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Anomalous diffusion and phase relaxation
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The diffusion and relaxation of a phase are investigated on the basis of several stochastic models. A simple
relation between the diffusional behavior of the extended phase and the relaxation of periodic phase observ-
ables is found in the case of Gaussian andyLéistributed increments. In these cases, an anomalous diffusion
gives rise to a stretched exponential relaxation of phase observables. Continuous time random walks may lead,
even in the case of normal diffusion, to a slow algebraic relaxation.
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[. INTRODUCTION different laws ranging from fast Gaussian, exponential, and
stretched exponential up to extremely slow algebraic decay.
Diffusion is an important transport process of matter and The paper is organized as follows. In Sec. Il we outline
energy in various physical, chemical, and biological systeméhe relevant general relations between phase diffusion and
[1,2]. In the seminal works of Smoluchowski, Einstein, andphase relaxation in terms of the characteristic function.
Langevin[3], the macroscopic spread of, say, the mass denlhese relations are applied to processes with independent
Sity of a Specific substance diffusing in a background mejncrements in Sec. lll, to self-similar processes in Sec. 1V,
dium was related to the individual stochastic motion of theand to continuous time random walks in Sec. V. The paper
particles constituting the diffusing substance. Under quitecloses with a discussion in Sec. VI.
general conditions, the irregular motion of the individual par-
ticles leads to a spread of the second moment of the mass II. DIEFUSION AND PHASE RELAXATION
distribution that is linear in time. However, striking devia- ) ) S
tions from linear behavior were observed under strong non- AN everzspreadmg Process 1s callearmal diffusionif the
equilibrium conditions, or in disordered systems. For ex-varianceo=(t)={(x(t) —(x(t)))) grows linearly in the time
ample, according to Richardson’s law, the average squarke @ndanomalouddiffusion if it grows with some power of
separation of a pair of particles passively moving in a turbuihat is different from 1. Thus, diffusion is generally charac-
lent flow grows with the third power of timgt]. Conversely, ~terized by an algebraic spread of the variance in time,
diffusion in disordered materials may proceed more slowly 5
than linearly in time5]. o () =Dt 2
Strictly speaking, a diffusional spread of a quantity can
only continue indefinitely if the space in which it takes placewhere the exponem@<1 refers to subdiffusive behavior and
is infinitely extended. In a finite space, after some initial 3>1 to superdiffusive behavior arid, is the (anomalous
spread, the density of the diffusing quantity will relax toward diffusion constanf5]. Also, for very broadly distributed pro-
a stationary distribution. A phase variable such as the one afesses for which the second centered moments do not exist,
a linear or nonlinear oscillator, of a classical wave or a quandiffusion can be defined in an analogous way using absolute
tum mechanical wave function, is by definition restricted tocentered moments of sufficiently low ordgr
values ranging between 0 andr2In the absence of a phase
locking mechanism there is no preferred value of the phase, (| (x(1) = {x(1))|Py=D(p)tA®, (2.2
and the phase may diffuse locally in the same way as an
unrestricted variable. At sufficiently long times, however, thewhere 8(p) may be a nonlinear function gf. In the latter
finiteness of the available phase space comes into play, amfinition the more special case of EG.1) is included.
the mean values of phase observables relax to their stationary In order to avoid confusion, we note that in mathematics,
values. This mechanism determines the line shapes of atontise notion of a diffusion process has a different meaning. It
and molecule$6—8], and the quality of a lasd®], to name refers to a continuous Markov process which is driven by
but a few examples. Gaussian white noisgl0]. Here we do not restrict ourselves
Most theoretical investigations of phase relaxation wergo Markovian or continuous processes, nor to processes
based on the assumption that the increments of the phaskiven by a Gaussian process. The relevant property we have
diffusion are Gaussian distributed. Then a particularly simplen mind here refers to the unrestricted algebraic growth of the
relation between the laws describing the spread in the hypazonsidered processes, which is characterized by @d8.or
thetically unrestricted case and the actual relaxation can b@.2).
formulated[6]. Kubo also discussed the case of increments As for a prototypical random walk, the anomalous diffu-
that are described by a discrete Markovian pro¢gkdn the  sion can be viewed as an accumulation of increments which,
present paper we discuss various classes of normal arftbwever, only in the case of normal diffusion can be inde-
anomalous diffusion processes, both Gaussian and nomendent. For anomalous diffusion, the increments are corre-
Gaussian, and for the respective phase relaxations find vetgted according to an algebraic law. However, they do not
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depend on the actual state of the process if all possible stat&nally, we express the characteristic functi®p(u,t) of the
are equivalent, as we assume here. winding numbemw=(x— ¢)/27 in terms of the statistics of
In many cases, the states of a phase varialdee equiva- the extended phase variable. The characteristic function is
lent, and the phase itself undergoes a diffusional process ondefined as
short time scale. However, by its very definition, a phase is
only relevant up to multiples of 2, and therefore an ever ” —
increasing spread of the variance @fis impossible. Typi- ®w(u’t):W_§;oc e pw(t), uel0,), (2.8
cally, one will instead expect a relaxational behavior of all -

functions of the phase. The only possible exceptions to thigherep, (t) denotes the probability that the winding number
rule are periodic or quasiperiodic motions. Apart from thesgyes the valuay < 7 at the timet. It can be expressed by the

cases, in the asymptotic state reached fore, an unlocked  ,opapility densityp(x,t) of finding the extended process at
phase will be distributed according to the equipartition on the, 4t timet:

interval[ 0,27). However, arextendechasex, taking unre-
stricted real values, is conveniently defined as the sum of the 2m(w+1)
phase increments up to a tinelt contains a winding num- pW(t)=J dx p(x,t). (2.9
ber counting how ofterx can be wrapped on a circle with

unit radius, additionally to the actual value of the phage,

=X mod 2. The unrestricted phase therefore takes th

form

27w

Using the Poisson sum formu@,,(u,t) can be expressed in
Serms of the characteristic function of the unrestricted phase
X:

X=@+27W, (2.3 2 -2

where the winding numbew is an integer numbenv e 7. W(u’t)zwz_m 27i(u+w)
The way in which the probability distribution of the extended

variablex spreads in time determines the law with which theThe  variance of the winding number o2(t) =
phase relaxes. —320,,(01)/au2+[90,,(01)/du]? and of the extended

All true phase observables are independent of the Windin?,hase agree up to a factor in the limit of large times:
number, and, as periodic functions, linear combinations o

the exponential functions efpx(t)}, wheren may be an o2(t)~4mla(t). (2.11
arbitrary negative or positive integem.e Z. Consequently,

the mean values of alperiodio functions of the phasg can  In the remainder, we will consider some models describing
be expressed as linear combinations of the mean values ahomalous diffusion and determine the relaxation of the ac-
the exponential functions: cording phase variable.

my(t)={exp{inx(t)}) with neZ. (2.9

O(u+w,t). (2.10

I1l. PROCESSES WITH INDEPENDENT INCREMENTS
In what follows, we will refer tom,(t) as the fundamental \ye start our discussion with the class of processes with
mean values of the phase. Obviously, these mean values Cﬁ\'dependent increments, i.e., with process@ for which

incide with the characteristic function the incrementsx(ty) —x(ty), X(ts)—x(ty), X(ts)—x(ts),
O(u.t)=(expliux(t 2 etc. with t1<t2<t3<-_~- are mutually independent_from
(U= (exgliux(v)}) @9 each othef11]. If the increments moreover are stationary,

of the extended procesgt) taken at the integer valuas I-€- if their distributions depend only on the time difference,

—ne?: sayt,—ty, then, the characteristic function of processes with
independent increments is an exponential function with an
my(t)=0(n,t). (2.6)  exponent that is linear in timiel2]:
This simple relation is most important for the present paper. O(u,t)=exp{td(u)}, (3.1

It has long been used in the stochastic theory of spectral line

shapeg 7] and motional narrowing in magnetic resonancewhere the functior (u) is the cumulant generating function

and related field$8]. In most of these cases the extendedper unit time. According to the definition of the characteristic

phase is assumed to be Gaussian. function, ®(u) vanishes au=0 and®(0)=0; also see Eq.
For convenience, we collect some of the general propertA2) below. Because the distribution of any process with

ties of the characteristic function in Appendix A. Here we stationary independent increments also is infinitely divisible

only mention the well known relation that gives the variance[11], the cumulant generating function per unit time can be

of x(t) in terms of the first two derivatives of the character- represented by the Mg-Khinchin formula[12],

istic function with respect ta at u=0:

[ee]

eiux_ 1—

d)(u)=iua+j

— oo

dF(x),
(3.2

iux \1+x2
1+x2) x2

(2.7

2 . 2
o2(t) = — 9°0(0}) +(a(0,t)) .

&uz Ju
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wherea is a real constant and(x) is a bounded, monotoni- From scaling relatiort4.1), one immediately recovers the
cally nondecreasing function with(—«)=0. diffusion law [Eq. (2.1)] with the scaling exponeng8=2¢,

In view of Eq. (2.6), a process with independent incre- provided that the variance of the process is finite, or, more
ments leads to an exponential relaxation law for the fundagenerally, lam(2.2) follows with the linear scaling exponent

mental mean values of the phase, B(p)={p.
_ Below we will only make use of the single time distribu-
Mp(t) = el mn*ient (3.3 tion of the procesx(t). For the single time probability den-

. ] sity p(x,t)dx=Probk=x(t)<x+dx) the scale invariance
where the relaxation constantg and frequencies, can be  [Eq. (4.1)] implies

expressed in terms of integrals of the functie(x):

p(XA)=N"¢p(N4X,t). 4.2
k,=—Re®(n)
Consequently, the probability density at any titrie related
o 1+x? to that at a reference timg>0 by
=j [1—cognx)] 5 dF(x),
o X to)¢ 1(to)¢
p(X,t)If[(T) X}(T) , (43)

wp=1m ®(n)

. nx 114x2 wheref(x)=p(X,tg) is the probability density at a reference
:na+j sin(nx) — dF(x). (3.4 timety. The characteristic function of(t) and, hence, all
— 1+x?| x? mean valuesn,(t) follow from that of x(t,),
Here Re and Im denote the real and imaginary parts, respec- =0 t)¢ 4.0
tively. The relaxation constants, are positive for all admis- Mn(t) =64 n E ' 44

sible functionsF(x). Only if F(x) is a constant apart from

finite steps at nonzero integer multiples of 2x=27n and  where

0#neZ, do the relaxation constants vanist,=0. In this .

case, 'Fhe extendec_i procegs) moves in jumps of thg Ie_ngth @f(u):f dx dU%F(x) (4.5
of an integer fraction of Z. Wrapped onto the unit circle, —o

this process periodically visits a discrete number of points, o ) S

time. f(x).

If F(x) has only a single jump at=0 of the heights? We note that the exponent is restricted to valgesl if
and is constant everywhere else, then the cumulant generdfle increments of a self-similar process are statiofas},
ing function per time becomes i.e., the distribution of the increment(t) —x(s) depends

only on the time differencé—s. Here we will restrict our-
1 selves to stable distributiojd2] as reference distributions,
CI>(U)=iuc’:1—§ffzuz- (3.9  and start with the special case of a Gaussian distribution
leading to so called fractional Brownian motion for the pro-

The extended variablg(t) performs an ordinary Gaussian C€SSX(1).
diffusion characterized by the diffusion constadi=o?,

and the damping constants of the fundamental mean values A. Fractional Brownian motion

are given byx,=D;n?2. For general function&(x), N0 For a Gaussian reference distribution

simple relation exists between the relaxation and diffusion

constants. The latter may even diverge, whereas the relax- 1 x2

ation constants are always finite. f(x)= expy ———¢, (4.6)
\/2770'3 20

IV. SELF-SIMILAR PROCESSES one obtains a self-similar procegét) known as fractional

By definition, the finite time distributions of a self-similar Brownian motion[14]. Here o is the variance ok at the
process are invariant under a joint rescaling of the tirog ~ reference time,. Using Eq.(4.4) we find that the fundamen-
an arbitrary positive factox, and of the state variableby  tal mean values relax according to nonlinear exponential
the factorA¢ with a convenient scaling exponefit laws:

d o [ t\¥
X(Nt)=NX(1), (4.1 my(t)=ex —7n2(t—) . 4.7
0

d
where = indicates equality in distribution. Consequently, a The exponent 2 in this law is independent of. For station-
self-similar process lacks absolute scales of magnitude araly increments of the phase, it may vary from zero to 2,

time. covering the regimes of stretched exponentialZy <1, ex-
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ponential Z=1, and faster than exponential, including A. Expression for the probability density in terms
Gaussian, relaxation<12{=<2. of the combined jump and waiting time distribution

) A continuous time random walk is characterized by the
B. Levy processes joint jump probability ¢(x,t) giving the likelihood that the

The Gaussian distribution is a special case of theyLer ~ Process pauses for the tirén a state until it makes a jump
stable distributions which result as solutions of the renormal©Ver the distance. Note that this probability is independent
ization equation for the distribution of sums of independentof the absolute time and the actual state of the process, and,
identically distributed random numbef45]. Here we will ~Nénce, is homogeneous both in time and space. The waiting
only be concerned with symmetric \ag distributions, which t|me_between jumps of arbitrary lengths is distributed ac-
are most conveniently characterized by their characteristi€°"ding to the density
functions[12]

@(u)zexp{—o-g|u|“}, (48) W(t):f,wdxw(x't)' (51)

wherea,>0 is a reference scale aadis an exponent which  The distribution of the jump width is given by
is restricted to 8<a<2. For =2 one obtains a Gaussian "
distribution. Fora<2 the probability density of a lwy dis- )\(X):f dt g(x,t). (5.2
tributed random variable falls off gs(x)~|x|~ "% [12]. 0
Consequently, the momentgx|P) of the reference distribu-
tion then only exist for &<p<a.

Using Egs.(4.2) and(4.8), one recovers a power law with
exponentp for the pth moment ofx(t):

For later use we introduce the conditional density of a jump
of length x if the jump takes place at the tinteafter the
previous jump:

p(x,t)
t)P x|t) = : 5.3
(0" =Co.o{ | 9 D = 53
0
The Fourier-Laplace transform of the probability density
where W(x,t), giving the likelihood that the process has reached a
1 distancex at timet from where it started, is known in terms
e o~ jux—|ul® of the respective transforms of the marginal waiting time
Cr.a 27J _axx] j duetTL (410 Gicribution and the joint jump distributiofi6]
This time-independent prefactor has a finite value fer f(u.2) = 1-w(z) 1 5.4
<a, and diverges fop=« if «<2. For a process with vz ' '

stationary increments, the similarity exponéhnis restricted 1=¢(u.2)

to {<1la for 0<a<1 and{<1 for <=2 [13] where we denote Fourier and Laplace transformed functions

If xis an extended phase, then the fundamental meagy the same symbols as the original ones distinguished by a
valuesm,(t) relax according to a stretched exponential lawjjge and a hat respectively:

following from Eq. (4.4):

£ e 1//(u,z)=Jm dxfmd tele 2y (x,t). (5.5
mn(t)zexp[—(nao)“(a) ] (4.11) e JO

The long-time behavior of the fundamental phase mean val-
The stretching exponent/ is less than or equal to 1 for 0 ues and the variance of the extended process follow from Eq.
<a<1, and less than or equal to for 1<a=<2, provided (5.4 together with the general relatio(®.6) and(2.7) in the
the increments of the extended variak(¢), and hence also limit of small z. The relation between the long-time and
those of the phase are stationary. So the same range sfmallz behavior of a function and its Laplace transform,
stretching exponents is covered as in the case of fractionggspectively, can often be obtained by means of the Tauber
Brownian motion although the respective diffusional behavtheorem[17]. This theorem relates an algebraic long-time

ior is very different. behavior of a functiorh(t), sayh(t)~t~¢, to an algebraic
behavior of the corresponding Lapace transfdugz) for
V. CONTINUOUS TIME RANDOM WALKS small z given byh(z)~z*"*, and vice versa, providel(t)

is non-negative and monotone at infinity; see R&7] for a

Another class of processes that may lead to anomalo recise statement of the theorem.

diffusion and that have found various physical application
are continuous time random walk$6]. We will collect the
relevant relations for these processes that will be needed
here, and then discuss the ensuing phase relaxation for a few If the jump length and the waiting time are independent of
particular cases. each other, the joint density(x,t) factorizes as

B. Factorizing joint jump distributions
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P(X, 1) =N(X)W(t), (5.6)  diffusion law[Eq. (5.12], the relaxatiorfEq. (5.13] is not
restricted to short jumps but holds for arbitrary jump widths
andW(u,z) becomes: distributions.
N 1_\,‘\,(2) 1 2. Short rests, arbitrary jumps
W(u,z)= z 1-X(u)W(u) ' (5.7) An exponential waiting time distribution is characterized

by the average waiting time. The probability for rests longer
We will discuss this result in the cases of long and shorthan this characteristic time rapidly decreases. In this sense,
rests. rests are typically short. The resulting continuous time ran-

dom walk has independent increments and, consequently, the

1. Long rests, short jumps fundamental phase mean values relax exponentially; see Sec.

. However, an exponential relaxation is found for the
ider class of waiting time distributions for which a mean
waiting time exists:

Long rests are characterized by an algebraic decay qlﬂ
w(t) at large times,

w(t)~t~(dra) (5.8 .
ty=|[ dttw(t). 5.1
with an exponente>0. The corresponding Laplace trans- ® fo ) (.19
form at small arguments is then given Bee Appendix B
The Laplace transform for smallthen behaves asee Ap-

(2= 1 ’ 5.9 pendix B
1+c|z|® 1
wherec is a positive constant. The functional form correctly w(2) 1+(t)yz" (519
takes into account the normalization and the long-time be-
havior of the waiting time distribution. For the jump width For an arbitrary jump distribution (x) this gives
we assume a Gaussian distribution so that short jumps pre- ()
t

vail VQV(U,Z)=~—.
1-N(u)+(t)z

(5.1
N(u)=e v (5.10
.. The inverse Laplace transform yields the claimed exponen-

. o . nﬁal relaxation of the fundamental phase mean values:
jump distribution for small values ofi. For the Fourier- P

Laplace transformed density one then finds: m.(t) = o @K (517
\7V(u,z)= 1 ! ) (5.1)  The diffusion of the extended process is normal if the jump

1+ Eazuzc*1|z|*“ width distribution possesses a finite second moment.
2

. L C. Correlated waiting times and jump width
With Eg. (2.7) and the Tauber theorem this yields the ex-

and the phase relaxation, the asymptotic Fourier-Laplace
()~ o? @ (5.12) transform of the jump distribution/(u,z) is important at
2cl'(a) ' small values ofz. We can split off the Fourier transform of

the jump width distribution\(x), and obtain
Similarly, one obtains withEq. (2.6)] for the long-time be-

havior of the fundamental phase mean values: T}(u,z)=7\(u)—x(u,z), (5.18

wherey(u,z) is a function that vanishes for allatz=0. We
first consider the fundamental phase mean values which are

determined by?\/(u,z) at integer values.. Typically, the ab-

Here one must in general not use the sra#ixpansion of  spjute value of the Fourier transform of the jumps width
the jump distribution. Note that the decay of the fundamenta[h

; . istribution| X (u)| is less than 1 at finite values of see Eq.
mean values of the phase is algebraic, and, hence, MUE3) Hence one can neglect the small tegru,z) com-
slower than the stretched exponential relaxation that emerges ’* ’

from a fractional Brownian motion having the same diffusion Paréd to £ A(u) in the denominator of E45.4), and obtain
exponent Z=a. The exponent describing the algebraict[‘e same form for the Fourier-Laplace transformed density

phase decayEg. (5.13] is independent of the jump distri- W(u,z) at smallz as for independent jump widths and wait-
bution which only determines the prefactor. In contrast to theng times:

(of
() o ——) 5.1
o =R (] 513
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1-w(z) 1 . 1
—. (5.19 w(z)= ,
z 1—(u) 1+cz®

Therefore, we find the same results for the relaxation of thavherec is a positive constant and<Oa=<1. Note that with
fundamental mean values of the phase as for independeAt=1 exponential waiting times are also included in Eq.
waiting times and jump width. If a finite mean waiting time (5.24. For jump width exponentg=0, the integralt(u)
exists the exponential relaxatidiEq. (5.17)] is recovered, =f5°dtte‘(1/2)”2(‘)“2w(t) exists for allu#0 and for all
and if the waiting time distribution decays only algebraically, waiting time distributionsw(t). Hence, for nonvanishing
i.e., x(z)=cz*+0(z*) with 0<a<1, then we again find the and small values of, one finds
algebraic decay layEqg. (5.13].

The variance of the extended process is given by the gen- @(u,z)zf\(u)—t(u)er o(2?). (5.295
eral expressior{2.7). Its Laplace transform with respect to
time can be expressed in terms of the first derivatives of itdNote thatt(u) diverges au=0 if «<<1 and, then, instead of

\7V(u,z):

(5.29

Fourier-Laplace transformed density: Eq. (5.29, Eq. (5.24 holds for %(0.z) =W(z). Using these
S P 2 expansions for the smatl-behavior ofW(u,z) at u+0 we
<y PW(02) . ( aW(o,z)) find
oy(z)=— Py 20
P 1
< W(u,z)=cz* t———. 5.2
1 J*y(0,2) (u.z) 1-X(u)+t(u)z (029

T 21-w(z) a2 520

For the fundamental phase mean values one obtains the same

where in the second line we used the particular f¢En. asymptotic long-time re_sult as given in EG.13, ie. an
algebraic decay proportional t0  for 0<a<1. Note that

(5.4)] of the probability density of a continuous time random T . :
walk. For the sake of simplicity we assumed that the joint’[h_e exponent Is independent of the spreading OT _the jump
jump distribution ¢/(x,t) is even inx and, hence, the first width distribution, and only determined by the waiting time

derivative of the Fourier-Laplace transform with respeat to dis.tr_ibuti.onw(t.) : Eorq= 1, corresponding toan exponent'ial
vanishes ati=0. Accordingly, the long-time behavior of the waiting time distribution, we find an exponential relaxation
variance is determined by the smaltependence both of the of my(t). . . .

. . o The variance of the extended process is determined by the
second derivative ofi(u,z) and of the waiting time distri-  second derivative of the Fourier-Laplace transformed joint

bution. The second derivative may scale in a different wayymp probability atu=0 [see Eq(5.20], which in this par-
than the waiting time distribution, and so the scaling expoyjcylar case is given by

nent for the diffusion of the extended process may be differ-

ent from the scaling exponent for the phase relaxation, which a2'&,(0 2) w0
is completely determined by the waiting-time distribution. —_—= —f dt e Zlo?(t)w(t). (5.27)
We will illustrate this with an example. au? 0
We consider the case of a Gaussian conditional jump e .
width distribution given by If the growth of o<(t) is so slow that the integral converges

to a finite value forz—0, i.e., if a>p, then a diffusive

1 . behavior ofx(t) with the exponentr of the waiting time

P(x|t) = ———— 12V, (5.22 results. If, howeverg> «, &)2((2) diverges ag #** and the
N2mo*(t) diffusion of the extended procesét) is characterized by the

2 __+B FP
where the variance(t) may itself diffusively grow with the exponent, o(t)~t7, and, hence, is independent ef

waiting timet:
VI. CONCLUSIONS
Uz(t):DﬂtB- (5.22 We have compared the relaxational behavior of phase
S o variables that results from different diffusion models of the
Hence, after a long waiting time a wide jump becomes morgespective extended phase. For processes with stationary in-
likely. The Fourier-Laplace transformed joint jump distribu- gependent increments, the relaxation is always exponential.

tion then becomes According to the central limit theorem the diffusion of the
. extended phase is normal for long times if the second mo-
< uz)=| dt e Zle— (120U 1) 52 ments of the increments exist. If only absolute moments of
w(u.2) fo ® .23 the orderp<p, exist, then Eq.(2.2) holds for sufficiently

large times and fop<<p. with B(p)=p/p..
The waiting time distributionw(t) is assumed to have an For self-similar processes, the phase relaxation is given
algebraic tail~t~*"! and, consequently, for smail its by the decay of the characteristic function of the unresticted
Laplace transform assumes the form phase, algebraically stretched by the similarity exponent. In

061101-6



ANOMALOUS DIFFUSION AND PHASE RELAXATION PHYSICAL REVIEW E64 061101

the considered cases of Gaussian andyLprocesses, this press a possible dependence on tinvehich here is a mere
leads to a stretched exponential relaxation of the phase witharametex

stretching exponents ranging from 0 to 2. This provides a

simple generation mechanism of stretched exponential relax- % A

ation that also might be relevant to interpreting muon spin (U):J _dx &p(x). (A1)
resonance relaxatiorg].

For continuous time random W‘T"'.ks' ;hort rests which s is always a continuous function of the real variable
characterized by a finite mean waiting time lead to exponen:;

tial phase relaxation, and, if additionally the jumps are short:[akIng a value of 1 at=0:
the accompanying extended diffusion is normal. Long rests, @(0)=1;
i.e., waiting time distributions without a finite mean value, '
give rise to algebraic decay. However, we note that, for CO'therwise
related jump widths and waiting times, the exponents char-

acterizing the algebraic phase decay and the diffusion may 1O (u)|<1. (A3)

be different. In particular, the diffusion may be normal, but at
the same time the phase relaxation may only be algebraic.hc the probability densitys(x) is a continuous function of,

In all cases considered here one can also determine tf{ﬁe characteristic functio (u) vanishes foflu|— :
scaling behavior of other than second centered moments. For

the_processes Wit_h _indep_endent increments and the self- lim |©(u)|=0. (A4)
similar processes, it is obvious that these moments scale ac-
cording to Eq(2.2) with a linear dependence of the exponent
B(p) onp, provided the considered moments exist. One carFor further details, see Ref2].
show that this is also true for all continuous time random
walks. The general case of multifractal processes will be
studied separately.

Although both the phase relaxation and the diffusion of
the extended phase are determined by the same characteristicTne Laplace transformi(z) = 12 expl—ztw(t) of a wait-
function, the two phenomena may appear quite unrelateq, time distribution is a generating function for the mo-
The r_nath_emgtlcal reason for this dlscrepancy_ls t_hat, Whilgnents of the waiting time:
the diffusion is determined by the second derivative of the
characteristic function at the wave numhet 0, the behav- d”\fv(O)
ior at integer wave numbers governs the phase relaxation. N =(—1)"———. (B1)

Based on this observation, we suggest for the time series dz"
analysis of phases and of diffusional processes complemen-
tary strategies additionally to the existing methods. For df the nth derivative atz=0 does not exist, the respective
diffusion process, we propose not only to consider themoment of the waiting time diverges, and vice versa. Here
growth behavior of the variance and higher centered mowe collect some analytical properties of the generating func-
ments, but also to introduce a fictitious period and to contion for real, non-negative values af

sider the relaxation of the resulting phase variable. Varying (j) \7\,(0):1_ This follows immediately from the normal-
the period is tantamount to analyzing the full characteristiGzation of the waiting time distribution.

function. Also, if a phase is monitored, as is usually done in (i) W(z)>0 for all 0=z<, as is obvious from the defi-

nuclear magnetic resonance and in muon resonance expefjpinn of the moment generating function as a Laplace trans-
ments, the diffusional aspect of the phase motion can be fully, ., ot a positive function

analyzed if the sampling rate of the data is high enough. ... - . . . LA ~
Assuming a continuous motion of the considered phase, or at (ﬂ') w(z) is a nonincreasing functiorm(z,)—w(z,)
least a jumplike motion with jumps much smaller than the—Jo d{(exp—zti—exp-zt)w(t)=0 for z,<z, For a
period, one can reconstruct the winding number by monitorStronger growth property, see Rg17].

ing whether the period is left at O or2 leading to a change (V) w(2) is infinitely often differentiable for alk>0.

of the winding number by-1 or +1, respectively. The re- (v) W(z)—0 for z—o if there are no immediate jumps.
sulting extendedunwrapped phase can then be analyzed by This means that the probability for a jump within a short
the various methods available for diffusion processes withnitial period of lengthr vanishes ag” with some positive
respect to its statistical properties and its behavior in timeexponenty: [{ dtw(t)<c7” for 7—0 with y>0 andc
We hope to come back to this problem in a future investiga=-Q.

tion. Using these properties, one can represent the Laplace
transformed waiting time probability in terms of another
function x(2),

(A2)

|U‘~>w

APPENDIX B: GENERATING FUNCTION
FOR WAITING TIMES

APPENDIX A: GENERAL PROPERTIES
OF THE CHARACTERISTIC FUNCTION

The characteristic function of a random variaklés the

Fourier transform of the probability densip(x) (we sup- w(x)=

1+ x(2)" B2)
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where y(z) vanishes az=0 and is an increasing smooth x(2)=(t)z+0(z). (B3)
function forz>0 which goes to infinity foz— o if there are
no immediate jumps in the sense @. For a waiting time distribution with an algebraic long-time

For a waiting time distribution possessing a finite firsttail, w(t)~t~ ("% with 0<a<1, y(z) grows atz=0 like
moment, x(z) is differentiable atz=0, and starts to grow
like x(z)=cz*+o0(z%). (B4)
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