slow evolu-deviation from the deterministic temperature in this time in-
tion can be eaSily identified. The duration of the inductionterva| reaches the Vahmgn: ‘/2D;Tn. Even a Sma” uncer-
period diverges in the vicinity of the bifurcation point similar tainty A 6, may result in a relatively large dispersiai, of
to|y.—y|~*?[9,31]. This slow mode is abruptly terminated times at which the system attains the ignition temperafyre
as the system reaches the next, ignition stage, to which cognd undergoes switching to the explosive evolution. This am-
responds the steep slope 6ft) demonstrating the violent piification effect of small stochastic perturbations is related
increase of temperature. The high temperatures attained & the slow dynamics at the induction stage. The spread of
the final, saturation stage may be not completely realisticignition times may be estimated on the basis of a simplified
because the Semenov assumption of maintaining constagynamics[32]. Let us approximate the deterministic trajec-
reagent concentration is likely to fail for fast reactions altory at the induction stage by the linear growthagt) with
high 6. Nevertheless, the model is useful to examine they characteristic small slogef. Fig. 2). At the induction pe-
description of fluctuations derived here in the Newtonianrod, temperature increases frofg to the ignition tempera-
heat exchange. Moreover, our interest is mostly confined t¢,re 6, during the timer,,, so the slope 08(t) in this region

the stochastic effects appearing at relatively low temperayg a=(04— 6p)/7,. The dispersion of ignition times may
tures, at which the crossover from the induction to the ignithen pe evaluated as follows:

tion stage occurs. The slow deterministic dynamics in the
1/2

induction period creates the most favorable conditions for 2 _ —

development of significant fluctuation effects. Atg=A0,/a= 9—N\/?(7(3— 460+36%) +qe '’
Figure 2 shows that even small fluctuation-induced devia-

tions from the deterministic trajectory at the induction stage X rﬁ’zl(ag— 0o), (33

may result in a large dispersion of times at which the ignition

temperature is reached. An approximate calculation may behere the diffusive spreadl 6, is calculated using the diffu-
used to evaluate the spread of stochastic trajectories arouisibn coefficient given in Eq(32). The predictions of this
the deterministidmean value in the induction period. The equations, in particular the scaling IawA16~\/N, may be
following equations for the moments of the distribution func- examined by the numerical results for the reciprocaltd/in
tion are easily derived from E@10) in the same way as Eq. Fig. 3, obtained from the MC simulations for systems with

(26) for the mean temperature various particle numbersl. From Fig. 2, we evaluat®,
d =1.25, §,=1.75, §=1.5, andr,=550. Equation32) then
_<9k(t)>:f dgp(g,t)f d(AO)W(6— 6+A6) yields D,,~0.0833N, and relation(33) results in the scaling
dt 1/Aty~9.5X 10-%\/N. This rough evaluation is in very good
X[(6+A0) - 6. (29  agreement with the fit Mt;=9.9x 10 °\N obtained from

the MC results in Fig. 3. More exact statistics of ignition
In comparison tdP, the transition ratev is a slowly varying times could be calculated from the backward master equation
function of  and may be evaluated using the instantaneou§33], but it has a complicated integro-differential form simi-
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) FIG. 3. Reuprocalz Uiq of the star_wdard .deV|at|on. for ignition FIG. 5. Third central moment of temperature distributic®
tlme,Atg:\/(tgz)—(tg> , for systems with various partlcle numbers —(6))%"3 scaled to the mean valugd) as a function of time.
N. The squares show the results of MC S|mulat|ons.based on th8,me notation and parameter values as in Fig. 4.
master equation, the triangles depict the data obtained from the
microscopic DSMC simulations for the following parameter values:
reduced activation energy=4.5, Newtonien exchange coefficient 5 the evolution of quantities related to the second and third
y=0.096, reduced heat releagp=5, reaction steric factors, central moments oP(#6,t), respectively, for systems with
=0.01, ratio of mean free path and length of the sysidin=0.5.  various particle numberdN. The results are divided by
The dashed-dotted line is a linear fit oAt} . (6(t)), because Eq(32) implies the relationD ,~ #* as a
rough approximation for the dependence of temperature dis-
lar to Eq.(10). Figure 3 displays also the results of micro- persion oné. Due to the choice of the very low-reaction
scopic DSMC simulations obtained for the reaction stericsteric factors,=0.01, only the results foN=2000 particles
factors,=0.01. The DSMC data agree with the correspond-have been available for us in the microscopic DSMC simu-
ing results based on the master equation. Effectiveness of thations, and these data agree very well with the results of the
microscopic simulations decreases in comparison to the ménesoscopic approach. For a system in a monostable regime,
soscopic simulations as the probability of inelastic collisionsthe method of large volume expansifd4] predicts that a
becomes smaller, since both elastic and reactive collisiondistribution function of stochastic variable has the Gaussian
must be generated in the microscopic approach. This preshape(with a time-dependent dispersjoaround a determin-
vented us from reaching in the DSMC simulations the rangéstic solution. Figure 4 shows that the dispersion increases at
of such largeN as in the mesoscopic treatment. the ignition stage, what may be explained by the stretching
In order to study the peculiarity of the temperature distri-of the temperature distribution by the fast dynamics in this
bution during the ignition process, we present in Figs. 4 angperiod. However, the third central moment®fisplayed in
Fig. 5 does not remain always small, as it should for an
approximately Gaussian distribution, but during the ignition
period, it increases up to abnormally high values and is quite
comparable to the dispersion. This effect evidently reveals a
i AN large deviation from the expected Gaussian shape of the dis-
. AR tribution. It arises because the high-temperature tail of the
' distribution is extended by the fast dynamics in the ignition
region. Considering the statistical ensemble at a certain mo-
ment in the induction period, it is easy to imagine that while
most of the systems still remain in the induction stage, some
of them reach the ignition temperature earlier and rapidly
move away from the mainstream due to a fast temperature
I = e N S increase at the ignition stage. This high-temperature tail re-
0 500 1000 1500 sults in an asymmetry of the distribution, which is seen in
t Fig. 5 as a prominent positive value of the third central mo-

FIG. 4. Standard deviation of temperature distribution men.t of the d'|str|but|on. L
=\(6?)—(6)? scaled to the mean valy®) as a function of time. Figure 6 displays the mean deviation of temperature at
The solid lines from uppermost to lowermost show results of the=650 @s @ function of numbet of particles in the system.
MC simulations of the master equation for systems with the follow-According to the deterministic evolution depicted in Fig. 2,
ing particle numbersN=100,500,2000,10 000,50 000,1 250 000. for this t, the system is about to finish the induction stage.
The dashed line gives the data from microscopic DSMC simulafFor large systems, the data in Fig. 6 follow the scaling
tions for N= 2000 and the same parameter values as in Fig. 3. o 4/( 0)~1/\/N, consistent with the Gaussian form of the dis-
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FIG. 7. Interval-averaged distribution function of temperature

FIG. 6. Scaled standard deviation of temperature distribution(3‘|1',)da; varigus.timﬁs for tTe s¥s':;em wim.:20|00. particles. The
o,/{8) att=650 for systems with various particle numbé&tsThe solid lines depict the results of the MC simulations based on the

squares represent the results of the MC simulations based on yfgaster equat?on, and_the_dasht_ad lines show the data obtained from
master equation and the cross shows the data obtained from tﬁge_ DS_MC microscopic simulations for the same parameter values
microscopic simulations. The dashed-dotted line is a linear fit for2S N Fig. 3.

the scalingo, /{ #)~ 1/\N, calculated foN=50 000. Same param-
eter values as in Fig. 3. given in Eq.(34) may be calculated with a relatively good

accuracy on the basis of a much smaller statistical ensemble
tribution. However, the deviation from this asymptotic law than that necessary to obtain the detailed formP¢f,t).
develops abruptly beginning from N~0.006. For thisN T_he foII(_)wmg limits _of t_he |_ntervals are suit_able to s_hoyv_ the
~3x10% Fig. 3 gives the dispersion of ignition timest,, blmodaht.y of the distribution function during the ignition
~60, so that some systems of the ensemble evolve alreadyfocessti) from 6p=1 to #;=2.25 for the range ob at the
according to the advanced time=t+Aty=710. This is ap- induction stage(ii) from 6, to #,=5.25 for the region
proximately the moment that the deterministic solution inPassed during the ignition period, afid) from 6, up to
Fig. 2 begins the ignition stage. Thus,tat650, the upper ¢3=6.3 for the domain around the stable steady staté;at
limit of temperature distribution foN~3x 10* attains the ~~5-7856. Figure 7 displays such interval-averaged distribu-
ignition temperature and the high-temperature tail is formedion functionP for a system witiN=2000 particles, at four
due to the stretching by the fast ignition dynamics. Since thdéimes close to the mean ignition time. The bimodal form of
extension of the high-temperature part of distribution isthe distribution function clearly arises for intermediate times,
eventually terminated by attraction of the “probability mass” before the final collapse of the “probability mass” onto the
to the unique stationary state, such evolution may result ininique attractos. Worth to note in Fig. 7 is the very good
the transient bimodality of the distribution functid@5—  agreement between the results of the mesoscopic simulations
37,29; two maxima ofP may temporarily coexist, one cor- and the data obtained from simulations at the microscopic
responding to the usual concentration around the determinisevel for s,=0.01. This provides us a valuable confirmation
tic solution at the induction stage and the other one related tof the validity of the developed mesoscopic treatment, be-
the single dynamics’ attractor that gathers the systems thatause the shape of the distribution functi@@ven the ap-
already passed the ignition stage. Such a specific effect mgyroximate ongis a sensitive test in calculation of stochastic
arise only if mean deviation of ignition times is larger than variables.
half the duration of the ignition stage. The deterministic so-
lution in Fig. 2 gives for the latter ong,~ 250, and then Fig.
3 shows that the transient bimodality develops for systems

with N<<6000. We have developed the mesoscopic description of a ther-

The bimodality of the distribution may be demonstratedmochemical gaseous system subject to the Newtonian heat
using the approximate distribution function, obtained by av-exchange between the homogeneous system interior and the

VI. CONCLUSIONS

eragingP within several intervals walls thermostated by the external medium. It is based on the
master equation including the term for stochastic energy

B (t)= 1 f“)i P(6.0)d0 (34 transfer, derived from the statistics of inelastic collisions be-
' Oi=0i-1Jo_, T tween gas particles and the thermostated walls. This transi-

tion rate takes into account the continuous spectrum of en-
If the intervals cover fromdy to 6, , the whole range op, ~ €'9Y transferred in the Newtonian heat exchange, unlike
. o max . transition functions for discrete populations of species in
such defined functiofP;(t)}i—1 . ; _ gives a useful ap- standard reaction-diffusion master equations. Consequently,
proximation for the fullP(#,t). The distribution function the stochastic equation for the thermochemical system has a
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complicated integro-differential form, making hopeless anyas transient bimodality of the temperature distribution func-
more rigorous analytical solutions. In order to treat this mastion. The good agreement between the results deduced from
ter equation for the continuous stochastic variable, we exthe Monte Carlo simulations of the master equation and from
tended the method of Monte Carlo simulations developed fothe direct simulations of the microscopic particle dynamics

discrete variables in reaction-diffusion processes. confirms the validity of the presented mesoscopic descrip-
We considered in detail the Semenov thermochemicafjgn.

model in the explosive regime; in particular, we investigated
the stochastic effects in the ignition process. We calculated
the dISpeI’SIOH' of_ |grj|t|on tlm_es and two moments of the ACKNOWLEDGMENTS
temperature distribution function that demonstrate the pecu-
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