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Dynamics of the spin-boson Hamiltonian by the projection operator technique:
Applications to electron transfer reactions
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A perturbative treatment developed by using the projection operator technique is provided to find dynamics
of the spin-boson Hamiltonian in the second order approximation of the subsystem-bath interaction. In the
framework of the generalized master equations and in the Markovian approximation it leads to the Redfield/
Bloch-type equations. The treatment can be applied to both fast and slow bath cases; in this paper we consider
the fast bath case. The relaxation times, energy splitting, and bath-induced renormalization effect of the
coherence frequency are discussed and applied to a Lorentzian-Ohmic fast bath. A good agreement between
our results and those obtained by the path-integral formalism is obtained. The treatment is applied to electron
transfer reactions to test the possibility of apparition of the electronic coherence in certain photosynthetic
reaction centers.
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I. INTRODUCTION

The description of the quantum dissipative dynamics
an open low-dimensional subsystem coupled to its envir
ment~seen as a reservoir! by a Markovian theory has a wid
variety of physical applications. Magnetic resonance, qu
tum optics and laser physics, condensed matter and
densed phase, and astrophysics are representative res
areas where this treatment has been successfully used
subsystem’s dynamics has been described by several m
ods by using, for example, the time-dependent perturba
theory @1,2#, susceptibility method@3#, statistical operator
method@4–8#, or the path-integral formalism~PIF! @9–11#.

Often the spin-boson Hamiltonian is chosen as a diss
tive model to consider interaction between a subsyst
which is mapped onto a two-state system~TSS! and reservoir
~thermal bath!. Leggett et al. @11# and Weiss@10# exhaus-
tively review the spin-boson problem in the PIF framewo
The discrete path used by PIF to describe the two state
TSS often induces mathematical difficulties. Several diff
ent approaches have been reported on the dynamics o
spin-boson Hamiltonian. Earlier works, as those of Dek
@12# or Meyer and Ernst@13# focus on the weak subsystem
bath-coupling~weak-coupling! approaches. For example, b
using the Heisenberg picture Dekker gives an implicit so
tion for the dynamics of the symmetric dissipative TSS a
provides a solution concerning the influence of the bath
the coherence frequency~renormalized tunneling frequency!
for the Ohmic dissipation case. Laird, Budimir and Skin
@14# anticipating a secular Redfield-type equation for t
spin-boson Hamiltonian dynamics, find a damped harmo
oscillator equation for the polarization vector. This anticip
tion as well as use of approximate relaxation times rest
the applicability of the treatment. In the same Redfie
theory framework, Morillo, Denk, and Cukier@15# investi-
gate the possibility of controlling tunneling with an extern
field in a four-level system and Jean, Friesner, and Flem
1063-651X/2001/64~6!/061103~10!/$20.00 64 0611
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@16# consider a quantum-mechanical theory of photoindu
electron transfer. Neu and Rau@17# use the Robertson pro
jection operator formalism and furnish a solution in t
weak-coupling limit for a driven dissipative TSS. The tra
sient regime is characterized by two relaxation times. T
effect of the bath on the coherence frequency for the tr
sient dynamics has not been taken into consideration. M
recently, focusing on dissipation caused by the volta
source, Governale, Grifoni, and Scho¨n @18# provide analyti-
cal and numerical results for the relaxation and dephas
rates in coupled qubits. The weak-coupling limit of the sp
boson Hamiltonian has been treated by PIF by the so-ca
noninteracting-blip approximation~NIBA ! in Ref. @19# or
beyond this approximation in Refs.@20#, @21#. The projection
operator technique is another successful formalism use
describe the spin-boson Hamiltonian dynamics; the NI
equations have been obtained within this technique@22#.

The aim of this paper is twofold. On the one hand, w
provide a method to concretely describe the dynamics of
spin-boson Hamiltonian in the weak-coupling limit. On th
other hand, the coherence decay in electron transfer reac
~ETR! is a well-known phenomenon, which appears in t
case of electron transfer reactions when the bath is slow.
possibility of apparition of the electronic coherence for fa
bath and weak-coupling limit is an interesting problem and
constitutes the second goal of this work. Technically,
dissipative TSS dynamics is found by using the generali
master equations~GME!. They are obtained by projectin
the statistical operator of the system onto the reduced T
space@23–27#. The GME that we applied to the spin-boso
Hamiltonian lead to certain Redfield/Bloch-type equations
good agreement between our results and those obtaine
PIF is obtained~the agreement between the Bloch/Redfie
formalism and PIF is also reported in Ref.@28#!.

The paper is structured as follows. In Sec. II, the pert
bative treatment is introduced. Its capacity to recover so
known results in the literature is examined. For the we
©2001 The American Physical Society03-1



lc

fre
e

dis
d
en

d
o
r
te

so

-

e

,
n

ou

e
ur

th

el

er
th

i
t
th

-

by

by
rgy

ns
il-
on

e
, a
lec-

ion

of

the

i-
ork,
ch a
eri-

the
ns-

rs
y

TIBERIUS OVIDIUS CHECHE AND SHENG HSIEN LIN PHYSICAL REVIEW E64 061103
coupling regime, we characterize the TSS decay and ca
late the longitudinal and transversal relaxation times,T1 and
T2 , respectively, and the energy splitting, coherence
quency, and rate constant. Then, the treatment is consid
in limits of the rotating wave approximation~RWA! and
secular approximation~SA!. The possibility of applying the
perturbative treatment to the slow bath and apparition of
sipationless regime are the other two problems addresse
this part. In Sec. III, the results obtained in the preced
section are applied to a Lorentzian-Ohmic~LO! fast bath.
The influence of the bath and of the temperature on the
namics is discussed. In Sec. IV, the theoretical results
tained in the precedent sections are applied to test the p
ence of the electronic coherence in certain reaction cen
~RC!. Finally, conclusions are formulated.

II. DYNAMICS OF THE SPIN-BOSON HAMILTONIAN IN
GME FORMALISM

We consider the usual hypothesis of the spin-bo
Hamiltonian dynamics@11#, that is, the interaction is
switched on at the initial timet50. At this moment the sta
tistical operator of the systemr̂(0), is written as a product
between the statistical operator of the bath,r̂b(0), and of
subsystem,r̂s(0). Oneassumes that the bath is all the tim
at equilibrium.

Let Ĥ, Ĥs, Ĥb, andĤsb be the Hamiltonian of the system
subsystem, bath, and of subsystem-bath interaction. TheĤ

5Ĥs1Ĥb1Ĥsb and as an associated super operator Li
ville form, L5L s1Lb1L sb with L5@Ĥ,#/\. ~the brackets
mean a commutator!. In the second order approximation th
Markovian GME, which constitutes the starting point of o
derivation, reads~see details in Refs.@29,30#!

dr̂~ t !

dt
52 iL sr̂s~ t !

2E
0

`

dt^^L sbe2 i t~Ls1Lb!L sb&&exp~ i tL s!r̂s~ t !

52 iL sr̂s~ t !2Gr̂s~ t !, ~1!

where ^^A&&5Trb@Ar̂b# represents a trace over the ba
modes applied to superoperatorA acting onr̂b andG repre-
sents the damping superoperator. The spin-boson mod
defined by the total Hamiltonian

Ĥ5
«

2
ŝz2

\D

2
ŝx1(

a
S p̂a

2

2ma
1

mava
2 x̂a

2

2 D
1

q0

2
ŝz(

a
cax̂a . ~2!

Mathematically, the system is constituted by TSS in int
acting with a bath of harmonic oscillators representing
environment. The first two terms represent the TSS Ham
tonian, the third term represents the oscillators bath, and
fourth term represents their interaction. Responsible for
tunneling is the matrix element\D, which in many applica-
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tions of the spin-boson model is of electronic type. In Eq.~2!
we used the usual notation@11#. The bath’s effect on dynam
ics is represented by the spectral density functionJ(v)
5p221(aca

2(mava)21d(v2va) for v>0 and J(v)50
for v,0. It has a superior cutoff frequencyvc . For frequen-
cies lower thanvc and the Ohmic dissipation regime,J(v)
}v. The strength of TSS-bath coupling is characterized
the dimensionless parametera5mq0

2/2p\. andm is the clas-
sical measurable friction coefficient.

Many physical and chemical systems can be described
a reaction coordinate related to an effective potential ene
function with two separated minima; in certain conditio
they can be formulated in terms of the spin-boson Ham
tonian. For example, the ETR problem can be mapped
such a model~see, e.g., Refs.@31,32#!. As we wish to apply
the perturbative treatment in the fast bath limit to ETR, w
shall consider a fast relaxation of the environment, i.e.
non-adiabatic reaction. This means a reaction where the e
tronic tunneling time is slow to respect to the bath relaxat
or roughlyD/vc!1 @32,33#.

By using the matrix Pauli algebra we denote byuL& and
uR& the two-state vectors associated with the two states
TSS ~obtained in absence of any coupling! as forming the
localized basis set, so thatŝz5uL&^Lu2uR&^Ru, ŝx
5uL&^Ru1uR&^Lu, with ŝzuL&5uL& and ŝzuR&52uR&. As
we already mentioned, the two states are coupled by
tunneling Hamiltonian (2\D/2)ŝx , which has real matrix
elements in the$L&,uR&% basis set. We consider the ‘‘exper
mentalist representation,’’ that is, the resonance framew
which introduces the stationary states of the system. Su
frame is involved when the relaxation times are to be exp
mentally determined. Thus, we transform Hamiltonian~2! by
writing it in the basis set$1&,u2&%, the so-called delocalized
basis set, which diagonalizes the TSS Hamiltonian. In
language of the annihilation and creation operators, the tra
formed Hamiltonian reads

Ĥ85 (
i 51,2

« i8ĉi
†ĉi1(

a
\va~ b̂a

† b̂a1 1
2 !

1 (
i , j 51,2

(
a

ĉi
†ĉ jVi j a~ b̂a1b̂a

† !, ~3!

where ŝz8→ ĉ2
†ĉ22 ĉ1

†ĉ1 , ŝx8→ ĉ2
†ĉ11 ĉ1

†ĉ2 , and ĉ1 and ĉ2

~the annihilation operators! obey the fermionic commutation
rules ~see, e.g., Ref.@34#! and the usual bosonic operato
associated with theath harmonic oscillator are introduced b

x̂a5A\/~2mava!~ b̂a
†1b̂a!, p̂a5 iA\mava/2~ b̂a

†2b̂a!.

Also,

« i85~21! i 11~\D/2!A11r 2,

V11a52V22a5q0caA\/~8mava! cos 2u,

V12a5V21a52q0caA\/~8mava! sin 2u,

cos 2u5r /A11r 2, sin 2u521/A11r 2,
3-2
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and r 5«/\D.

The energies are

E1
s85\DA11r 2/2 for u1&,

E2
s852\DA11r 2/2 for u2&,

and

v05~E1
s82E2

s8!/\5DA11r 2

is the natural frequency of the TSS coherence. This form~3!
shows both phononic-intermediate interaction~for i 5 j ! and
direct interaction~phononic emission-absorption process
for iÞ j ! between the levels of TSS@35~a!#. The first type of
interaction causes fluctuations of the TSS’s levels and
second changes the population of TSS.

Applied to Ĥ8, Eq. ~1! generates a certain Redfield GM
@see Eq.~A1!#. The analytical solution of this equation
obtained by introducing the polarization vectorS8(t)
5Tr@ r̂s8(t)ŝ8# in the reference frameox8y8z8 correspond-
ing to the delocalized basis set

Ṡx85A11Sx81A12Sy81A13Sz81A10,

Ṡy85A21Sx81A22Sy81A23Sz81A20, ~4!

Ṡz85A31Sx81A33Sz81A30,

where the values of theA factors are given in the Appendix
The relation between the polarization’s components in
two frames can be established, e.g., by usingr̂s(t)
5Û r̂s8(t)Û†, whereÛ is the unitary operator used to diag
onalize the TSS Hamiltonian@see Eq.~A4!#. Considering
that at the initial moment TSS is in stateuL&, then Sz(0)
51, Sx(0)5Sy(0)50 and with Eq. ~A4! one obtains
Sx8(0)51/A11r 2, Sy8(0)50, andSz8~0!5r /A11r 2.

At this point the following remarks are necessary. At eq
librium, in the dissipative regime case TSS is found in
mixed state and the statistical operator is given by

r̂s8~eq!→ 1

2 S 11Sz8
~eq! Sx

~eq!2 iSy8
~eq!

Sx8
~eq!

1 iSy8
~eq! 12Sz8

~eq! D ,

where the superscript~eq! denotes the equilibrium state. On
can observe that the asymptotic condition (Sx8

~eq!
5Sy8

~eq!
50)

requires thatA10,A20,A13,A23 must be disregarded in Eq
~4!. Otherwise the equilibrium state would be a coherent o
or in other words, TSS would situate in a dissipationle
regime. Hence, for a right asymptotic behavior in the case
fast bath and dissipative regime, we have to impose tha

A105A205A135A2350. ~5!

In case the bath relaxation is faster than 2p/v0 ~that is, the
fast bath case!, thena31'2a32 and consequently,A105A20
50 @see Eqs.~A5! and ~A6!#. Thus, we conclude that, gen
06110
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erally, A13 andA23 must be disregarded in Eq.~4!. This re-
quirement is imposed by the use of the approximate G
~1! as a starting point of the present treatment~a comprehen-
sive discussion about the requirements of a right statist
operator can be found in Ref.@36#!. As a prediction, the
present second order treatment in non-Markovian limit s
gests that in case of a slow bath, a dissipationless regime
be detected in the equilibrium state; mathematically, it is d
to the presence ofA10 and A20 in Eqs. ~4!. A confident an-
swer concerning the dissipationless behavior~see a discus-
sion of this regime in Ref.@37#! of a slow bath involves
consideration of higher order approximations of GME, a
we shall address this problem in a future work.

In the delocalized representation, the dynamics for
dissipative regime and fast bath predicted by Eq.~4! is found
by the Laplace transform method. It is worth noting that
analytical solution can be obtained for the general case~we
used MATHEMATICA3.0!. From interesting features derive
from its form ~not presented here because of its length! we
infer the following:~i! It predicts a biexponential decay;~ii !
T2

21 characterizes the coherence decay and it is presen
Sx8(t), Sy8(t), and Sz8(t) as well, it is associated with the
diagonal transitions, where the number of phonon is
changed in the system;~iii ! T1

21 characterizes the populatio
decay and it appears only inSz8(t), it is associated with the
nondiagonal transitions, transitions between the TSS’s le
occur by emission and absorption of phonons;~iv! Decay of
Sz8(t) has both coherent and incoherent components, wh
are damped byT1

21 andT2
21, respectively. The features~ii !

and ~iii ! reflect the resemblance of the Hamiltonian~3! with
the small-polaron Hamiltonian@35~b!#. The same analysis
allows calculation of the relaxation times and coherence
quency ~see below!. Thus, the two relaxation times calcu
lated by us have the well-known form~see, e.g., Eq.~21.169!
from Ref. @10#!

1

T1
[2A3352~W121W21!5

pa

m~11r 2!
cothS b\v0

2 D J~v0!,

~6a!

1

T2
[2

A111A22

2
5a335

1

2T1
1

1

T28
, ~6b!

where

1

T28
5

2ar 2

m~11r 2!
cothS b\v

2 D J~v!U
v→0

.0 ~6c!

is the so-called ‘‘pure dephasing rate constant.’’ Thus,
recover the ‘‘spectroscopy law’’@Eq. ~6b!#. Additionally, Eq.
~6c! predicts a positive pure dephasing rate constant as
ported in experiments@38#.

In the dissipative regime case, from Eq.~4! one obtains
Sz

~eq!52A30/A335A30T1 and from Eq. ~A4!, Sz
~eq!5

2r tanh(b\v0/2)/A11r 2, similar to the result obtained in
the PIF literature for the weak-coupling limit@the NIBA pre-
diction, Sz

~eq!52tanh(b«/2), is in contradiction with the re-
sult of a quantum-mechanical analysis@10##. The energy
3-3
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splitting calculated with the detailed balance conditio

r11
s8~eq!/r22

s8~eq!5(12Sz
~eq!)/(11Sz

~eq!), is given by E1
s8~eq!

2E2
s8~eq!5\v0 . A similar result is reported by Ref.@14#.

Next, we consider the effect of the bath on the natu
frequency of TSS,v0 . By using the expressions of the a
tocorrelation functionsa(t) andb(t) from Eq.~A3! and the
definition ṽ0[v01Im(G1212), we obtain

ṽ05v0F12
q0

2

2p\~11r 2!
PE

0

`

dv
coth~b\v/2!

v22v0
2 J~v!G ,

~7!

where P* . . . means the Cauchy principal value of the in
gral.

For the dissipative regime, the coherence frequency
tained by us,V, is

V252
4A12A211~A112A22!

2

4

5v0
2F12

2a

m~11r 2!
PE

0

`

dv
coth~b\v/2!

v22v0
2 J~v!G2

2F pa

4m~11r 2!
J~v0!cothS b\v0

2 D G2

~8!

and V equalsṽ0 in the RWA limit ~see below!. Thus, Eqs.
~7! and~8! give the temperature corrections of the cohere
frequency. These results are similar to those obtained
Görlich, Sassetti, and Weiss@39# in the PIF formalism@see
also Eq.~21.169! from Ref. @10##.

To characterize the time evolution of TSS to the equil
rium state, following Ref.@40#, we evaluate the rate consta
by the ‘‘mean first passage time’’ expression of the type

k5S E
0

` Sz~ t !2Sz
~eq!

12Sz
eq dtD 21

. ~9!

This expression will be used to evaluate the rate const
for ETR in Sec. IV.

Rotating wave and secular approximations for dynamics of
the spin-boson Hamiltonian

In this section, we consider the spin-boson Hamilton
dynamics in the rotating wave and the secular approxima
limits. We shall use the results obtained here in the follow
sections.

First, to find an analytical expression of the reduced s
tistical operator let us consider RWA by cancelinga34 in Eq.
~A1! ~see justification of using RWA in Ref.@14#!. It is worth
noting that RWA limits the dynamics validity to values ofṽ0

close of v0 . In RWA, A115A2252T2
21, A1252A215

2ṽ0 , and the dynamics is given by

Sx8~ t !uRWA5Sx8~0!cosṽ0te2t/T2[Q2x8~ṽ0 ,t !e2t/T2.
~10a!
06110
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Sy8~ t !uRWA5Sx8~0!sinṽ0te2t/T2[Q2y8~ṽ0 ,t !e2t/T2,
~10b!

Sz8~ t !uRWA

5FSz8~0!2Sz
~eq!1

A31Sx8~0!~T1
212T2

21!

ṽ0
21~T1

212T2
21!2 Ge2t/T1

2
A31Sx8~0!@~T1

212T2
21!cosṽ0t1ṽ0 sinṽ0t#

ṽ0
21~T1

212T2
21!2

3e2t/T21Sz8
~eq![Q1z8~r ,A31,T1 ,T2 ,ṽ0!e2t/T1

1Q2z8~r ,A31,T1 ,T2 ,ṽ0 ,t !e2t/T21Sz8
~eq! . ~10c!

The component of the polarization vector,Sz(t), that is the
probability to find TSS in its initial stateuL& reads

Sz~ t !uRWA5
1

A11r 2
@rQ1z8e

2t/T11~Q2x81rQ2z8!e
2t/T2#

1
r

A11r 2
Sz8

~eq! . ~11!

As one can see, Eq.~11! reproduces both coherent an
incoherent decays. In the RWA this equation has the simp
form if the factorA31 is disregarded. This happens if in E
~A1!, a13,a31,a32 are canceled; thus SA is introduced. Th
time scale considerations mean that SA is acceptable if

SA[T1
21/v0!1. ~12!

Using both the RWA and SA the dynamics equations in
delocalized basis have a simple form and Eqs.~10! give ṽ0
5v01Im G1212 as the coherence frequency for either RW
or both RWA and SA. In the limit of RWA and SA, theoz
component ofS is very close to the PIF result~see, e.g.,@10#
and a discussion in Ref.@28#!, namely,

Sz~ t !uRWA1SA5
r

A11r 2 S r

A11r 2
2Sz

~eq!D e2t/T1

1
r

A11r 2
Sz8

~eq!
1

cosṽ0t

11r 2 e2t/T2. ~13!

A geometrical description of the precession ofS(t) given by
Eq. ~13! can be seen in Ref.@29#. In RWA and SA,

Sz8~ t !uRWA1SA5 b~Sx8~0!2Sz8
~eq!

!cexp~2t/T1!1Sz8
~eq! .

Thus, the coherence is absent inSz8(t) and utilization of both
RWA and SA decreases the description accuracy.

III. APPLICATION TO A LORENTZIAN-OHMIC BATH

For a complete description of the dynamics, the rig
spectral distribution function of a particular system must
considered. Obviously, for ETR a LO form is chosen@31,41#,
3-4
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J~v!5
mv

11v2/vL
2 with vL52p/tL

andtL being the characteristic relaxation time of the bath.
this section, we shall consider the dynamics in the RW
limit. The two relaxation timesT1 and T2 given by Eqs.
~6a!–~6c! for this LO bath are

1

T1
5

pa

~11r 2!

v0

11v0
2/vL

2 coth
b\v0

2
~14a!

and

1

T2
5

pa

2~11r 2!

v0

11v0
2/vL

2 coth
b\v0

2
1

4pr 2a

b\~11r 2!
.

~14b!

Similar forms of the relaxation times obtained by differe
methods have been reported by Refs.@17,20#. Thus, in the
second order approximation,T1 /T2 is independent of the
coupling a. The dependence of temperature is as follow
When temperature increases,T1 becomes larger thanT2 and
consequently Eq.~13! predicts that larger temperatures le
to incoherent dynamics.

On the other hand, from Eq.~7!, by using cothcx/251
12(n51

` exp(2ncx) for the modified natural frequency o
TSS, we find

ṽ0uLO5v0H11
a

~11r 2!~11v0
2/vL

2!
Fln v0

vL

1 (
n51

`

$enb\v0Ei~2ncx0!1e2nb\v0Ei~ncx0!

22@ci~nc!cos~nc!1si~nc!sin~nc!#%GJ, ~15!

where the functions Ei(x), ci(x), and si(x) are defined in
accordance with Ref.@42#, c5b\vL andx05v0 /vL . Equa-
tion ~15! predicts that stronger TSS-bath coupling a
smaller values ofv0 /vL result in decreasing the coheren
frequency of the dissipative TSS.

From Eq. ~15! one observes that the validity of RWA
ṽ0'v0 , is accomplished if

RWA[
a

~11r 2!~11v0
2/vL

2!
!1. ~16!

If the last inequality is satisfied then~i! for large supraunitary
r, the RWA condition can be accomplished for supraunit
a; ~ii ! for subunitaryr, the RWA condition can be accom
plished only for subunitarya. By connecting Eqs.~12! and
~14!, the SA validity conditions for LO fast bath read

SA8[a/~11r 2! ~small subunitary! ~17a!

and

SA9[b\v0/2.1. ~17b!
06110
t

.

y

From Eqs.~16! and ~17a! one can observe that both RW
and SA conditions require a small subunitary value ofa/(1
1r 2) and they are simultaneously accomplished ifa/(1
1r 2)!1; a similar result concerning the equivalence of S
and RWA is reported by Kohen, Marston, and Tannor@36# in
the case of Redfield equations. If in Eq.~15! one uses the
equality @42#

encx0Ei~2ncx0!1e2ncx0Ei~ncx0!522E
0

`

dt
t cost

t21n2c2x0
2 ,

then one can see that in limit of low temperatures,cx0@1,
c@1 ~condition implicitly fulfilled in the fast bath case!, and
relevant in the sum appearing in Eq.~15! is the termn51.
Canceling ci(nc) and si(nc) as well, one obtains

ṽ0uLO ~ low T!5v0H 11
a

~11r 2!~11v0
2/vL

2!

3F ln
v0

vL
22E

0

`

dt
t cost

t21c2x0
2G J . ~18!

In the limit of the unbiased case, that is,r 50, Eq.~15! reads

ṽ0uLO~r 50!5DH11
2a

~11D2/vL
2!

Fln D

vL

1 (
n51

`

$enb\v0Ei~2ncy0!1e2nb\v0Ei~ncy0!

22@ci~nc!cos~nc!1si~nc!sin~nc!#%GJ, ~19a!

wherey05D/vL . In conformity with Ref.@43#, ṽ0(r 50,T
50)50; this cancellation of the tunneling frequency e
presses the localization phenomenon of TSS in its ini
state. Writing Eq.~19a! for T50 one obtains

ṽ0uLO~r 50,T50!5DF11
2a

~11D2/vL
2!

ln
D

vL
G .

~19b!

This form provides a criterion in appreciating the extrem
values ofa for which the treatment in the limit of subunitar
small r is still satisfactory,

21,2a ln~D/vL!/@11~D/vL!2#,0. ~19c!

In Fig. 1 the renormalization factor of the coherence f
quency of TSS,ṽ0 /v0 , as function of temperature is repre
sented forr 50 andy050.01 in conformity with Eq.~19a!;
the chosen value ofa50.1 respects condition~19c!. We ob-
tain that the temperature increases the coherence freque
for high enough temperature the coherence frequency
comes larger then the natural frequency of TSS.

Figure 2 shows the dynamics predicted by the pertur
tive treatment in second order approximation for LO fa
bath and unbiased case. It is obtained with the Laplace tr
form method applied to Eq.~4! with conditions~5! and use
3-5
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of Eqs.~A4! and ~14!. One observes~see the inset! that the
use of RWA, Eq.~11!, leads to an overestimation of the c
herence frequency of TSS.

In the RWA limit an incoherent dynamics is obtained
the exponential exp(2t/T2) decays fast enough to damp th
sine and cosine oscillations@see Eq.~10c!#. Thus the inequal-
ity I D[2pT2

21/ṽ0@1 characterizes an incoherent decay
more restrictive condition, namely,T1

21/2@2ṽ0 /p imposes
that the incoherent decay manifests if

FIG. 1. The renormalization factor of the coherence freque
of TSS, ṽ0 /v0 , for the unbiased case (r 50) as a function of
temperature. The temperature increases the coherence frequ
The plot is obtained from Eq.~19a! with y050.01, vL51014 s21,
anda50.1.

FIG. 2. Coherence predicted by the perturbative treatmen
second order approximation for the fast bath and unbiased c
Figure shows the nonapproximate result. The inset compares
nonapproximate result~solid line! with the approximate result~dot-
ted line! given by using RWA@Eqs. ~11!#. The data used arevL

5531014 s21, a50.005,x050.001, andT51 K.
06110
p2a coth
b\v0

2 Y 4~11r 2!@1.

This last inequality involves, as one expected, that the b
~couplinga! and temperature lead to an incoherent deca

IV. APPLICATION TO ETR

As we have already mentioned, the treatment can be
plied to the case of certain nonadiabatic electron tran
reactions in the fast bath limit. The obvious picture is
associate the vibration of the protein atoms surrounding
prosthetic groups involved in electron transfer with t
bosonic bath modes@31,33,44#. The two states of TSS ar
electronic ones. The parametera can be expressed in term
of the solvent reorganization energyEr for the LO bath as
~see, e.g., Ref.@41~a!# or @45#!

a5ErtL /p\. ~20!

For the slow~adiabatic! bath, that is, for the caseD/vc@1, a
coherence decay is reported both experimentally and th
retically by Chandler and co-workers@46#, Coalson@47#, Vos
et al. @48#, Evans, Nitzan, and Ratner@49#, and Hornbach
and Dakhnovskii@33#. There are two mechanisms that ca
generate nonexponential relaxation:~i! the slowly damped
vibrational coherence of the low frequency modes of the b
and ~ii ! the electronic coherence. The problem of the el
tronic coherence in ETR has been addressed theoretical
Refs.@50–52# and these works shows the importance of t
initial conditions in obtaining the electronic coherence. O
the other hand, the attempt of Reidet al. @53# to observe an
electronic coherence in biruthenium mixed-valence co
pounds has failed to yield any direct evidence. It seems
a better time resolution of the experimental observation
necessary to evidence this phenomenon. We shall use
treatment to predict if the presence of electronic coher
decay is possible in RCs for the fast bath model. Since
weak-coupling regime is the most favorable in manifest
the electronic coherence, prediction of the present treatm
can be helpful for the experimentalists focused on detec
this phenomenon. In order to approximate the rate const
we shall consider Eq.~A7! for ETR when the validity limits
of RWA and SA are fulfilled. Additionally, we shall test th
presence of coherence by using theI D parameter. For a more
accurate appreciation of the relaxation type of the bath,
infer from Refs.@32,33# the criterion of the fast bath, that is
g52pAbEr /DtL@1. Applying this criterion to the LO bath
via Eq. ~20! the condition of fast bath readsg
52pApa\b/AtL

3@1.
Next, the possibility of the electronic coherence manife

tation is analyzed for the mutant strain ofRhodobacter Sphe
roides~Wilde type!, in which tyrosine~M!210 is replaced by
tryptophan~M!Y210, assuming a weak-coupling regime f
ETR observed in this RC. In this case the electron transfe
seen as a unistep process from the excited bacterioch
phyll dimer to bacteriopheophytin. The data we used ar«
50.09 eV andk21541 ps from Ref.@54# and tL50.095 ps
for T5300 K from Ref. @31#. As fitting data fork21, we
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consider\D50.0005 eV andEr50.2 eV, which are in nor-
mal limits for photosynthetic RCs@55#. These data establis
for the rough parameter that characterizes the type of
bath, D/vL , a small subunitary value of 0.012. Thus th
main requirement concerning the validity of application
the perturbative treatment in second order approximation
this case is fulfilled. The other confidence parameters c
acterizing the electron transfer areT1 /T251.93105, g
5241,RWA55.431023, SA51.131023, andI D5209; they
predict an incoherent decay and absence of any cohere
More interesting is the case of the low temperatures wher
electronic coherence by quantum tunneling between the
potential energy surfaces characterizing the reactant
product states could manifest. Thus for the same data
above, but withT51 K we obtainT1 /T25658, g54182,
RWA55.431025, SA51023, and I D50.698. The value of
the I D parameter indicates a possible coherence manife
tion and the value of theRWA parameter allows the use o
RWA. Consequently, for this situation we consider dynam
predicted by Eq.~11! including the renormalization effect o
the coherence frequency as well. Figure 3~a! shows an inco-
herent relaxation even for short times of orderv0

21. The rate
constant at this low temperature is obtained considering
the value oftL is temperature independent, in accordan
with Ref. @31#. Its value, obtained with Eqs.~9!, ~10!, and
~A4! is k21543.2 ps. The nonsignificant dependence of te
perature of the rate constant can be the result of low act
tion energy and in this case, as a consequence, the trans
preeminently a thermal one, even at low temperatures.
the other hand, Fig. 3~b! shows a coherent decay for th
same data as those used to obtain Fig. 3~a! except the unre-
alistic small chosen reorganization energy for ETR (Er
50.002 eV) and the very low temperature (T50.001 K).
The parameters characterizing this dynamics areT1 /T2
51.16, g51.33104, RWA55.431027, SA51025, and I D
51.231025. The small subunitary value of theI D parameter
indicates the presence of a coherent regime. In conform
with the small value ofRWA , we consideredṽ0'v0 for this
figure. The coherence manifests for short times, for long t
the relaxation becomes incoherent. This last case supp
the general conclusion that the coherence manifests for
temperatures and weak TSS-bath coupling~or equivalently,
small value of the reorganization energy!.

V. CONCLUSIONS

The spin-boson dynamics has been obtained in the se
order approximation of the TSS bath coupling~weak-
coupling limit!. A concrete solution has been furnished fo
fast bath, which allows to recover the results obtained
other methods~e.g., the spectroscopy law and expression
the relaxation times, energy splitting and population deca!.
The results are in good agreement with those obtained
PIF. Our treatment supports the statement that stronger
pling and higher temperature results in increasing the co
ence decay rate. For the fast bath case we obtained tha
coupling decreases and the temperature increases the c
ence frequency. We proved that generally, the second o
approximation yields a biexponential decay for any spec
06110
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distribution of the bath. Based on physical consideratio
we established validity criteria of the treatment applied to
LO bath for small subunitary values ofr by Eq.~19c!, and by
Eq. ~16! in the RWA limit for large values ofr. More refined
equations of dynamics show that utilization of the RW
gives an overestimation of the coherence frequency. App
to ETR, the present perturbative treatment is a useful too
evaluate the rate constant and to detect presence of the
tronic coherence in the weak-coupling regime for the f
bath case. It is able to provide fine details concerning
relaxation type and its mechanism.

Thus, our treatment constitutes an alternative adva
geous method to PIF for solving the dynamics of a dissi
tive TSS. Its extension to the slow bath case and consi
ation of higher order approximations of the GME kernel@29#
can provide more refined information concerning the qu
tum dissipative phenomenon.
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APPENDIX

GME generated by Eq.~1! applied toĤ8 is

S ṙ11
s8

ṙ22
s8

ṙ12
s8

ṙ21
s8
D 5S 2W21 W12 2a13 2a13

W21 2W12 a13 a13

2a31 2a32 2 i ṽ02a33 2a34

2a31* 2a32* 2a34* i ṽ02a33

D
3S r11

s8

r22
s8

r12
s8

r21
s8
D , ~A1!

with r12
s85r21

s8* , W12[G2222, W21[G1111, a13[G1112, a31

[G1211, a32[G1222, ṽ0[v01Im G1212, a33[ReG1212, and
a34[G1221. The specificity of Eq.~A1! is given by the form
of the interaction term in Hamiltonian~2!, q0ŝzSacax̂a/2.
Calculus with Eq.~1! for the transformed Hamiltonian show
that the general form of tetradics is not changed compare
their usual form in the Redfield theory. It is

Gm8mn8n5(
k

Gm8kkn8
1 dnm2Gnmm8n8

1
2Gnmm8n8

2

1(
k

Gnkkm
2 dn8m8 . ~A2!

As components of Eq. ~A2! we find
Gmm8nn8

1
5*0

`dt a(t)gmnn8nn8
1 (t) and Gmm8nn8

2

5*0
`dt b(t)gmm8nn8

2 (t); a(t), b(t) are the bath autocorre
lation functions of the spin-boson Hamiltonian~see, e.g.,
Ref. @10#!, namely,
3-7
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FIG. 3. Time-dependent incoherent and coherent dynamics~a!
The decay is incoherent even for short timesSz(t) is obtained from
Eq. ~11!; ~b! coherent decay for unrealistic small chosen reorga
zation energy for ETR and low temperatureSz(t) is obtained from
Eq. ~13!. For both~a! and ~b! the relaxation timesT1 and T2 are
calculated with Eqs.~14! and~20!. The dotted curves~with top and
right axes! show the behavior for the short times of the coheren
order, 2p/v054.6310214 ~s!. See the data in the text.
06110
a~t!5b~t!* 5K (
a

ca
2 x̂a~t!x̂a~0!r̂bL

5
\

p E
0

`

dv J~v!Fcoth
\vb

2
cosvt2 i sinvt G

~A3!

and

gmm8nn8
1

~t!5(
i , j

~si !mm8~sj !nn8 exp~2 i tvnn8!,

gmm8nn8
2

~t!5(
i , j

~si !mm8~sj !nn8 exp~2 i tvmm8!,

with

x̂a~t!5exp~ i tLb!x̂a , ŝi52
q0

2\
ŝ i sin 2u ,

~si !mm85^muŝi um8&, vn8n5~En8
s82En

s8!/\,

and i, j 5x8, z8 andm, m8, n, n851,2.
The form of theA factors appearing in Eqs.~4! is as

follows:

A1052 i
q0

2r

2\2~11r 2!
I1 ,

A1152FT2
212

pa

2\m

r

~11r 2!
I2G ,

A1252ṽ02
pa

2\m

1

~11r 2!
I3 , A135

pa

2\m

r

~11r 2!
I2 ,

A205 i
2pa

\m

r

~11r 2!
I4 , A215ṽ01

pa

2\m

1

~11r 2!
I3 ,

A2252FT2
211

pa

2\m

r

~11r 2!
I2G , A235

pa

2\m

r

~11r 2!
I3 ,

A3052
pa

m

1

~11r 2!
J~v0!,

A31522a135
pa

m

r

~11r 2! FJ~v!coth
b\v

2 G
v→0

,

A3352T1
21

and

I15 i\J~v0!, I25\J~v0!coth
b\v0

2
,

i-

e
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I352
2\v0

p
PE

0

`

dv

J~v!coth
b\v

2

v22v0
2 ,

I45
i\

p FPE
0

`

dv
J~v!

v
2v0PE

0

`

dv
J~v!

v22v0
2G .

The relation between the polarization vectors in the t
reference frames is~see Refs.@29,56#!

XSx~ t !
Sy~ t !
Sz~ t !

C5S cos 2u 0 sin 2u

0 1 0

2sin 2u 0 cos 2u
D XSx8~ t !

Sy8~ t !
Sz8~ t !

C. ~A4!

For the fast bath case we have
n

06110
o

a315
par

2\m~11r 2!
E

0

`

dt@b~t!2a~t!22b~t!exp~2 iv0t!#

5
par

2\m~11r 2! S E
0

tshort
1E

tshort

` D'

2
par

2\m~11r 2!
E

0

tshort
dt@b~t!1a~t!#, ~A5!

a325
par

2\m~11r 2!
E

0

`

dt@b~t!2a~t!12a~t!exp~2 iv0t!#

5
par

2\m~11r 2! S E
0

tshort
1E

tshort

` D
'

par

2\m~11r 2!
E

0

tshort
dt@b~t!1a~t!#, ~A6!

wheretshort is of the correlation time order of the bath. Thu
for the fast bath casea31'2a32 andA105A2050.

When both RWA and SA are used the analytical expr
sion of the rate constant, as given by Eqs.~9! and~13!, reads
kRWA1SA
21 5

r

A11r 2 S r

A11r 2
2Sz

~eq!D T11@~11r 2!~11ṽ0
2T2

2!#21T2

12Sz
~eq! r

A11r 2

. ~A7!
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