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Dynamics of the spin-boson Hamiltonian by the projection operator technique:
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A perturbative treatment developed by using the projection operator technique is provided to find dynamics
of the spin-boson Hamiltonian in the second order approximation of the subsystem-bath interaction. In the
framework of the generalized master equations and in the Markovian approximation it leads to the Redfield/
Bloch-type equations. The treatment can be applied to both fast and slow bath cases; in this paper we consider
the fast bath case. The relaxation times, energy splitting, and bath-induced renormalization effect of the
coherence frequency are discussed and applied to a Lorentzian-Ohmic fast bath. A good agreement between
our results and those obtained by the path-integral formalism is obtained. The treatment is applied to electron
transfer reactions to test the possibility of apparition of the electronic coherence in certain photosynthetic
reaction centers.
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I. INTRODUCTION [16] consider a quantum-mechanical theory of photoinduced
electron transfer. Neu and R@li7] use the Robertson pro-

The description of the quantum dissipative dynamics ofiection operator formalism and furnish a solution in the
an open low-dimensional subsystem coupled to its environweak-coupling limit for a driven dissipative TSS. The tran-
ment(seen as a reservpiby a Markovian theory has a wide sient regime is characterized by two relaxation times. The
variety of physical applications. Magnetic resonance, quaneffect of the bath on the coherence frequency for the tran-
tum optics and laser physics, condensed matter and cosient dynamics has not been taken into consideration. More
densed phase, and astrophysics are representative researetently, focusing on dissipation caused by the voltage
areas where this treatment has been successfully used. Theurce, Governale, Grifoni, and Schid 8] provide analyti-
subsystem’s dynamics has been described by several mettal and numerical results for the relaxation and dephasing
ods by using, for example, the time-dependent perturbatiorates in coupled qubits. The weak-coupling limit of the spin-
theory [1,2], susceptibility method3], statistical operator boson Hamiltonian has been treated by PIF by the so-called
method[4—8], or the path-integral formalisiPIF) [9-11]. noninteracting-blip approximatiofNIBA) in Ref. [19] or

Often the spin-boson Hamiltonian is chosen as a dissipadeyond this approximation in Ref0], [21]. The projection
tive model to consider interaction between a subsystempperator technique is another successful formalism used to
which is mapped onto a two-state systéisS and reservoir  describe the spin-boson Hamiltonian dynamics; the NIBA
(thermal bath Leggettet al. [11] and Weiss[10] exhaus- equations have been obtained within this techni@.
tively review the spin-boson problem in the PIF framework. The aim of this paper is twofold. On the one hand, we
The discrete path used by PIF to describe the two states @rovide a method to concretely describe the dynamics of the
TSS often induces mathematical difficulties. Several differ-spin-boson Hamiltonian in the weak-coupling limit. On the
ent approaches have been reported on the dynamics of tlather hand, the coherence decay in electron transfer reactions
spin-boson Hamiltonian. Earlier works, as those of DekkeETR) is a well-known phenomenon, which appears in the
[12] or Meyer and Ernsf13] focus on the weak subsystem- case of electron transfer reactions when the bath is slow. The
bath-coupling(weak-coupling approaches. For example, by possibility of apparition of the electronic coherence for fast
using the Heisenberg picture Dekker gives an implicit solu-bath and weak-coupling limit is an interesting problem and it
tion for the dynamics of the symmetric dissipative TSS andconstitutes the second goal of this work. Technically, the
provides a solution concerning the influence of the bath omlissipative TSS dynamics is found by using the generalized
the coherence frequenggenormalized tunneling frequency master equation$GME). They are obtained by projecting
for the Ohmic dissipation case. Laird, Budimir and Skiner,the statistical operator of the system onto the reduced TSS
[14] anticipating a secular Redfield-type equation for thespace23—-27. The GME that we applied to the spin-boson
spin-boson Hamiltonian dynamics, find a damped harmoni¢iamiltonian lead to certain Redfield/Bloch-type equations. A
oscillator equation for the polarization vector. This anticipa-good agreement between our results and those obtained by
tion as well as use of approximate relaxation times restraifPIF is obtainedthe agreement between the Bloch/Redfield
the applicability of the treatment. In the same Redfieldformalism and PIF is also reported in RE28]).
theory framework, Morillo, Denk, and Cukigd5] investi- The paper is structured as follows. In Sec. Il, the pertur-
gate the possibility of controlling tunneling with an external bative treatment is introduced. Its capacity to recover some
field in a four-level system and Jean, Friesner, and Flemingnown results in the literature is examined. For the weak-
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coupling regime, we characterize the TSS decay and calcuions of the spin-boson model is of electronic type. In &).

late the longitudinal and transversal relaxation timigsand  we used the usual notati¢@l]. The bath’s effect on dynam-
T,, respectively, and the energy splitting, coherence freics is represented by the spectral density functife)
quency, and rate constant. Then, the treatment is consideredr2~ '3 c%(m,w,) *6(w—w,) for =0 and J(w)=0

in limits of the rotating wave approximatiofRWA) and  for v<0. It has a superior cutoff frequenay, . For frequen-
secular approximatiofSA). The possibility of applying the cies lower tharw, and the Ohmic dissipation regimé(w)
perturbative treatment to the slow bath and apparition of dis«w. The strength of TSS-bath coupling is characterized by
sipationless regime are the other two problems addressed {Ae dimensionless paramewtﬂqg/zwﬁ_ andu is the clas-
this part. In Sec. lll, the results obtained in the precedentjcal measurable friction coefficient.

section are applied to a Lorentzian-OhnildO) fast bath. Many physical and chemical systems can be described by
The influence of the bath and of the temperature on the dya reaction coordinate related to an effective potential energy
namics is discussed. In Sec. IV, the theoretical results obrynction with two separated minima; in certain conditions
tained in the precedent sections are applied to test the pregrey can be formulated in terms of the spin-boson Hamil-
ence of the electronic coherence in certain reaction centeggnjan. For example, the ETR problem can be mapped on

(RO). Finally, conclusions are formulated. such a mode(see, e.g., Ref§31,37). As we wish to apply
the perturbative treatment in the fast bath limit to ETR, we
II. DYNAMICS OF THE SPIN-BOSON HAMILTONIAN IN shall consider a fast relaxation of the environment, i.e., a
GME FORMALISM non-adiabatic reaction. This means a reaction where the elec-

We consider the usual hypothesis of the spin-bosorﬁromc tunneling time is slow to respect to the bath relaxation

Hamiltonian dynamics[11], that is, the interaction is or roughly A/wc<1 [32,33.

. oo : By using the matrix Pauli algebra we denote |hy and
switched on at the initial timé=0. At this moment the sta- |R) the two-state vectors associated with the two states of
tistical operator of the syste(0), is written as a product

between the statistical operator of the bgif(0), and of Tss _(obtalned_ln absence of any_coupl)ng;s forming Ehe
subsystempS(0). Oneassumes that the bath is all the time localized basis set, so thaf,=|L)(L|~[RXR|, &y
> P AV =|L){(R|+|R)L|, with &,|JL)=|L) and &,|R)=—|R). As

at equLIlbrlAum.Ab ~ sh o we already mentioned, the two states are coupled by the

LetH, H® H®, andH*be the Hamiltonian of the system, ynneling Hamiltonian ¢ %A/2)&,, which has real matrix
subsystem, bath, and of subsystem-bath interaction. Fhen elements in théL),|R)} basis set. We consider the “experi-
=HS+HP+H% and as an associated super operator Lioumentalist representation,” that is, the resonance framework,
ville form, L=L5+LP+L with L=[H,]/%. (the brackets which introduces the stationary states of the system. Such a

frame is involved when the relaxation times are to be experi-

mean a commutatprin the second order approximation the ; :
n PP mentally determined. Thus, we transform Hamiltonfanby

Markovian GME, which constitutes the starting point of our

derivation, read¢see details in Ref$29,30) writing it in the basis sef1),/2)}, the so-called delocalized
' ' basis set, which diagonalizes the TSS Hamiltonian. In the
dp(t) o language of the annihilation and creation operators, the trans-
gt~ L formed Hamiltonian reads
| —ir(L5+LP) i7L5)5 A’ = [ejei+ > ho,(blb,+3
fo dr((LS%e"! LS9Yexp(i 7L %) pS(t) 21]28' i Ci ; wa(bybyt7)
— _ 11 S&S _ ~S At ~ ~
=—iL%%(t)—Tp(1), 1) + ;122 &1e;Vij o(B,+BY), 3)

where ((A))=Tr[ApP] represents a trace over the bath

modes applied to superoperatdracting onp® andTl repre-  where &, —&5¢,—&l¢,, & —ehe,+&le,, ande; andé,
sents the damping superoperator. The spin-boson model ighe annihilation operatorobey the fermionic commutation
defined by the total Hamiltonian rules (see, e.g., Ref[34]) and the usual bosonic operators
associated with theth harmonic oscillator are introduced by

. & hA_ s P2 m,w3%>
H=20 5 ot 2 ot 73 R, = Vil(2mw) (b1 +B,), p.=iVEm,w 2Bl —b,).
Also,
+ 2.3 c R, @

g/ =(—1)"YhAR)V1+r?,

Mathematically, the system is constituted by TSS in inter-

acting with a bath of harmonic oscillators representing the Vi11a= —Va2,=qoCo Vil (8BM,00,) COS 20,
environment. The first two terms represent the TSS Hamil-
tonian, the third term represents the oscillators bath, and the Vi120=V21,= —UoCo VI (BM,0,) SiN 26,
fourth term represents their interaction. Responsible for the
tunneling is the matrix elemertA, which in many applica- cos20=r/\1+r2 sin20=—1/J1+r?
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and r=s/hA. erally, A3 and A,z must be disregarded in EG). This re-
quirement is imposed by the use of the approximate GME
The energies are (1) as a starting point of the present treatm@ntomprehen-
) sive discussion about the requirements of a right statistical
E3 =hAV1+r%2 for |1), operator can be found in Ref36]). As a prediction, the
present second order treatment in non-Markovian limit sug-
E§' =—hA1+r2/2 for |2), gests that in case of a slow bath, a dissipationless regime can
be detected in the equilibrium state; mathematically, it is due
and to the presence oh,q and A,q in Egs. (4). A confident an-
swer concerning the dissipationless behays®e a discus-
wo=(ES —ES)/fi=A\1+r? sion of this regime in Ref[37]) of a slow bath involves

consideration of higher order approximations of GME, and

is the natural frequency of the TSS coherence. This f@m we shall address this problem in a future work.
shows both phononic-intermediate interactiéor i=j) and In the delocalized representation, the dynamics for the
direct interaction(phononic emission-absorption processesdissipative regime and fast bath predicted by @ is found
for i #]) between the levels of TS85(a)]. The first type of by the Laplace transform method. It is worth noting that an
interaction causes fluctuations of the TSS’s levels and thanalytical solution can be obtained for the general dase
second changes the population of TSS. used MATHEMATICA3.0). From interesting features derived

Applied toH’, Eq. (1) generates a certain Redfield GME from its form (not presented here because of its lengte
[see Eq.(A1)]. The analytical solution of this equation is infer the following: (i) It predicts a biexponential decaif)
obtained by introducing the polarization vectd®' (t) TZ_l characterizes the coherence decay and it is present in
:Tr[ﬁs’(t)a_r] in the reference framex’y’z’ Correspond- er(t), Syr(t), and Szr(t) as well, it is associated W|ththe
ing to the delocalized basis set diagonal transitions, where the number of phonon is not
changed in the systentiii) T; * characterizes the population

S =A;Sy + A8, +A13S, +Agg, decay and it appears only B,/ (t), it is associated with the
nondiagonal transitions, transitions between the TSS's levels
Sy’:A21sx’+A225y’+A23Sz’+A2O (4) occur by emission and absorption of phonaofs) Decay of

S,/(t) has both c?herent alnd incoherent components, which
- are damped by; = and T, -, respectively. The featurdd
S =AaiSe T AgsSy Ao, and (i) rpeflectyt-ﬁe resemzblancepof the I¥|amiltoni@) Vf/(ltf:
where the values of tha factors are given in the Appendix. the small-polaron Hamiltoniah35(b)]. The same analysis
The relation between the po'arization’s Components in th@.”oWS calculation of the relaxation times and coherence fre-
two frames can be established, e.g., by usipy(t) quency(see below. Thus, the two relaxation times calcu-
_ Uf)s'(t)U*, whereU is the unitary operator used to diag- lated by us have the well-known forfaee, e.g., Eq21.169

onalize the TSS Hamiltoniafisee Eq.(A4)]. Considering from Ref. [10))
that at the initial moment TSS is in state), then S,(0) o Bho
=1, S(0)=S,(0)=0 and with Eq. (A4) one obtains T_E_Assz_(vv12+w21): T3 cot)—( > O)J(wo)’
S¢(0)=111+12, S,/(0)=0, andS, (O)=r/\1+r2. 1 m(1+1%)

At this point the following remarks are necessary. At equi- (6a)
librium, in the dissipative regime case TSS is found in a 1 Avit A 1 1
mixed state and the statistical operator is given by B i (6b)
T, 2 BT, Ty
o 1( 1+85? gEr—is
~S (e
P51 ea e eq | where
2\ 857 +isy 1-S;
here th ige) denotes the equilibrium state. O L__ 2ar fho), >0
where the superscripeg) denotes the equilibrium state. One T_é_,u(1+r2) cot 5 (w) . (60

can observe that the asymptotic conditichfﬁ@ZS(ﬁWZO)

requires thath,g, Az, Ass, Azg Must be disregarded in BQ. o yy0 g4 called “pure dephasing rate constant.” Thus, we

(4). Otherwise the equilibrium state would be a coherent on " ' "
or in other words, TSS would situate in a dissipationless?ecover the “spectroscopy lawEq. (6b)]. Additionally, Eq.

regime. Hence, for a right asymptotic behavior in the case 0%6(:) predicts a positive pure dephasing rate constant as re-

T ) . ported in experimentg38].
fast bath and dissipative regime, we have to impose that In the dissipative regime case, from He) one obtains

A= A= Aqz=Ays=0. 5  SI=—As/Az=Agl; and from Eq. (A4), Sed=
-r tanh(BﬁwOIZ)/\/lerz, similar to the result obtained in

In case the bath relaxation is faster tham/@, (that is, the the PIF literature for the weak-coupling linjithe NIBA pre-
fast bath casge thenas,~ —as, and consequentlyd,;=A,,  diction, S*¥= —tanh(Be/2), is in contradiction with the re-
=0 [see Eqs(A5) and(A6)]. Thus, we conclude that, gen- sult of a quantum-mechanical analygit0]]. The energy
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splitting calculated with the detailed balance condition, Syr(t)|RwA=er(O)Sin?oote_t/Tzf®zyr(5)o,t)e_t”2,
P33 *=(1-S*)/(1+S), is given by EY* (100
—E5 ©®9=fw,. A similar result is reported by Ref14]. o)

Next, we consider the effect of the bath on the natural Sz (D) rwa
frequency of TSSw,. By using the expressions of the au-
tocorrelation functiong(7) andb(r) from Eg.(A3) and the =
definition ®g= wy+ Im(I"1515), we obtain

AzS(0)(Ty T =T5H
_cleg —t/T
S, (0)—Sf9+ Sl (T 1-T,7)2 e 'n

AzS(0)[(T; =T, Y coswot+ @ sindot ]
o+ (Ty =T, H)?

Z)Oz (O] 1

2
©  coth Bhw/2
do Z)PJ dw (B wl2)
0
(7) Xe_t/T2+S(Z?q)5®1zr(r,A31,T1,T2,Z)0)e_t/-rl

T 2mh(1519) —z @

(1)2

~ —tT (eq)
where H ... means the Cauchy principal value of the inte- +02,(1,Agy Ty, To 0, t)e 7245, (100

gral.
For the dissipative regime, the coherence frequency o
tained by us(}, is

pIhe component of the polarization vect&(t), that is the
probability to find TSS in its initial staté) reads

1
4A12A21+ (All_ A22)2 t = [r® —t/Ty —t/T,
2_ r e +(Os5+r0,,0)e
0= — 7 Sz( )|RWA 1+I‘2[ 1z ( 2X 22) ]
2a »  coth Bhw/2) 2 r
2 (eq)
=wj|l-————P| do—5———1J +—=S". 11
B TR S R PP (@) Vi+r2 ? 1
B TQ o )cotl’( Bﬁwo) 2 ®) As one can see, Ed11) reproduces both coherent and
Au(l+ r?) 0 2 incoherent decays. In the RWA this equation has the simplest

form if the factorAs, is disregarded. This happens if in Eq.

and Q) equals@, in the RWA limit (see below. Thus, Egs. (Al), a;3,a31,a3, are canceled; thus SA is introduced. The
(7) and(8) give the temperature corrections of the coherencdime scale considerations mean that SA is acceptable if
frequency. These results are similar to those obtained by .
Gorlich, Sassetti, and Weid89] in the PIF formalismsee SpA=T; Jw<1. (12
also Eq.(21.169 from Ref.[10]]. ) ) ) )

To characterize the time evolution of TSS to the equilib-Using both the RWA and SA the dynamics equations in the
rium state, following Ref[40], we evaluate the rate constant delocalized basis have a simple form and Ha$) give w

by the “mean first passage time” expression of the type ~ =@o+IMI'15;, as the coherence frequency for either RWA
or both RWA and SA. In the limit of RWA and SA, thez
» S,(t) — Sied -1 component ofSis very close to the PIF resulsee, e.g.[10]
k:( 1—Seth> (99  and a discussion in Reff28]), namely,
0 Tz

;
o S(Zeq) e*t/Tl
V1412

;
This expression will be used to evaluate the rate constants  SAD|rua+sa= ==
for ETR in Sec. IV, Vit

+

r qea Coswot uT, (13
Rotating wave and secular approximations for dynamics of m 2! 1+r2 e - (13
the spin-boson Hamiltonian

In this section, we consider the spin-boson HamiltonianA geometrical description of the precessionSgf) given by
dynamics in the rotating wave and the secular approximatiofd. (13) can be seen in Ref29]. In RWA and SA,
limits. We shall use the results obtained here in the following
sections. S (Dlrwarsa=1(Sc(0) =S Jexpl —t/Ty) + 57 .
First, to find an analytical expression of the reduced sta-
tistical operator let us consider RWA by cancelimg in Eq.  Thus, the coherence is absenSin(t) and utilization of both
(A1) (see justification of using RWA in Reff14]). Itis worth  RWA and SA decreases the description accuracy.
noting that RWA limits the dynamics validity to values ®§
close of wg. In RWA, Aj=Ay=—T,"% Ap=—Ay= l1l. APPLICATION TO A LORENTZIAN-OHMIC BATH

— g, and the dynamics is given b
o g ? Y For a complete description of the dynamics, the right

Sy (1) |rua= Sy (0)cosdote VT2=0,,/ (Bg,t)e V2. spectral distribution function of a particular system must be
(109 considered. Obviously, for ETR a LO form is chogéi,41],
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hw _ From Egs.(16) and (179 one can observe that both RWA
J(w)= Tt ol with w =27/7 and SA conditions require a small subunitary valuertfl

+r?) and they are simultaneously accomplishedaif(1
and 7, being the characteristic relaxation time of the bath. In+T2)<1; a similar result concerning the equivalence of SA
this section, we shall consider the dynamics in the Rwaand RWA s reported by Kohen, Marston, and Tanf&8] in
limit. The two relaxation timesT, and T, given by Egs. the case of Redfield equations. If in EQ.5) one uses the

(6a)—(60) for this LO bath are equality[42]
1 T Wy Bhwg nexXoE; e % t cost
- . e"“0Ei(—ncxy) +e "“0Ei(ncxy)=—2 | dt ,
T, T 1) Trolia? coth— (143 ( X0 (ncxg) o Sz
and then one can see that in limit of low temperatures;>1,
X ¢>1 (condition implicitly fulfilled in the fast bath cageand
1 o ) Bhwg Amrea relevant in the sum appearing in Ed.5) is the termn=1.
e~ 2 2 2 COth + N . . . .
Ty, 2(1+4r19) 1+ wf/ o] 2 Bh(1+r7) Canceling cific) and sific) as well, one obtains
(14b)
o
Similar forms of the relaxation times obtained by different @o|Lo (low T) wo[ 1 A1t wlad)

methods have been reported by R¢fs7,20. Thus, in the
second order approximatiod,; /T, is independent of the
coupling . The dependence of temperature is as follows. X
When temperature increasds, becomes larger thah, and
consequently Eq(13) predicts that larger temperatures leadn the limit of the unbiased case, thatiiss 0, Eq.(15) reads
to incoherent dynamics.

On the other hand, from Ed7), by using cotlex/2=1 2u
+23%_, exp(—ncy for the modified natural frequency of ~ @olLo(r=0)=A 1+(1+le2_)
TSS, we find -

wo = tcost
In—=—=2| dt5—>
| 0 t“+c XO

] . (18

In—
.

©

wo + >, {e"PhoEj(—ncyp) +e "Ph@oEi(ncyp)
n— n=1
WL

ol Lo=wo|1+

(04
(1412 (1+ wi w?)

N 21 {e“ﬁﬁ“’OEi( —nexg)+ e‘“ﬁﬁ‘“OEi(nch) —2[ci(nc)cognc) +si(nc)sin(nc) |}

], (193

whereyy,=A/w, . In conformity with Ref.[43], ®(r=0,T

], (15) =0)=0; this cancellation of the tunneling frequency ex-
presses the localization phenomenon of TSS in its initial
state. Writing Eq(19a for T=0 one obtains

—2[ci(nc)cognc)+si(nc)sin(nc)]}

where the functions EX), ci(x), and sik) are defined in
accordance with Ref42], c= Bhw, andxy= wq/w, . Equa- ~ 2a A
tion (15) predicts that stronger TSS-bath coupling and olLo(r=0,T=0)=A 1+(1+A—2/w2)|”w_|_'
smaller values ofvy/w, result in decreasing the coherence - (19b)
frequency of the dissipative TSS.

From Eq. (15) one observes that the validity of RWA, This form provides a criterion in appreciating the extreme
wo~ wg, is accomplished if values ofa for which the treatment in the limit of subunitary

smallr is still satisfactory,

a

F%“E(1+r%(1+w§aﬁ)<1' (16) —1<2aIn(Alw)/[1+(Alw)?]<0. (199

If the last inequality is satisfied thei) for large supraunitary In Fig. 1 the renormalization factor of the coherence fre-
r, the RWA condition can be accomplished for supraunitarydUe€ncy of TSSwo/wo, as function of temperature is repre-
«; (ii) for subunitaryr, the RWA condition can be accom- Sented for =0 andy,=0.01 in conformity with Eq(19a);
plished only for subunitaryx. By connecting Egs(12) and  the chosen value a#=0.1 respects conditiof9¢). We ob-

(14), the SA validity conditions for LO fast bath read tain that the temperature increases the coherence frequency;
for high enough temperature the coherence frequency be-

Sp= al(1+r?) (small subunitary (173 comes larger then the natural frequency of TSS.
Figure 2 shows the dynamics predicted by the perturba-
and tive treatment in second order approximation for LO fast
bath and unbiased case. It is obtained with the Laplace trans-
Sa=phiwyl2>1. (17D form method applied to Eq4) with conditions(5) and use
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12 hw
Trzacothﬁz °/ 4(1+r2)>1.
1.0 —— : : L
8<:~ This last inequality involves, as one expected, that the bath
< (coupling @) and temperature lead to an incoherent decay.
(=]
3 os8
| / IV. APPLICATION TO ETR
0.6 As we have already mentioned, the treatment can be ap-
plied to the case of certain nonadiabatic electron transfer
reactions in the fast bath limit. The obvious picture is to
0.4 associate the vibration of the protein atoms surrounding the
prosthetic groups involved in electron transfer with the
bosonic bath modeg31,33,44. The two states of TSS are
0.2 electronic ones. The parametercan be expressed in terms

of the solvent reorganization ener@y for the LO bath as
(see, e.g., Ref41(a)] or [45))

0'0 A L A L 'l 4 [ " 'l 'l
0 50 100 150 200 250 300

Temperature T (K)

a=E, 7 |7h. (20

For the slow(adiabati¢ bath, that is, for the cask/w.>1, a
FIG. 1~ The renormalizatipn factor of the coherence frequencycoherence decay is reported both experimentally and theo-
of TSS, ®y/wg, for the unblasgd case €£0) as a function of retically by Chandler and co-workef46], Coalsor{47], Vos
temperatl_Jre. Th_e temperature increases the coherencz?1 fnlequen&/.all [48], Evans, Nitzan, and Ratné#9], and Hornbach
Z:gcf’fg 'i obtained from Eq19a with yo=0.01, 0 =10, Dakhnovski{33]. There are two mechanisms that can
o generate nonexponential relaxatidi: the slowly damped
vibrational coherence of the low frequency modes of the bath
of Egs.(A4) and(14). One observesgsee the insgtthat the  and (ii) the electronic coherence. The problem of the elec-
use of RWA, Eq(11), leads to an overestimation of the co- tronic coherence in ETR has been addressed theoretically in
herence frequency of TSS. Refs.[50-57 and these works shows the importance of the
In the RWA limit an incoherent dynamics is obtained if jnjtial conditions in obtaining the electronic coherence. On
the exponential exp{t/T,) decays fast enough to damp the the other hand, the attempt of Restlal. [53] to observe an
sine and cosine oscillatiofisee Eq(100]. Thus the inequal-  electronic coherence in biruthenium mixed-valence com-
ity |p0=27T, /@>1 characterizes an incoherent decay. Apounds has failed to yield any direct evidence. It seems that
more restrictive condition, namely,; 112> 2%,/ imposes  a better time resolution of the experimental observation is
that the incoherent decay manifests if necessary to evidence this phenomenon. We shall use our
treatment to predict if the presence of electronic coherent
decay is possible in RCs for the fast bath model. Since the

1.0 weak-coupling regime is the most favorable in manifesting
1o 05 the electronic coherence, prediction of the present treatment
= 00 can be helpful for the experimentalists focused on detecting
“ 05 0.5 this phenomenon. In order to approximate the rate constant,
. 1.0 — we shall consider EqA7) for ETR when the validity limits
‘ 0o 2 ¢ sxw of RWA and SA are fulfilled. Additionally, we shall test the
0.0 presence of coherence by using theparameter. For a more
. (11 accurate appreciation of the relaxation type of the bath, we
o5 H infer from Refs.[32,33 the criterion of the fast bath, that is,
g=2m/BE,/A 7, >1. Applying this criterion to the LO bath
ok via Eg. (200 the condition of fast bath readgy
o , . , L :ZW\/WaﬁB/\/;E>1.

Next, the possibility of the electronic coherence manifes-
tation is analyzed for the mutant strainRhodobacter Sphe-
roides(Wilde type), in which tyrosine(M)210 is replaced by

FIG. 2. Coherence predicted by the perturbative treatment iffYPtophan(M)Y210, assuming a weak-coupling regime for
second order approximation for the fast bath and unbiased casE TR observed in this RC. In this case the electron transfer is
Figure shows the nonapproximate result. The inset compares ti€€n as a unistep process from the excited bacteriochloro-
nonapproximate resufsolid line) with the approximate resuftiot-  phyll dimer to bacteriopheophytin. The data we used sre
ted lin® given by using RWA(Egs. (11)]. The data used are, ~ =0.09eV andk ™ *=41ps from Ref[54] and 7, =0.095 ps
=5x10"s1 @=0.005,%,=0.001, andT=1 K. for T=300K from Ref.[31]. As fitting data fork !, we

0 20 40 60 80 100 x 107"
Time ¢ (s)
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considers A =0.0005 eV ands,=0.2 eV, which are in nor- distribution of the bath. Based on physical considerations,
mal limits for photosynthetic RCE55]. These data establish We established validity criteria of the treatment applied to the
for the rough parameter that characterizes the type of theO bath for small subunitary values pby Eq.(19¢), and by
bath, A/w_, a small subunitary value of 0.012. Thus the EQ:(16) in the RWA limit for large values of. More refined
main requirement concerning the validity of application of €guations of dynamics show that utilization of the RWA

the perturbative treatment in second order approximation t§iVeS an overestimation of the coherence frequency. Applied
fo ETR, the present perturbative treatment is a useful tool to

this case is fulfilled. The other confidence parameters char=
acterizing the electron transfer afg,/T,=1.9x1C°, g evaluate the rate constant and to detect presence of the elec-
=241, Rya=5.4X10"3, Sy=1.1X 10731 anzdID=209' ihey tronic coherence in the weak-coupling regime for the fast

predict an incoherent decay and absence of any coherend2?th case. It is able to provide fine details concerning the
felaxation type and its mechanism.

More interesting is the case of the low temperatures where a , ,
electronic coherence by quantum tunneling between the two 'HUS: our treatment constitutes an alternative advanta-

potential energy surfaces characterizing the reactant ar@FPus method to PIF for solving the dynamics of a dissipa-

product states could manifest. Thus for the same data d¥€ TSS. Its extension to the slow bath case and consider-
above, but withT=1 K we obtainT,/T,=658, g=4182, ation of higher order approximations of the GME kerf29]
Rua=5.4X10"5, S,=10"3, and|,=0.698. The value of can provide more refined information concerning the quan-

the I, parameter indicates a possible coherence manifestd4™ dissipative phenomenon.

tion and the value of th&WA parameter aIIow; the use qf ACKNOWLEDGMENTS

RWA. Consequently, for this situation we consider dynamics

predicted by Eq(11) including the renormalization effect of This work was supported by Academia Sinica and Na-
the coherence frequency as well. Figute)3hows an inco- tional Science Council of the Republic of China. We would
herent relaxation even for short times of ordg}rl. The rate  like to thank M. Grifoni for helpful comments and sugges-
constant at this low temperature is obtained considering thdtons.

the value ofr_is temperature independent, in accordance

with Ref. £31]. Its value, obtained with Eqg9), (10), and APPENDIX

(A4) isk™*=43.2 ps. The nonsignificant dependence of tem- . N

perature of the rate constant can be the result of low activa- GME generated by Edd) applied toR" is

tion energy and in this case, as a consequence, the transferis | . s’ —W W

. 11 21 12 as aiz
preeminently a thermal one, even at low temperatures. On o
the other hand, Fig. (B) shows a coherent decay for the P22 | _ Wa =Wy a13 a13
same data as those used to obtain Fig) 8xcept the unre- S, —ag, —az —liwg—asg; —ag
alistic small chosen reorganization energy for ETR, ( s ot gt gt iDe—a
=0.002eV) and the very low temperaturd=0.001K). P21 st 32 34 0 <%
The parameters characterizing this dynamics &g T, s’
=1.16,g=1.3x10%, Ryn=5.4x10"7, S,=10°, andlp P
=1.2x10"°. The small subunitary value of thg parameter % P32 (A1)

indicates the presence of a coherent regime. In conformity Pirz
with the small value oRy, , we considere@®y~ w for this o
figure. The coherence manifests for short times, for long time P21
the relaxation becomes incoherent. This last case supports,, o o= _ _ _
the general conclusion that the coherence manifests for loWIth P12= P21 + Wis=T2200, Wor=I'1111, 15=1"1112, 8y

temperatures and weak TSS-bath coupling equivalently, =1 1211, 832=I"1222, ®o=wo+IMT'1215, azz=Rel'1z1,, and
small value of the reorganization eneygy aszs=I"1,,1. The specificity of Eq(Al) is given by the form
of the interaction term in Hamiltoniaf®), oo, ,C X /2.

V. CONCLUSIONS Calculus with Eq(1) for the transformed Hamiltonian shows

that the general form of tetradics is not changed compared to

The spin-boson dynamics has been obtained in the seconbdeir usual form in the Redfield theory. It is
order approximation of the TSS bath couplingveak-
coupling limit). A concrete solution has been furnished for a r., . ZE G~ 5. gt —G-
fast bath, which allows to recover the results obtained by mmmn g T mikknt M Fnmmn - amarn’
other methodsge.g., the spectroscopy law and expression of
the relaxation times, energy splitting and population dgcay +E G ot Sy (A2)
The results are in good agreement with those obtained by i nkkmnm
PIF. Our treatment supports the statement that stronger cou- )
pling and higher temperature results in increasing the cohef?S ~ components  —of  Eq. (A2) ~ we find
ence decay rate. For the fast bath case we obtained that tfammnn =J0d7a(7)9mnynn (7) and G nne
coupling decreases and the temperature increases the coherf ;d7b(7)g,, v nw (7); @(7), b(7) are the bath autocorre-
ence frequency. We proved that generally, the second orddgition functions of the spin-boson Hamiltonidsee, e.g.,
approximation yields a biexponential decay for any spectraRef.[10]), namely,

061103-7
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a(r)=b<r>*=<2 cixa(r>xa<0>bb>

_h

T

and

gr:m’nn’(T):E

1]

gr;m’nn’(T) = ;

with

R (1) =expgitL®)R,, &=

hop o
CothT coswt—i Ssinwt

(A3)

(Si)mm’(sj)nn’ expl—iTwny),

(Si)mm’(sj)nn’ expl — i 7@wmny),

Jo ~ .
—ﬁmsm%,

0 100 200 300 X10 ol s’ s
] (SDmm=(M|&|M"),  wy,,=(E, —E})/h,
(a) Time ¢ (s)
4 andi, j=x", z’ andm, m’, n,n'=1,2.
0 . 4 . 8 . 12 . 16x 10 The form of theA factors appearing in Eqg4) is as
) ' ' ' follows:
"_:1.0 1.00000 4 P qgr .
= 10— 522 4
o 2h°(1+r°)
0.5 _ - Ta r
Ap=—|T, — 55— T
0.99996 < 11 2 Zﬁ,u, (1+r2) 2|
A _ Ta 1 I A Ta r 7
00 P 12— — Wo Zﬁ,u (1+r2) 3 1372ﬁ,u, (1+r2) 2
0.99992 <
Ao 2ma T 7 A=t T 1 7
05 F 20~ | ﬁ#‘ (l+r2) 45 21~ Wo Zﬁﬂ (1+r2) 3
A To14 T r A T r T
20 102 T 2hu (1472 TV 25 (14127
-10 P
™ [l 2 [l " 'l M A T 1 J( )
= —— w ,
0 100 200 300 x 107 T (4T
(b) Time ¢ (5) . , ca T ; th'Bﬁ‘”
31= a13—7 FETD) (w)co > -
FIG. 3. Time-dependent incoherent and coherent dynartags.
The decay is incoherent even for short tingét) is obtained from Ama= — T 1
Eq. (11); (b) coherent decay for unrealistic small chosen reorgani- 33 1
zation energy for ETR and low temperati8gt) is obtained from nd
Eqg. (13). For both(a) and (b) the relaxation time§; and T, are
calculated with Egs(14) and(20). The dotted curveéwith top and
right axe$ show the behavior for the short times of the coherence Ty=ih(wy), Zz=hJ(wo)CothBﬁ “o

order, 2rr/ wy=4.6X10"14(s). See the data in the text.
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pP e Sl Fd b 2b i
2hwy [~ J(w)coth—— 1= 57 (1579 ), mb(7)—a(7)—2b(7)exp(—iwg7)]
Iy=- Pf do——5—5—,
™ 0 w"—wg B war Jtshon+ Jm
~2hu(1+1%) | Jo tehor
I_iﬁ med J(w) Pfxd J(w) Tar Jtshortd b(r)+ AS
= |Plo o eoP do g o Jp G -

Tar o
a32=—2f drb(7r)—a(7)+2a(r)exp —iwg7)]
The relation between the polarization vectors in the two 2hu(1+r9) Jo

reference frames isee Refs[29,56])

_ ol ftshort_i_ f‘x
“2hpatA| Jo Ty,
S(t) cos2 0 sin20\ /g (t) mar ftshon
~ o +
S,(t) |= 0 10 ||s,0] (ag) Pha(1srd) ), drib(rranl, (A6)
t — Q] ’ t
SA sin26 0 cos/ \Sx(t) wheretg,,tiS of the correlation time order of the bath. Thus
for the fast bath case;~ —az, andA;g=A,;=0.
When both RWA and SA are used the analytical expres-
For the fast bath case we have sion of the rate constant, as given by E@.and(13), reads
| s T (BRI,
. Ji+r2\ J1+r?
RWA+SA™ . . (A7)
1— gled
s Ji+r2
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