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Quantum decay rates for barrier potentials driven by external stochastic and periodic forces in the strong
damping regime are studied. Based on the quantum Smoluchowski equation derived recently by Ankerhold,
Pechukas, and GrabePhys. Rev. Lett87, 086802 (2001] explicit analytical and numerical results are
presented for the case of the resonant activation phenomenon in a bistable potential and the escape from a
metastable well with oscillating barrier, respectively. The significant impact of quantum fluctuations is re-
vealed.
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INTRODUCTION Here, we focus on two paradigmatic examples, namely, a
bistable potential with a barrier fluctuating randomly in time
Escape over a high potential barrier driven by thermaland a metastable well driven by a periodic monochromatic
noise is of fundamental interest in physics and chem[gify ~ force. Classically, for the first case the phenomenon of reso-
And it is meanwhile well understood: after a transient periodnant activation is characteristic, while for the second one a
of time the decay is governed by a rate constant, which in théubstantial rate enhancement by driving is observed. We elu-
simplest classical case is of Arrhenius type provided the deCidate the significant impact of quantum fluctuations on both
caying system stays in thermal equilibrium far from the bar-Processes.
rier. What happens if due to additional external forces the
system is far from thermal equilibrium? This question has QUANTUM SMOLUCHOWSKI
recently gained much attention for classical barrier transport
in the strong damping limi¢Smoluchowski limij. Important > :
examples are stochastic resonaf@k resonant activation in duced density matrix follows fromp(t) =Tr,[W(t)] where
biochemical reactions and tunnel diod&$ or directed mo- 1ol -1 denotes the trace over bath degrees of freedom and
tion in ratchet systemg4]. While even the classical physics W(t) is the time dependent density matrix of the system and
of such phenomena is in many cases not yet completely ex@ath compound. Within the path integral approach a formally
plored, much less is known about corresponding quanturf*X@ct expression for the position representatigu,q’,t)
systems. can be giver{5]. Now, in Ref.[9] it was _shown that within
Namely, in contrast to the classical range, tractable equdl® quantum Smoluchowski ran¢@SR), i.e.,
tions of motions of quantum dissipative systems also for 2
strong damping and low temperatures do not ej&§t The viwg>hp,1ly and fiy>kgT, @
path integral representation provides an exact expression for . o )
the time dependent density matrix, but even a numerical’® Position distributionP(q,t) =p(q,q,t) is well deter-
evaluation is, in general, prohibitive. Particular progress haglinéd by a simple time evolution equation coined quantum
been made with the development of master equafiéhand Smoluchowski equatiofQSE). Here y denotes the frlct|0n
the quasiadiabtic propagator approd@h This way, exten- Constantw, the ground state frequency in a potentigh),
sive studies exist for bistable systems driven by external peand 8=1/kgT inverse temperature. This limit is opposite to
riodic forces [8]. However, these and related techniquesth® classical Smoluchowski range wheagh <1 and
require—either to be valid or to be practicable—that energykgT>%y. The QSE read® = (1/M y)dqL 4P Where
level broadening due to friction remains sufficiently small
(depending on the approaco that for the relevant dynam- ﬂqm:V' +AV"12+kgTdg(1+NBV") 2
ics the Hilbert space of the bare system can be reduced to a
few lowest lying eigenstates. Of course, this condition failswith V' =dV(q)/dq. Further,
in the domain of very strong friction. Recently we showed
[9] that exactly in this range crucial simplifications arise. As N=(Al7My)In(h Byl27) (©)
in the classical Smoluchowski limit, momentum equilibrates
on time scales much faster than any other time scales; a@ccounts for the dominating impact of quantum fluctuations.
cordingly, an equation of motion—the so-called quantumEquivalently, the dynamics of an overdamped quantum sys-
Smoluchowski equation—can be derived for the positiontems can be seen as a classical Smoluchowski dynamics with
probability distribution from the exact path integral result. an effective potentiaV/e=V+AV"/2 and an effective diffu-
The influence of quantum fluctuations turns out to be subsion termDz=kgT(1+ABV"). Note that quantum fluctua-
stantial. Hence, for the first time we are now in a position totions in Eq.(2) are of order In§)/y and thus, are much larger
explore driven barrier escape for arbitrary overdamped quarthan classical finite friction corrections that are of order
tum systemg10]. 1/y2.

For a system coupled to a heat bath environment the re-
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STATIC BARRIERS tem has enough time to relax to equilibrium inside the well
We first recall results for the decay rate in static barrier c9'0NS of the instantaneous pptent!als. Consequently, the

. ) ) rate follows as the least negative eigenvalueSyfwhen
potentials. There, adjacent to the barriegatq, we assume i NS i
a well region around a minimum at= g such that the bar- ePlacing the operatork,’ by the static quantum rates
rier height V,, obeys V,>kgT,hw,. Moreover, we take —I'. for the |nd|y|dual potenuals,.see E¢). Hence, simi-
smooth potentials for granted. Then, in R&f| it was shown  1arly to the classical rate we obtain
that the escape rate out of the well is given within the QSR

P . QSR k() =(To 4T )2+ g9+ (T ~T )42 (6)

as
B V(a0 V" (ap)] e As (;,\Cxpectedk(O)zl“+ and k(7)) —k=(I" +I'_)/2 for
FQSR_M—,ye n—.

More interesting is the region of moderate to fast barrier
" " flippings, i.e., »>k(#%). There, the procedure is to solve
X eXpMBLV(do) + V(o) 13- @ S,,p~0 with the boundary conditiofi(g,) =0 so that due to
The substantial rate increase due to quantum fluctuatiorsymmetryp(q)=—p(—q). This way, we solve the equation
well agrees with the exact resyR] (in the limit BV,>1).  for the equilibrium eigenfunction, i.e., with zero eigenvalue,
Let us now turn to barrier potentials driven by externalbut under boundary conditions corresponding to the relax-
forces. ation eigenfunction with the least negative eigenvalue. As
long ask(#) is the smallest frequency in the system this
FLUCTUATING BARRIERS approximation is justified. Now, in the limit of a high bar-
rier we employ a semiclassical type of ansaf

Thermally activated diffusion over a potential barrier that _ 7 exp(— ¢lksT) with an effective potential and a prefac-
fluctuates randomly in time has evoked much interest ror accounting for terms of higher order kgT. To obtain

centlly. In the classical Smolughowski limit it was s.hown thatthe dominant exponential contribution we do the following:
the interplay between relaxation, by thermally activated barpa two coupled second order differential equations corre-

rier passage, and fluctuation, by correlated external noise, onding to Eq(5) are transformed to four coupled equa-

leads to a strongly enhanced reaction rate in the resonag s f first order. This linear system is solved by diagonal-
activation regimg3]. Here, we present the first study to this iy the coefficient matrix. The relevant eigenvalue turns

phenomena for porrespondlng quantum systems. We look Yut to be— ¢' and is determined by the solution to the cubic
the process of dichotomous barrier fluctuations with a rate equation

in a symmetric double well and search for the ultimate decay
ratek( ») of relaxation to equilibrium. Since for this problem _ INCTY T 1N 41 (NI 2Nt
an analytical classical theory was derijdd], we can adapt 2kgTn(1-ABU")(U'=¢")=¢"(Vi—¢")(VL—¢ )(7)
the general technique. In particular, in the case of high bar-

riers considered here, it was shown that rates from the an%’beying 0£¢>’U’<(D’)2 Here. we introduced effective
lytical theory are in excellent agreement with numerically _ R ' ' D~
exact result§11]. potentials that are relatzed to the bare potentialsYbyY

If the potential flips randomly between two surfades T+ (3M2)Y'=(\BI2)(Y")" for Y=U, V., and V_. Of
and V_ at a ratey, we need two probability densities course, by formally putting=0 in Eq.(7) one regains the
P.(qg,t) andP_(q,t) with P, [P_] being the density to find known classical rgsu[tll]. For the'prefaftor we.solve per-
a particle at timet at positiong and the potential in state turbatively the differential equations,;=0. Since this

V.[V_]. Accordingly, the two-dimensional QSE reads scheme works similarly as in the classical case we refer to

=S,p with p=(P,,P_) and the literature for further detgilng]. i i
For the rate one first derives fro®,p=—kp thatk(z)
L= K ~[P’,(qp) + P’ (ap) I/[MyBS%™ (P, +P_)]. Then, insert-
Sy~ 7 L —p) (9 ing the results folP.. we gain

= —Bé(dp)

Here, L. = (1M )d,L{5) with potentialsV.=U+g. The k() =[2(m)wolyle 7
function g describes the barrier modulations and is assumed X expAB[U"(do) —|¢"(ap)|/2]} (8
to have the following properties: it is symmetric around the
barrier top atj=q,, and monotone decreasing away from it; with w3=U"(q,)/M. The frequencyQ() coincides with
outside some finite range around the top it is zero. In particuthe classical resulfl1] and thus, its lengthy expression is
lar, V,=V_ around the well minima located af=*qq. omitted here. However, quantum fluctuations strongly affect
Further, its maximung(q) is small compared to the barrier the dominant exponential factor. In the limits of very slow
height U, but not necessarily small comparedkgT. The and very fast barrier fluctuationsdependent terms lead ba-
ultimate decay rat&( ) is now defined as the least negative sically to a renormalization of temperature. For smalve
eigenvalue to the operat&, . derive from Eqgs(8) and(5) thatk(#z)—1I", . In the region of

In the adiabatic range of smajl qualitatively, there is not motional narrowingn— it is k(7)—I'y where 'y is
much change to the classical result. After each flip the sysgiven by Eq.(4) with V replaced by the average potential
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FIG. 1. Quantunisolid) and classicaldashed decay rate vs the
barrier fluctuation rate in a double well potential with height FIG. 3. Time dependent quantufsolid) and classical{dashed
U, /fiwg=4 andwefi 8=3. Shown are the adiabatic approximation rate I'(t) for Q/w,=2, A=a/\/thb3=0.5, wph =3, and
Eqg. (6) (thick) and the effective potential approach E§) (thin). Vy, I o= 413.

To study the ultimate quantum decay rate for all values of OSCILLATING BARRIERS
7 we evaluated Eq6) and Eq.(8) with Eq. (7) numerically.
Results are displayed in Figs. 1 and 2. Besides an obvious
rate increase, the major effects of quantum fluctuations are

substantially decreasthe relative height as well as the width 107¢€- Recently, in the classical Smoluchowski limit, decay
of the resonant activation maximum. The shrinking relativea€s were studied for weak and moderate to strong driving

heightk,.s/T’, = (', +T_)/2", is a consequence of effec- as well[12—14. Here, we explore .the corresponding quan-
tively reduced barrier modulationsg(qy)— g(qy)[ 1 tum problem by calculating nument_:ally the time dependent
—\|g"(qy)|]. The decreasing width of the plateau range iSdecay rateI‘(.t) f_rom Eq.(2) for long times. The tlme.depen-
ascribed for sufficiently large to the fact that then quantum Jd€nt potential is chosen a‘¢(q,t;az)=V(2)(q)+an|n(Qt)
fluctuations on the left hand side in E@) lead to an effec- With a static barrielVo(q) = — (M wp/2)q7[1+0/qo]. The
tively enhanced flipping ratey— 5[ 1+\|U"(qy)|] near  Static barrier top is located at=0, the well minimum af
the barrier top. For intermediate fiuctuation rates the cubic= —2do/3, and the static height i, /M wj=10q5/27. For
Eq. (7) gives rise to a nonlinear dependence)ofeading to  the driven caseg# 0) the location of the barrier top moves
an intimate relation between external barrier fluctuations angeriodically in time with g(t)~ (a/M wf)sin(t). Conse-
intrinsic quantum fluctuations. quently, as in the classical case, the rEt(et)——N(t)/N
with N(t)—f%(t)P(q,t) also oscillates in time. Then, from

P=(1/M7y) aq qmP we derive up to negligible corrections

kgT
I(t)=- —{1+?\3V [qb(t)]}%- C)

A prominent example for a system far from equilibrium is
metastable potential driven periodically by an external

Kees/T2

Note that for high barriers and timés1/I'(t) one can put
N(t)~1 if initially one starts from a normalized distribution
P(q,0).
High precision numerical results based on the QEH.
(2)] are shown in Fig. 3 for the time dependent rétg).
Apart from a rate enhancement the influence of quantum
fluctuation is twofold: first]'(t) tends to be more symmetric
around its minima and maxima and second, both extrema are
slightly shifted to the left. In Ref.13] Lehmannet al. devel-
oped a nice theory for the pure classical case- Q) based
on an asymptotic expansion f@V,>1 (for a related theory
see also Ref[14]). There, one finds a weak dependence of
the location of the extrema on temperature. Since locally in
position space tha dependence can be partially incorpo-
rated in an effective temperature, we attribute the observed
shift in the quantum case to a similar kind of process. How-
FIG. 2. (a) Ratio of the resonant activation rake. to k(0)  ever, what is not possible is to mimic the numerical data for
=T, and(b) width of the resonant activation maximum ksfor  finite A by an effective temperature only.
two different temperatures. Other parameters as in Fig. 1. The averaged rate
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FIG. 5. Time-averaged quantusolid) and classicaldashed
rate as a function of the driving amplitude= a/\/thgb. Other
parameters as in Fig. 3.

FIG. 4. Arrhenius plot of the time-averaged quant{solid) and
classical(dashedirateI". Other parameters as in Fig. 3.

e S L I stantial work. Even then an explicit evaluation in closed ana-
I'=lim T ft dt’ I'(t") (10 lytical form for all realistic potentials seems prohibitive. Our
opt=1 intention here is to give for a highly nontrivial example a

functi ither of i ¢ t drivi i first account about the significant role of quantum fluctua-
as a function either of inverse temperature or driving ampli+; i the QSR.

tude is depicted in Figs. 4 and 5. Again the rate enhancement To summarize we have studied for two important ex-
s sig_nificant. Interestingly, whi_le on a Ioga_lrithmic scale_ the mples quantum transport over driven barrier potentials in
classical rate S.h.OWS a simple linear behavior asa function Ghe strong friction limit. For the case of a fluctuating bistable
woh 5 Tor suff|C|entIy'Iow tempgrature$accord|ng to the potential we explored the impact of quantum fluctuations on
well-known exponential Arrhenius lawthe quantum rate the resonant activation phenomenon. In a case of a meta-
exhibits a weak nonlinearity. Of course, in the high temperag e potential driven externally by a periodic force we
ture limit quantum corrections become negligible. As a func'found a sensitive behavior of the decay rate on the relevant
tion of the driving amplitude the difference between quantu arameters. These notable findings may stimulate further

and clasgi(_:al rate shrinks with increasing amplitude. As fostudies of the quantum Smoluchowski equation in physics
strong driving most of the escape happens to occur when thzfnd chemistry as well

barrier is low and thus, is much less effective in hindering
the transport, the effect of;ainduced rate enhancement due
o Co L ACKNOWLEDGMENTS
to a smaller barrier height iWg=V+\V"/2 is diminished.
What about an analytical theory? We think that, in prin-  Valuable discussions with P. Pechukas and H. Grabert are
ciple, the classical theorj13,14] can be generalized to the gratefully acknowledged. This work was supported by the
guantum case, a detailed analysis, however, still needs subFG (Bonn) through SFB276.
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