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Quantum decay rates for driven barrier potentials in the strong friction limit
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Quantum decay rates for barrier potentials driven by external stochastic and periodic forces in the strong
damping regime are studied. Based on the quantum Smoluchowski equation derived recently by Ankerhold,
Pechukas, and Grabert@Phys. Rev. Lett.87, 086802 ~2001!# explicit analytical and numerical results are
presented for the case of the resonant activation phenomenon in a bistable potential and the escape from a
metastable well with oscillating barrier, respectively. The significant impact of quantum fluctuations is re-
vealed.
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INTRODUCTION

Escape over a high potential barrier driven by therm
noise is of fundamental interest in physics and chemistry@1#.
And it is meanwhile well understood: after a transient per
of time the decay is governed by a rate constant, which in
simplest classical case is of Arrhenius type provided the
caying system stays in thermal equilibrium far from the b
rier. What happens if due to additional external forces
system is far from thermal equilibrium? This question h
recently gained much attention for classical barrier transp
in the strong damping limit~Smoluchowski limit!. Important
examples are stochastic resonance@2#, resonant activation in
biochemical reactions and tunnel diodes@3#, or directed mo-
tion in ratchet systems@4#. While even the classical physic
of such phenomena is in many cases not yet completely
plored, much less is known about corresponding quan
systems.

Namely, in contrast to the classical range, tractable eq
tions of motions of quantum dissipative systems also
strong damping and low temperatures do not exist@5#. The
path integral representation provides an exact expression
the time dependent density matrix, but even a numer
evaluation is, in general, prohibitive. Particular progress
been made with the development of master equations@6# and
the quasiadiabtic propagator approach@7#. This way, exten-
sive studies exist for bistable systems driven by external
riodic forces @8#. However, these and related techniqu
require—either to be valid or to be practicable—that ene
level broadening due to friction remains sufficiently sm
~depending on the approach! so that for the relevant dynam
ics the Hilbert space of the bare system can be reduced
few lowest lying eigenstates. Of course, this condition fa
in the domain of very strong friction. Recently we show
@9# that exactly in this range crucial simplifications arise.
in the classical Smoluchowski limit, momentum equilibrat
on time scales much faster than any other time scales;
cordingly, an equation of motion—the so-called quantu
Smoluchowski equation—can be derived for the posit
probability distribution from the exact path integral resu
The influence of quantum fluctuations turns out to be s
stantial. Hence, for the first time we are now in a position
explore driven barrier escape for arbitrary overdamped qu
tum systems@10#.
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Here, we focus on two paradigmatic examples, namel
bistable potential with a barrier fluctuating randomly in tim
and a metastable well driven by a periodic monochroma
force. Classically, for the first case the phenomenon of re
nant activation is characteristic, while for the second on
substantial rate enhancement by driving is observed. We
cidate the significant impact of quantum fluctuations on b
processes.

QUANTUM SMOLUCHOWSKI

For a system coupled to a heat bath environment the
duced density matrix follows fromr(t)5Trb@W(t)# where
Trb@•# denotes the trace over bath degrees of freedom
W(t) is the time dependent density matrix of the system a
bath compound. Within the path integral approach a forma
exact expression for the position representationr(q,q8,t)
can be given@5#. Now, in Ref.@9# it was shown that within
the quantum Smoluchowski range~QSR!, i.e.,

g/v0
2@\b,1/g and \g@kBT, ~1!

the position distributionP(q,t)5r(q,q,t) is well deter-
mined by a simple time evolution equation coined quant
Smoluchowski equation~QSE!. Hereg denotes the friction
constant,v0 the ground state frequency in a potentialV(q),
andb51/kBT inverse temperature. This limit is opposite
the classical Smoluchowski range wherev0\b!1 and
kBT@\g. The QSE readsṖ5(1/Mg)]qL̂qmP where

L̂qm5V81lV-/21kBT]q~11lbV9! ~2!

with V85dV(q)/dq. Further,

l5~\/pMg!ln~\bg/2p! ~3!

accounts for the dominating impact of quantum fluctuatio
Equivalently, the dynamics of an overdamped quantum s
tems can be seen as a classical Smoluchowski dynamics
an effective potentialVeff5V1lV9/2 and an effective diffu-
sion term Deff5kBT(11lbV9). Note that quantum fluctua
tions in Eq.~2! are of order ln(g)/g and thus, are much large
than classical finite friction corrections that are of ord
1/g2.
©2001 The American Physical Society02-1
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STATIC BARRIERS

We first recall results for the decay rate in static barr
potentials. There, adjacent to the barrier atq5qb we assume
a well region around a minimum atq5q0 such that the bar-
rier height Vb obeys Vb@kBT,\v0 . Moreover, we take
smooth potentials for granted. Then, in Ref.@9# it was shown
that the escape rate out of the well is given within the Q
as

GQSR5
AV9~q0!uV9~qb!u

Mg
e2bVb

3exp$lb@V9~q0!1uV9~qb!u#%. ~4!

The substantial rate increase due to quantum fluctuat
well agrees with the exact result@9# ~in the limit bVb@1!.
Let us now turn to barrier potentials driven by extern
forces.

FLUCTUATING BARRIERS

Thermally activated diffusion over a potential barrier th
fluctuates randomly in time has evoked much interest
cently. In the classical Smoluchowski limit it was shown th
the interplay between relaxation, by thermally activated b
rier passage, and fluctuation, by correlated external no
leads to a strongly enhanced reaction rate in the reso
activation regime@3#. Here, we present the first study to th
phenomena for corresponding quantum systems. We loo
the process of dichotomous barrier fluctuations with a rath
in a symmetric double well and search for the ultimate de
ratek(h) of relaxation to equilibrium. Since for this problem
an analytical classical theory was derived@11#, we can adapt
the general technique. In particular, in the case of high b
riers considered here, it was shown that rates from the a
lytical theory are in excellent agreement with numerica
exact results@11#.

If the potential flips randomly between two surfacesV1

and V2 at a rateh, we need two probability densitie
P1(q,t) andP2(q,t) with P1@P2# being the density to find
a particle at timet at positionq and the potential in state
V1@V2#. Accordingly, the two-dimensional QSE reads] trW
5ShrW with rW 5(P1 ,P2) and

Sh5S L̂12h h

h L̂22h
D . ~5!

Here, L̂65(1/Mg)]qL̂qm
(6) with potentialsV65U6g. The

function g describes the barrier modulations and is assum
to have the following properties: it is symmetric around t
barrier top atq5qb and monotone decreasing away from
outside some finite range around the top it is zero. In part
lar, V15V2 around the well minima located atq56q0 .
Further, its maximumg(qb) is small compared to the barrie
height Ub but not necessarily small compared tokBT. The
ultimate decay ratek(h) is now defined as the least negati
eigenvalue to the operatorSh .

In the adiabatic range of smallh, qualitatively, there is not
much change to the classical result. After each flip the s
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tem has enough time to relax to equilibrium inside the w
regions of the instantaneous potentials. Consequently,
rate follows as the least negative eigenvalue ofSh when
replacing the operatorsL̂qm

(6) by the static quantum rate
2G6 for the individual potentials, see Eq.~4!. Hence, simi-
larly to the classical rate we obtain

k~h!5~G11G2!/21h2@h21~G12G2!2/4#1/2. ~6!

As expectedk(0)5G1 and k(h)→kres[(G11G2)/2 for
h→`.

More interesting is the region of moderate to fast barr
flippings, i.e., h@k(h). There, the procedure is to solv
ShrW '0 with the boundary conditionrW (qb)50 so that due to
symmetryrW (q)52rW (2q). This way, we solve the equatio
for the equilibrium eigenfunction, i.e., with zero eigenvalu
but under boundary conditions corresponding to the rel
ation eigenfunction with the least negative eigenvalue.
long ask(h) is the smallest frequency in the system th
approximation is justified. Now, in the limit of a high ba
rier we employ a semiclassical type of ansatzrW
5zW exp(2f/kBT) with an effective potentialf and a prefac-
tor accounting for terms of higher order inkBT. To obtain
the dominant exponential contribution we do the followin
The two coupled second order differential equations co
sponding to Eq.~5! are transformed to four coupled equ
tions of first order. This linear system is solved by diagon
izing the coefficient matrix. The relevant eigenvalue tur
out to be2f8 and is determined by the solution to the cub
equation

2kBTh~12lbU9!~Ũ82f8!5f8~Ṽ18 2f8!~Ṽ28 2f8!
~7!

obeying 0<f8Ũ8<(Ũ8)2. Here, we introduced effective
potentials that are related to the bare potentials byỸ5Y
1(3l/2)Y92(lb/2)(Y8)2 for Y5U, V1 , and V2 . Of
course, by formally puttingl50 in Eq. ~7! one regains the
known classical result@11#. For the prefactor we solve per
turbatively the differential equationsShrW 50. Since this
scheme works similarly as in the classical case we refe
the literature for further details@11#.

For the rate one first derives fromShrW 52krW that k(h)
'@P18 (qb)1P28 (qb)#/@Mgb*

2`
qb (P11P2)#. Then, insert-

ing the results forP6 we gain

k~h!5@V~h!v0 /g#e2bf~qb!

3exp$lb@U9~q0!2uf9~qb!u/2#% ~8!

with v0
25U9(q0)/M . The frequencyV~h! coincides with

the classical result@11# and thus, its lengthy expression
omitted here. However, quantum fluctuations strongly aff
the dominant exponential factor. In the limits of very slo
and very fast barrier fluctuationsl-dependent terms lead ba
sically to a renormalization of temperature. For smallh we
derive from Eqs.~8! and~5! thatk(h)→G1 . In the region of
motional narrowingh→` it is k(h)→GU where GU is
given by Eq.~4! with V replaced by the average potentialU.
2-2
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To study the ultimate quantum decay rate for all values
h we evaluated Eq.~6! and Eq.~8! with Eq. ~7! numerically.
Results are displayed in Figs. 1 and 2. Besides an obv
rate increase, the major effects of quantum fluctuations ar
substantially decreasethe relative height as well as the widt
of the resonant activation maximum. The shrinking relat
heightkres/G15(G11G2)/2G1 is a consequence of effec
tively reduced barrier modulationsg(qb)→g(qb)@1
2lug9(qb)u#. The decreasing width of the plateau range
ascribed for sufficiently largeh to the fact that then quantum
fluctuations on the left hand side in Eq.~7! lead to an effec-
tively enhanced flipping rateh→h@11lbuU9(qb)u# near
the barrier top. For intermediate fluctuation rates the cu
Eq. ~7! gives rise to a nonlinear dependence onl leading to
an intimate relation between external barrier fluctuations
intrinsic quantum fluctuations.

FIG. 1. Quantum~solid! and classical~dashed! decay rate vs the
barrier fluctuation rate in a double well potential with heig
Ub /\v054 andv0\b53. Shown are the adiabatic approximatio
Eq. ~6! ~thick! and the effective potential approach Eq.~8! ~thin!.

FIG. 2. ~a! Ratio of the resonant activation ratekres to k(0)
5G1 and ~b! width of the resonant activation maximum vsl for
two different temperatures. Other parameters as in Fig. 1.
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OSCILLATING BARRIERS

A prominent example for a system far from equilibrium
a metastable potential driven periodically by an exter
force. Recently, in the classical Smoluchowski limit, dec
rates were studied for weak and moderate to strong driv
as well @12–14#. Here, we explore the corresponding qua
tum problem by calculating numerically the time depend
decay rateG(t) from Eq.~2! for long times. The time depen
dent potential is chosen asV(q,t;a)5V0(q)1qa sin(Vt)
with a static barrierV0(q)52(Mvb

2/2)q2@11q/q0#. The
static barrier top is located atq50, the well minimum atq
522q0/3, and the static height isVb /Mvb

2510q0
2/27. For

the driven case (aÞ0) the location of the barrier top move
periodically in time with qb(t)'(a/Mvb

2)sin(Vt). Conse-
quently, as in the classical case, the rateG(t)52Ṅ(t)/N
with N(t)5*

2`
qb(t)P(q,t) also oscillates in time. Then, from

Ṗ5(1/Mg)]qL̂qmP we derive up to negligible corrections

G~ t !52
kBT

Mg
$11lbV09@qb~ t !#%

]qP@qb~ t !,t#

N~ t !
. ~9!

Note that for high barriers and timest!1/G(t) one can put
N(t)'1 if initially one starts from a normalized distributio
P(q,0).

High precision numerical results based on the QSE@Eq.
~2!# are shown in Fig. 3 for the time dependent rateG(t).
Apart from a rate enhancement the influence of quant
fluctuation is twofold: first,G(t) tends to be more symmetri
around its minima and maxima and second, both extrema
slightly shifted to the left. In Ref.@13# Lehmannet al.devel-
oped a nice theory for the pure classical case (l50) based
on an asymptotic expansion forbVb@1 ~for a related theory
see also Ref.@14#!. There, one finds a weak dependence
the location of the extrema on temperature. Since locally
position space thel dependence can be partially incorp
rated in an effective temperature, we attribute the obser
shift in the quantum case to a similar kind of process. Ho
ever, what is not possible is to mimic the numerical data
finite l by an effective temperature only.

The averaged rate

FIG. 3. Time dependent quantum~solid! and classical~dashed!
rate G(t) for V/vb52p, A5a/A\Mvb

350.5, vb\b53, and
Vb /\vb54/3.
2-3
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Ḡ5 lim
vbt.1

1

T E
t

t1T

dt8 G~ t8! ~10!

as a function either of inverse temperature or driving am
tude is depicted in Figs. 4 and 5. Again the rate enhancem
is significant. Interestingly, while on a logarithmic scale t
classical rate shows a simple linear behavior as a functio
v0\b for sufficiently low temperatures~according to the
well-known exponential Arrhenius law!, the quantum rate
exhibits a weak nonlinearity. Of course, in the high tempe
ture limit quantum corrections become negligible. As a fun
tion of the driving amplitude the difference between quant
and classical rate shrinks with increasing amplitude. As
strong driving most of the escape happens to occur when
barrier is low and thus, is much less effective in hinderi
the transport, the effect of al induced rate enhancement du
to a smaller barrier height inVeff5V1lV9/2 is diminished.

What about an analytical theory? We think that, in pr
ciple, the classical theory@13,14# can be generalized to th
quantum case, a detailed analysis, however, still needs

FIG. 4. Arrhenius plot of the time-averaged quantum~solid! and

classical~dashed! rate Ḡ. Other parameters as in Fig. 3.
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stantial work. Even then an explicit evaluation in closed a
lytical form for all realistic potentials seems prohibitive. O
intention here is to give for a highly nontrivial example
first account about the significant role of quantum fluctu
tions in the QSR.

To summarize we have studied for two important e
amples quantum transport over driven barrier potentials
the strong friction limit. For the case of a fluctuating bistab
potential we explored the impact of quantum fluctuations
the resonant activation phenomenon. In a case of a m
stable potential driven externally by a periodic force w
found a sensitive behavior of the decay rate on the relev
parameters. These notable findings may stimulate fur
studies of the quantum Smoluchowski equation in phys
and chemistry as well.
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FIG. 5. Time-averaged quantum~solid! and classical~dashed!
rate as a function of the driving amplitudeA5a/A\Mvb

3. Other
parameters as in Fig. 3.
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