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Anomalous diffusion and phase relaxation
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The diffusion and relaxation of a phase are investigated on the basis of several stochastic models. A simple
relation between the diffusional behavior of the extended phase and the relaxation of periodic phase observ-
ables is found in the case of Gaussian and Le`vy distributed increments. In these cases, an anomalous diffusion
gives rise to a stretched exponential relaxation of phase observables. Continuous time random walks may lead,
even in the case of normal diffusion, to a slow algebraic relaxation.
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I. INTRODUCTION

Diffusion is an important transport process of matter a
energy in various physical, chemical, and biological syste
@1,2#. In the seminal works of Smoluchowski, Einstein, a
Langevin@3#, the macroscopic spread of, say, the mass d
sity of a specific substance diffusing in a background m
dium was related to the individual stochastic motion of t
particles constituting the diffusing substance. Under qu
general conditions, the irregular motion of the individual p
ticles leads to a spread of the second moment of the m
distribution that is linear in time. However, striking devi
tions from linear behavior were observed under strong n
equilibrium conditions, or in disordered systems. For e
ample, according to Richardson’s law, the average squ
separation of a pair of particles passively moving in a tur
lent flow grows with the third power of time@4#. Conversely,
diffusion in disordered materials may proceed more slow
than linearly in time@5#.

Strictly speaking, a diffusional spread of a quantity c
only continue indefinitely if the space in which it takes pla
is infinitely extended. In a finite space, after some init
spread, the density of the diffusing quantity will relax towa
a stationary distribution. A phase variable such as the on
a linear or nonlinear oscillator, of a classical wave or a qu
tum mechanical wave function, is by definition restricted
values ranging between 0 and 2p. In the absence of a phas
locking mechanism there is no preferred value of the pha
and the phase may diffuse locally in the same way as
unrestricted variable. At sufficiently long times, however, t
finiteness of the available phase space comes into play,
the mean values of phase observables relax to their statio
values. This mechanism determines the line shapes of a
and molecules@6–8#, and the quality of a laser@9#, to name
but a few examples.

Most theoretical investigations of phase relaxation w
based on the assumption that the increments of the p
diffusion are Gaussian distributed. Then a particularly sim
relation between the laws describing the spread in the hy
thetically unrestricted case and the actual relaxation can
formulated@6#. Kubo also discussed the case of increme
that are described by a discrete Markovian process@7#. In the
present paper we discuss various classes of normal
anomalous diffusion processes, both Gaussian and
Gaussian, and for the respective phase relaxations find
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different laws ranging from fast Gaussian, exponential, a
stretched exponential up to extremely slow algebraic dec

The paper is organized as follows. In Sec. II we outli
the relevant general relations between phase diffusion
phase relaxation in terms of the characteristic functi
These relations are applied to processes with indepen
increments in Sec. III, to self-similar processes in Sec.
and to continuous time random walks in Sec. V. The pa
closes with a discussion in Sec. VI.

II. DIFFUSION AND PHASE RELAXATION

An ever spreading process is callednormal diffusionif the
variances2(t)5Š„x(t)2^x(t)&…2‹ grows linearly in the time
t, andanomalousdiffusion if it grows with some power oft
that is different from 1. Thus, diffusion is generally chara
terized by an algebraic spread of the variance in time,

sx
2~ t !5Dbtb, ~2.1!

where the exponentb,1 refers to subdiffusive behavior an
b.1 to superdiffusive behavior andDb is the ~anomalous!
diffusion constant@5#. Also, for very broadly distributed pro
cesses for which the second centered moments do not e
diffusion can be defined in an analogous way using abso
centered moments of sufficiently low orderp:

^u~x~ t !2^x~ t !&up&5D~p!tb(p), ~2.2!

whereb(p) may be a nonlinear function ofp. In the latter
definition the more special case of Eq.~2.1! is included.

In order to avoid confusion, we note that in mathemati
the notion of a diffusion process has a different meaning
refers to a continuous Markov process which is driven
Gaussian white noise@10#. Here we do not restrict ourselve
to Markovian or continuous processes, nor to proces
driven by a Gaussian process. The relevant property we h
in mind here refers to the unrestricted algebraic growth of
considered processes, which is characterized by Eqs.~2.1! or
~2.2!.

As for a prototypical random walk, the anomalous diff
sion can be viewed as an accumulation of increments wh
however, only in the case of normal diffusion can be ind
pendent. For anomalous diffusion, the increments are co
lated according to an algebraic law. However, they do
©2001 The American Physical Society01-1
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depend on the actual state of the process if all possible s
are equivalent, as we assume here.

In many cases, the states of a phase variablew are equiva-
lent, and the phase itself undergoes a diffusional process
short time scale. However, by its very definition, a phase
only relevant up to multiples of 2p, and therefore an eve
increasing spread of the variance ofw is impossible. Typi-
cally, one will instead expect a relaxational behavior of
functions of the phase. The only possible exceptions to
rule are periodic or quasiperiodic motions. Apart from the
cases, in the asymptotic state reached fort→`, an unlocked
phase will be distributed according to the equipartition on
interval @0,2p). However, anextendedphasex, taking unre-
stricted real values, is conveniently defined as the sum of
phase increments up to a timet. It contains a winding num-
ber counting how oftenx can be wrapped on a circle wit
unit radius, additionally to the actual value of the phasew
5x mod 2p. The unrestricted phase therefore takes
form

x5w12pw, ~2.3!

where the winding numberw is an integer number:wPZ.
The way in which the probability distribution of the extend
variablex spreads in time determines the law with which t
phase relaxes.

All true phase observables are independent of the wind
number, and, as periodic functions, linear combinations
the exponential functions exp$inx(t)%, where n may be an
arbitrary negative or positive integer:nPZ. Consequently,
the mean values of all~periodic! functions of the phasew can
be expressed as linear combinations of the mean value
the exponential functions:

mn~ t !5^exp$ inx~ t !%& with nPZ. ~2.4!

In what follows, we will refer tomn(t) as the fundamenta
mean values of the phase. Obviously, these mean value
incide with the characteristic function

Q~u,t !5^exp$ iux~ t !%& ~2.5!

of the extended processx(t) taken at the integer valuesu
5nPZ:

mn~ t !5Q~n,t !. ~2.6!

This simple relation is most important for the present pap
It has long been used in the stochastic theory of spectral
shapes@7# and motional narrowing in magnetic resonan
and related fields@8#. In most of these cases the extend
phase is assumed to be Gaussian.

For convenience, we collect some of the general prop
ties of the characteristic function in Appendix A. Here w
only mention the well known relation that gives the varian
of x(t) in terms of the first two derivatives of the characte
istic function with respect tou at u50:

sx
2~ t !52

]2Q~0,t !

]u2
1S ]Q~0,t !

]u D 2

. ~2.7!
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Finally, we express the characteristic functionQw(u,t) of the
winding numberw5(x2w)/2p in terms of the statistics o
the extended phase variable. The characteristic functio
defined as

Qw~u,t !5 (
w52`

`

e2p iwupw~ t !, uP@0,1!, ~2.8!

wherepw(t) denotes the probability that the winding numb
takes the valuewPZ at the timet. It can be expressed by th
probability densityr(x,t) of finding the extended process
x at time t:

pw~ t !5E
2pw

2p(w11)

dx r~x,t !. ~2.9!

Using the Poisson sum formulaQw(u,t) can be expressed in
terms of the characteristic function of the unrestricted ph
x:

Qw~u,t !5 (
w52`

`
12e22p iu

2p i ~u1w!
Q~u1w,t !. ~2.10!

The variance of the winding number sw
2 (t)5

2]2Qw(0,t)/]u21@]Qw(0,t)/]u#2 and of the extended
phase agree up to a factor in the limit of large times:

sx
2~ t !;4p2sw

2 ~ t !. ~2.11!

In the remainder, we will consider some models describ
anomalous diffusion and determine the relaxation of the
cording phase variable.

III. PROCESSES WITH INDEPENDENT INCREMENTS

We start our discussion with the class of processes w
independent increments, i.e., with processesx(t) for which
the incrementsx(t2)2x(t1), x(t3)2x(t2), x(t4)2x(t3),
etc. with t1,t2,t3,••• are mutually independent from
each other@11#. If the increments moreover are stationa
i.e., if their distributions depend only on the time differenc
sayt22t1, then, the characteristic function of processes w
independent increments is an exponential function with
exponent that is linear in time@12#:

Q~u,t !5exp$tF~u!%, ~3.1!

where the functionF(u) is the cumulant generating functio
per unit time. According to the definition of the characteris
function,F(u) vanishes atu50 andF(0)50; also see Eq.
~A2! below. Because the distribution of any process w
stationary independent increments also is infinitely divisi
@11#, the cumulant generating function per unit time can
represented by the Le´vy-Khinchin formula@12#,

F~u!5 iua1E
2`

` S eiux212
iux

11x2D 11x2

x2
dF~x!,

~3.2!
1-2
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wherea is a real constant andF(x) is a bounded, monotoni
cally nondecreasing function withF(2`)50.

In view of Eq. ~2.6!, a process with independent incr
ments leads to an exponential relaxation law for the fun
mental mean values of the phase,

mn~ t !5e(2kn1 ivn)t, ~3.3!

where the relaxation constantskn and frequenciesvn can be
expressed in terms of integrals of the functionF(x):

kn52Re F~n!

5E
2`

`

@12cos~nx!#
11x2

x2
dF~x!,

vn5Im F~n!

5na1E
2`

` Fsin~nx!2
nx

11x2G11x2

x2
dF~x!. ~3.4!

Here Re and Im denote the real and imaginary parts, res
tively. The relaxation constantskn are positive for all admis-
sible functionsF(x). Only if F(x) is a constant apart from
finite steps at nonzero integer multiples of 2p, x52pn and
0ÞnPZ, do the relaxation constants vanish;kn50. In this
case, the extended processx(t) moves in jumps of the length
of an integer fraction of 2p. Wrapped onto the unit circle
this process periodically visits a discrete number of poin
and the mean valuesmn(t) result as periodic functions o
time.

If F(x) has only a single jump atx50 of the heights2

and is constant everywhere else, then the cumulant gen
ing function per time becomes

F~u!5 iua2
1

2
s2u2. ~3.5!

The extended variablex(t) performs an ordinary Gaussia
diffusion characterized by the diffusion constantD15s2,
and the damping constants of the fundamental mean va
are given bykn5D1n2/2. For general functionsF(x), no
simple relation exists between the relaxation and diffus
constants. The latter may even diverge, whereas the re
ation constants are always finite.

IV. SELF-SIMILAR PROCESSES

By definition, the finite time distributions of a self-simila
process are invariant under a joint rescaling of the timet by
an arbitrary positive factorl, and of the state variablex by
the factorlz with a convenient scaling exponentz,

x~lt !5
d

lzx~ t !, ~4.1!

where5
d

indicates equality in distribution. Consequently,
self-similar process lacks absolute scales of magnitude
time.
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From scaling relation~4.1!, one immediately recovers th
diffusion law @Eq. ~2.1!# with the scaling exponentb52z,
provided that the variance of the process is finite, or, m
generally, law~2.2! follows with the linear scaling exponen
b(p)5zp.

Below we will only make use of the single time distribu
tion of the processx(t). For the single time probability den
sity r(x,t)dx5Prob(x<x(t),x1dx) the scale invariance
@Eq. ~4.1!# implies

r~x,lt !5l2zr~l2zx,t !. ~4.2!

Consequently, the probability density at any timet is related
to that at a reference timet0.0 by

r~x,t !5 f F S t0

t D z

xG S t0

t D z

, ~4.3!

wheref (x)5r(x,t0) is the probability density at a referenc
time t0. The characteristic function ofx(t) and, hence, all
mean valuesmn(t) follow from that of x(t0),

mn~ t !5Q fFnS t

t0
D zG , ~4.4!

where

Q f~u!5E
2`

`

dx eiuxf ~x! ~4.5!

is the characteristic function of the reference distributi
f (x).

We note that the exponent is restricted to valuesz<1 if
the increments of a self-similar process are stationary@13#,
i.e., the distribution of the incrementx(t)2x(s) depends
only on the time differencet2s. Here we will restrict our-
selves to stable distributions@12# as reference distributions
and start with the special case of a Gaussian distribu
leading to so called fractional Brownian motion for the pr
cessx(t).

A. Fractional Brownian motion

For a Gaussian reference distribution

f ~x!5
1

A2ps0
2

expH 2
x2

2s0
2J , ~4.6!

one obtains a self-similar processx(t) known as fractional
Brownian motion@14#. Here s0

2 is the variance ofx at the
reference timet0. Using Eq.~4.4! we find that the fundamen
tal mean values relax according to nonlinear exponen
laws:

mn~ t !5expH 2
s0

2

2
n2S t

t0
D 2zJ . ~4.7!

The exponent 2z in this law is independent ofn. For station-
ary increments of the phase, it may vary from zero to
covering the regimes of stretched exponential 0,2z,1, ex-
1-3
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PETER TALKNER PHYSICAL REVIEW E 64 061101
ponential 2z51, and faster than exponential, includin
Gaussian, relaxation 1,2z<2.

B. Lévy processes

The Gaussian distribution is a special case of the Le´vy, or
stable distributions which result as solutions of the renorm
ization equation for the distribution of sums of independ
identically distributed random numbers@15#. Here we will
only be concerned with symmetric Le´vy distributions, which
are most conveniently characterized by their character
functions@12#

Q~u!5exp$2s0
auuua%, ~4.8!

wheres0.0 is a reference scale anda is an exponent which
is restricted to 0,a<2. For a52 one obtains a Gaussia
distribution. Fora,2 the probability density of a Le´vy dis-
tributed random variable falls off asr(x);uxu2(11a) @12#.
Consequently, the moments^uxup& of the reference distribu
tion then only exist for 0,p,a.

Using Eqs.~4.2! and~4.8!, one recovers a power law wit
exponentpz for the pth moment ofx(t):

^ux~ t !up&5Cp,as0
pS t

t0
D pz

, ~4.9!

where

Cp,a5
1

2pE2`

`

dxuxupE
2`

`

dueiux2uuua. ~4.10!

This time-independent prefactor has a finite value for 0<p
,a, and diverges forp>a if a,2. For a process with
stationary increments, the similarity exponentz is restricted
to z,1/a for 0,a,1 andz<1 for 1<a<2 @13#.

If x is an extended phase, then the fundamental m
valuesmn(t) relax according to a stretched exponential la
following from Eq. ~4.4!:

mn~ t !5expH 2~ns0!aS t

t0
D azJ . ~4.11!

The stretching exponentaz is less than or equal to 1 for 0
,a,1, and less than or equal toa for 1<a<2, provided
the increments of the extended variablex(t), and hence also
those of the phase are stationary. So the same rang
stretching exponents is covered as in the case of fracti
Brownian motion although the respective diffusional beh
ior is very different.

V. CONTINUOUS TIME RANDOM WALKS

Another class of processes that may lead to anoma
diffusion and that have found various physical applicatio
are continuous time random walks@16#. We will collect the
relevant relations for these processes that will be nee
here, and then discuss the ensuing phase relaxation for a
particular cases.
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A. Expression for the probability density in terms
of the combined jump and waiting time distribution

A continuous time random walk is characterized by t
joint jump probabilityc(x,t) giving the likelihood that the
process pauses for the timet in a state until it makes a jump
over the distancex. Note that this probability is independen
of the absolute time and the actual state of the process,
hence, is homogeneous both in time and space. The wa
time between jumps of arbitrary lengths is distributed a
cording to the density

w~ t !5E
2`

`

dx c~x,t !. ~5.1!

The distribution of the jump width is given by

l~x!5E
0

`

dt c~x,t !. ~5.2!

For later use we introduce the conditional density of a ju
of length x if the jump takes place at the timet after the
previous jump:

c~xut !5
c~x,t !

w~ t !
. ~5.3!

The Fourier-Laplace transform of the probability dens
W(x,t), giving the likelihood that the process has reache
distancex at time t from where it started, is known in term
of the respective transforms of the marginal waiting tim
distribution and the joint jump distribution@16#

Ŵ̃~u,z!5
12ŵ~z!

z

1

12 ĉ̃~u,z!
, ~5.4!

where we denote Fourier and Laplace transformed functi
by the same symbols as the original ones distinguished b
tilde and a hat, respectively:

ĉ̃~u,z!5E
2`

`

dxE
0

`

d teiuxe2ztc~x,t !. ~5.5!

The long-time behavior of the fundamental phase mean
ues and the variance of the extended process follow from
~5.4! together with the general relations~2.6! and~2.7! in the
limit of small z. The relation between the long-time an
small-z behavior of a function and its Laplace transform
respectively, can often be obtained by means of the Tau
theorem@17#. This theorem relates an algebraic long-tim
behavior of a functionh(t), sayh(t);t2a, to an algebraic
behavior of the corresponding Lapace transformĥ(z) for
small z given by ĥ(z);za21, and vice versa, providedh(t)
is non-negative and monotone at infinity; see Ref.@17# for a
precise statement of the theorem.

B. Factorizing joint jump distributions

If the jump length and the waiting time are independent
each other, the joint densityc(x,t) factorizes as
1-4
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c~x,t !5l~x!w~ t !, ~5.6!

and Ŵ̃(u,z) becomes:

Ŵ̃~u,z!5
12ŵ~z!

z

1

12l̃~u!ŵ~u!
. ~5.7!

We will discuss this result in the cases of long and sh
rests.

1. Long rests, short jumps

Long rests are characterized by an algebraic decay
w(t) at large times,

w~ t !;t2(11a), ~5.8!

with an exponenta.0. The corresponding Laplace tran
form at small arguments is then given by~see Appendix B!

ŵ~z!5
1

11cuzua
, ~5.9!

wherec is a positive constant. The functional form correc
takes into account the normalization and the long-time
havior of the waiting time distribution. For the jump widt
we assume a Gaussian distribution so that short jumps
vail:

l̃~u!5e2s2u2/2. ~5.10!

For the extended process, it is sufficient to consider the j
jump distribution for small values ofu. For the Fourier-
Laplace transformed density one then finds:

Ŵ̃~u,z!5
1

z

1

11
1

2
s2u2c21uzu2a

. ~5.11!

With Eq. ~2.7! and the Tauber theorem this yields the e
pected diffusion behavior for the extended process:

^x2~ t !&;
s2

2cG~a!
ta. ~5.12!

Similarly, one obtains with@Eq. ~2.6!# for the long-time be-
havior of the fundamental phase mean values:

mn~ t !;
c

G~a!@12l̃~n!#
t2a. ~5.13!

Here one must in general not use the small-u expansion of
the jump distribution. Note that the decay of the fundamen
mean values of the phase is algebraic, and, hence, m
slower than the stretched exponential relaxation that eme
from a fractional Brownian motion having the same diffusi
exponent 2z5a. The exponent describing the algebra
phase decay@Eq. ~5.13!# is independent of the jump distri
bution which only determines the prefactor. In contrast to
06110
rt

of

-

e-

nt

-

l
ch
es

e

diffusion law @Eq. ~5.12!#, the relaxation@Eq. ~5.13!# is not
restricted to short jumps but holds for arbitrary jump widt
distributions.

2. Short rests, arbitrary jumps

An exponential waiting time distribution is characterize
by the average waiting time. The probability for rests long
than this characteristic time rapidly decreases. In this se
rests are typically short. The resulting continuous time r
dom walk has independent increments and, consequently
fundamental phase mean values relax exponentially; see
III. However, an exponential relaxation is found for th
wider class of waiting time distributions for which a mea
waiting time exists:

^t&5E
0

`

dt t w~ t !. ~5.14!

The Laplace transform for smallu then behaves as~see Ap-
pendix B!

ŵ~z!5
1

11^t&z
. ~5.15!

For an arbitrary jump distributionl(x) this gives

Ŵ̃~u,z!5
^t&

12l̃~u!1^t&z
. ~5.16!

The inverse Laplace transform yields the claimed expon
tial relaxation of the fundamental phase mean values:

mn~ t !5e2„12l̃(n)…t/^t&. ~5.17!

The diffusion of the extended process is normal if the jum
width distribution possesses a finite second moment.

C. Correlated waiting times and jump width

For the long-time behavior of both the extended diffusi
and the phase relaxation, the asymptotic Fourier-Lapl

transform of the jump distributionĉ̃(u,z) is important at
small values ofz. We can split off the Fourier transform o
the jump width distributionl(x), and obtain

ĉ̃~u,z!5l̃~u!2x~u,z!, ~5.18!

wherex(u,z) is a function that vanishes for allu at z50. We
first consider the fundamental phase mean values which

determined byŴ̃(u,z) at integer valuesu. Typically, the ab-
solute value of the Fourier transform of the jumps wid
distributionul̃(u)u is less than 1 at finite values ofu; see Eq.
~A3!. Hence one can neglect the small termx(u,z) com-
pared to 12l̃(u) in the denominator of Eq.~5.4!, and obtain
the same form for the Fourier-Laplace transformed den

Ŵ̃(u,z) at smallz as for independent jump widths and wa
ing times:
1-5
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Ŵ̃~u,z!5
12ŵ~z!

z

1

12c̃~u!
. ~5.19!

Therefore, we find the same results for the relaxation of
fundamental mean values of the phase as for indepen
waiting times and jump width. If a finite mean waiting tim
exists the exponential relaxation@Eq. ~5.17!# is recovered,
and if the waiting time distribution decays only algebraica
i.e.,x(z)5cza1o(za) with 0,a,1, then we again find the
algebraic decay law@Eq. ~5.13!#.

The variance of the extended process is given by the g
eral expression~2.7!. Its Laplace transform with respect t
time can be expressed in terms of the first derivatives o
Fourier-Laplace transformed density:

ŝx
2~z!52

]2Ŵ̃~0,z!

]u2
1S ]Ŵ̃~0,z!

]u
D 2

52
1

z~12ŵ~z!!

]2ĉ̃~0,z!

]u2
, ~5.20!

where in the second line we used the particular form@Eq.
~5.4!# of the probability density of a continuous time rando
walk. For the sake of simplicity we assumed that the jo
jump distributionc(x,t) is even inx and, hence, the firs
derivative of the Fourier-Laplace transform with respect tu
vanishes atu50. Accordingly, the long-time behavior of th
variance is determined by the small-z dependence both of th

second derivative ofĉ̃(u,z) and of the waiting time distri-
bution. The second derivative may scale in a different w
than the waiting time distribution, and so the scaling exp
nent for the diffusion of the extended process may be dif
ent from the scaling exponent for the phase relaxation, wh
is completely determined by the waiting-time distributio
We will illustrate this with an example.

We consider the case of a Gaussian conditional ju
width distribution given by

c~xut !5
1

A2ps2~ t !
e2x2/2s2(t), ~5.21!

where the variances(t) may itself diffusively grow with the
waiting time t:

s2~ t !5Dbtb. ~5.22!

Hence, after a long waiting time a wide jump becomes m
likely. The Fourier-Laplace transformed joint jump distrib
tion then becomes

ĉ̃~u,z!5E
0

`

dt e2zte2(1/2)s2(t)u2
w~ t !. ~5.23!

The waiting time distributionw(t) is assumed to have a
algebraic tail ;t2a21 and, consequently, for smallz its
Laplace transform assumes the form
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ŵ~z!5
1

11cza
, ~5.24!

wherec is a positive constant and 0,a<1. Note that with
a51 exponential waiting times are also included in E
~5.24!. For jump width exponentsb>0, the integralt(u)
5*0

`dt t e2(1/2)s2(t)u2
w(t) exists for all uÞ0 and for all

waiting time distributionsw(t). Hence, for nonvanishingu
and small values ofz, one finds

ĉ̃~u,z!5l̂~u!2t~u!z1O~z2!. ~5.25!

Note thatt(u) diverges atu50 if a,1 and, then, instead o

Eq. ~5.25!, Eq. ~5.24! holds for ĉ̃(0,z)5ŵ(z). Using these

expansions for the small-z behavior ofŴ̃(u,z) at uÞ0 we
find

Ŵ̃~u,z!5cza21
1

12l̃~u!1t~u!z
. ~5.26!

For the fundamental phase mean values one obtains the
asymptotic long-time result as given in Eq.~5.13!, i.e. an
algebraic decay proportional tot2a for 0,a,1. Note that
the exponent is independent of the spreading of the ju
width distribution, and only determined by the waiting tim
distributionw(t). Fora51, corresponding to an exponenti
waiting time distribution, we find an exponential relaxatio
of mn(t).

The variance of the extended process is determined by
second derivative of the Fourier-Laplace transformed jo
jump probability atu50 @see Eq.~5.20!#, which in this par-
ticular case is given by

]2ĉ̃~0,z!

]u2
52E

0

`

dt e2zts2~ t !w~ t !. ~5.27!

If the growth ofs2(t) is so slow that the integral converge
to a finite value forz→0, i.e., if a.b, then a diffusive
behavior ofx(t) with the exponenta of the waiting time
results. If, however,b.a, ŝx

2(z) diverges asz2b1a and the
diffusion of the extended processx(t) is characterized by the
exponentb, sx

2(t);tb, and, hence, is independent ofa.

VI. CONCLUSIONS

We have compared the relaxational behavior of ph
variables that results from different diffusion models of t
respective extended phase. For processes with stationar
dependent increments, the relaxation is always exponen
According to the central limit theorem the diffusion of th
extended phase is normal for long times if the second m
ments of the increments exist. If only absolute moments
the orderp,pc exist, then Eq.~2.2! holds for sufficiently
large times and forp,pc with b(p)5p/pc .

For self-similar processes, the phase relaxation is gi
by the decay of the characteristic function of the unrestic
phase, algebraically stretched by the similarity exponent
1-6
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the considered cases of Gaussian and Le´vy processes, this
leads to a stretched exponential relaxation of the phase
stretching exponents ranging from 0 to 2. This provide
simple generation mechanism of stretched exponential re
ation that also might be relevant to interpreting muon s
resonance relaxation@18#.

For continuous time random walks, short rests which
characterized by a finite mean waiting time lead to expon
tial phase relaxation, and, if additionally the jumps are sh
the accompanying extended diffusion is normal. Long re
i.e., waiting time distributions without a finite mean valu
give rise to algebraic decay. However, we note that, for c
related jump widths and waiting times, the exponents ch
acterizing the algebraic phase decay and the diffusion m
be different. In particular, the diffusion may be normal, but
the same time the phase relaxation may only be algebra

In all cases considered here one can also determine
scaling behavior of other than second centered moments
the processes with independent increments and the
similar processes, it is obvious that these moments scale
cording to Eq.~2.2! with a linear dependence of the expone
b(p) on p, provided the considered moments exist. One
show that this is also true for all continuous time rando
walks. The general case of multifractal processes will
studied separately.

Although both the phase relaxation and the diffusion
the extended phase are determined by the same characte
function, the two phenomena may appear quite unrela
The mathematical reason for this discrepancy is that, w
the diffusion is determined by the second derivative of
characteristic function at the wave numberu50, the behav-
ior at integer wave numbers governs the phase relaxatio

Based on this observation, we suggest for the time se
analysis of phases and of diffusional processes complem
tary strategies additionally to the existing methods. Fo
diffusion process, we propose not only to consider
growth behavior of the variance and higher centered m
ments, but also to introduce a fictitious period and to c
sider the relaxation of the resulting phase variable. Vary
the period is tantamount to analyzing the full characteris
function. Also, if a phase is monitored, as is usually done
nuclear magnetic resonance and in muon resonance ex
ments, the diffusional aspect of the phase motion can be f
analyzed if the sampling rate of the data is high enou
Assuming a continuous motion of the considered phase, o
least a jumplike motion with jumps much smaller than t
period, one can reconstruct the winding number by moni
ing whether the period is left at 0 or 2p, leading to a change
of the winding number by21 or 11, respectively. The re
sulting extended~unwrapped! phase can then be analyzed
the various methods available for diffusion processes w
respect to its statistical properties and its behavior in tim
We hope to come back to this problem in a future investi
tion.

APPENDIX A: GENERAL PROPERTIES
OF THE CHARACTERISTIC FUNCTION

The characteristic function of a random variablex is the
Fourier transform of the probability densityr(x) ~we sup-
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press a possible dependence on timet which here is a mere
parameter!:

Q~u!5E
2`

`

dx eiuxr~x!. ~A1!

This is always a continuous function of the real variableu,
taking a value of 1 atu50:

Q~0!51; ~A2!

otherwise

uQ~u!u<1. ~A3!

If the probability densityr(x) is a continuous function ofx,
the characteristic functionQ(u) vanishes foruuu→`:

lim
uuu→`

uQ~u!u50. ~A4!

For further details, see Ref.@12#.

APPENDIX B: GENERATING FUNCTION
FOR WAITING TIMES

The Laplace transformŵ(z)5*0
` exp$2zt%w(t) of a wait-

ing time distribution is a generating function for the m
ments of the waiting time:

^tn&5~21!n
dnŵ~0!

dzn
. ~B1!

If the nth derivative atz50 does not exist, the respectiv
moment of the waiting time diverges, and vice versa. H
we collect some analytical properties of the generating fu
tion for real, non-negative values ofz.

~i! ŵ(0)51. This follows immediately from the normal
ization of the waiting time distribution.

~ii ! ŵ(z).0 for all 0<z,`, as is obvious from the defi
nition of the moment generating function as a Laplace tra
form of a positive function.

~iii ! ŵ(z) is a nonincreasing function:ŵ(z1)2ŵ(z2)
5*0

` dt(exp$2z1t%2exp$2z2t%)w(t)>0 for z1,z2. For a
stronger growth property, see Ref.@17#.

~iv! ŵ(z) is infinitely often differentiable for allz.0.
~v! ŵ(z)→0 for z→` if there are no immediate jumps

This means that the probability for a jump within a sho
initial period of lengtht vanishes astg with some positive
exponentg: *0

t dt w(t)<ctg for t→0 with g.0 and c
.0.

Using these properties, one can represent the Lap
transformed waiting time probability in terms of anoth
function x(z),

ŵ~x!5
1

11x~z!
, ~B2!
1-7
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where x(z) vanishes atz50 and is an increasing smoot
function forz.0 which goes to infinity forz→` if there are
no immediate jumps in the sense of~v!.

For a waiting time distribution possessing a finite fi
moment,x(z) is differentiable atz50, and starts to grow
like
in

g-

06110
t

x~z!5^t&z1o~z!. ~B3!

For a waiting time distribution with an algebraic long-tim
tail, w(t);t2(11a) with 0,a,1, x(z) grows atz50 like

x~z!5cza1o~za!. ~B4!
-

-

-

@1# J.R. Manning,Diffusion Kinetics for Atoms in Solids~Van
Nostrand, Princeton, NJ, 1968!.

@2# J. Philibert,Atom Movements, Diffusion and Mass Transport
Solids, Les Edition de Physique~Cedex, Les Ulis, 1991!.

@3# For a historical account, see S.G. Brush,The Kind of Motion
We Call Heat~North Holland, Amsterdam, 1976!.

@4# A.S. Monin and A.M. Yaglom,Statistical Fluid Mechanics:
Mechanics of Turbulence~MIT Press, Cambridge, MA, 1975!,
Vol. II.

@5# J.-P. Bouchaud and A. Georges, Phys. Rep.195, 127~1990!; R.
Metzler and J. Klafter,ibid. 339, 1 ~2000!.

@6# P.W. Anderson and P.R. Weiss, Rev. Mod. Phys.25, 269
~1953!.

@7# R. Kubo, in Fluctuation, Relaxation and Resonance in Ma
netic Systems, edited by D. ter Haar~Olver and Boyd, Edin-
burgh, 1961!, p. 23.

@8# A. Abragam,The Principles of Nuclear Magnetism~Oxford
University Press, Oxford, 1961!.

@9# H. Haken,Laser Theory, Encyclopedia of Physics, XXV/2c
~Springer-Verlag, Berlin, 1970!.
@10# N. Ikeda and S. Watanabe,Stochastic Differential Equations
and Diffusion Processes~North-Holland, Amsterdam, 1981!.

@11# W. Feller,An Introduction to Probability Theory and Its Appli
cations~Wiley, New York, 1968!, Vol. I.

@12# E. Lukacs,Characteristic Functions~Griffin, London, 1970!.
@13# G. Samorodnitsky and M.S. Taqqu,Stable Non-Gaussian Ran

dom Processes~Chapman and Hall, New York, 1994!.
@14# B.B. Mandelbrot and J.W. Van Ness, SIAM Rev.10, 422

~1968!.
@15# M. Cassandro and G. Jona-Lasinio, Adv. Phys.27, 913~1977!.
@16# E.W. Montroll and M.F. Shlesinger, inNonequilibrium Phe-

nomena II, from Stochastics to Hydrodynamics, Studies in Sta-
tistical Mechanics, edited by J.L. Lebowitz~North-Holland,
Amsterdam, 1984!, p. 44.

@17# W. Feller,An Introduction to Probability Theory and Its Appli
cations~Wiley, New York, 1968!, Vol. II.

@18# Y.J. Uemura, inMuon Science, edited by S.L. Lee, S.H. Kil-
coyne, and R. Cywinski~Institute of Physics, Bristol, 1999!, p.
85.
1-8


