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Comment on “Critical behavior of a two-species reaction-diffusion problem”
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In a recent paper, de Freitas al. [Phys. Rev. E61, 6330(2000] presented simulational results for the
critical exponents of the two-species reaction-diffusion systenB—2B andB—A in dimensiond=1. In
particular, the correlation length exponent was foun@af.21(5) in contradiction to the well-known relation
v=2/d. In this Comment, the symmetry arguments leading to exact critical exponents for the universality class
to which this reaction-diffusion system belongs are concisely reconsidered.
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In a recent paper, de Freitas al. [1] presented a Monte The Langevin dynamics of the DP-C class can be de-
Carlo study of the two-species reaction-diffusion systém scribed by the dynamic functionf,7]
+B—2B and B—A [the van Wijland, Oerding, Hilhorst
(WOH) model [2]] in dimensiond=1. They reported the j:f dt d
values3=0.435(10) andv=2.21(5) for critical exponents
of the order parameter and the correlation length, respec-
tively. The measurement of the short-time scaling exponent +[oc— yV2(c+as)]— y(VE)Z]. (1)
0’ [3] seems consistent with the scaling lats= — 5/z and
2Blv=d+ 7, using the exact valuge=2 of the dynamical
exponent. The term “exact” means here at least correct a

long as thgsupej renormalizable modéll) presented below s h
has a nontrivial infrared stable fixed point. Note thatean diffusion system aboves=ng andc=n,+ng, wheren, and

expansion is in general not involved. The critical WOH N8 denote the densities of thheandB particles;respsctively.
model belongs in general to the universality class of directed he conjugated response fields are denoted bydc. Sta-
percolation(DP) processes coupled to a secondary conservelility requiresg>20f. Green functiongcorrelation and re-
density called DP-@4], in analogy to the Model C. In the sponse functionsare obtained by integrating the fields
same manner as the universal behavior of the critical dynarrfgainst a weight factor exp(7).

ics of a relaxing nonconserved order parameter near equilib- The functional7, Eq. (1), possesses the following sym-
rium (Model A) is changed to Model C by the coupling to a metries under three transformations involving a constant
conserved density, DP processes are changed to DP-C preentinuous parameter:

cesses. de Freitas al. assume equal diffusion constants for

s s

A ~——
I+ N(T—V?+fc)+ 5(9s—9s)

Heres andc are the densities of the percolating agent and the
conserved field, respectively. In the case of the reaction-

both species. Therefore, a special DP-C process without I|: ¢c—cC+a; 2
cross-diffusion called KSS, and identified by Kreeal. [5]

several years ago, describes the special system studied here. Il: ¢c—c+a, 7—o7+fa; Q)
In the Appendix of their paper, Krest al. show by means of

a Ward identity that the correlation length exponent obeys Ill: s—as, s—a s, o—a to, g—a lg,
the exact relatiorv=2/d. This yieldsv=2 in one dimen-

sion. Note that the original KSS model consists of the two- g—ag. (4)

species reaction-diffusion systeB—2B, 2B—B, B+C

—C with unequal diffusion constants for both species and isMoreover, 7 is invariant under the inversion:

therefore microscopically different from the WOH model.

However, the authors ¢2] show that their model with equal IV: ¢—-¢, ¢c—-c, o——-0o, f>—f. (5

diffusion coefficients renormalizes by coarse graining to the ) _ _

KSS model. Thus, de Freitast al. correctly assume that In the particular case-=0, the time reflection

their simulated WOH model belongs to the KSS universality — -

class. Therefore, the value ofreported by de Freitast al. \ \/%S(X,t)H— \/EJTQS(X,—U.

turns out to be erroneous as long as one assumes that the _ _

symmetry properties of the fixed point are not destroyed in c(x,t)—c(x,—t), c(xt)—c(x,—t)—c(x,—t) (6)

one spatial dimension. Likewise, their conjectured simple

fractions for the critical exponents have to be rejected. ~ Yields a further discrete symmetry transformation. The sym-
Because the arguments leading to exact critical exponenfgetry V distinguishes the KSS from general DP-C processes.

of the DP-C processes are more or less implicit in several Symmetry | results from the conservation property of the

papers[2,5], | will reconsider their derivation in this Com- field c. Symmetries Il and IV show that dimensionless in-

ment, and show that they all have their roots in particulavariant coupling constants and parameters are defined by

symmetry properties. =ggu %, v="F?u"%, w=ogfu ¢, and the ratio of the ki-
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netic coefficientsp=y/\. Here .~ is a convenient mesos- and anomalous dimensions of the fields involved in the

copic length scale and=4—d. Green functionG. From Eq.(12) one can gather the exact
Dimensional analysis and the scaling symmetryvalues of the dynamical exponent=2 and the correlation

I applied to the Green functions GyR.m.m length exponenv=1/(2—e/2)=2/d.

=([sIN[sIN[cIM[cI™) gives The renormalization of quantities invariant under the
- transformation defining symmetry Ill, likE or F’, involve
Gniom =V NGy Rim i only the product of the field renormalizatiorid=Z;Z,.
4~ 1 Thus, one has a freedom to define one of these factors. With
X({xt}, 7,0 00,0770, FN, v,0) (7 respect to Egs(8) and (10), it is convenient to choose the
_ N-Np - -~ 2 2 trivial renormalizationo= o together withZ,=1. Then the
=0 PN e yptth T U Wp) ® Green functionsG have the s%me scalingS properties under
renormalization as the invariant functioRs One could also
=(glg)NNRPE] oo defineZs#1 and renormalizer=Z; Y. The renormaliza-
p tion properties ofF are not affected by this choice. Hence,
X (X, ypth, w= 7, U,0,W,p), )  one finds the same critical scaling properties of the correla-
where it is assumed that=0 for convenience. Of course, tion and response functions as for the previous one. It fol-
Eq. (8) cannot be used i#=0. lows the anomalous dimension of the filés 7=0. Then

The critical scaling 'prop'erties of t'he Green functions canya anomalous dimension of the response field is given
be extracted from the invariant functioRsandF" by apply- 1y the |ogarithmic derivative oZ with respect to the mo-

ing the renormalization group. To extract UV-finite quanti- i o~ .

ties from the field theory, one introduces bare fields and paMentum scalu at the fixed point. is the only scaling

rameters and renormalizes by appropri@efactors. For ~xponent that one has to determine by perturbation theory.
For the KSS processes vanishes and one cannot follow

S S, % e Uz
example, one uses the schemes=25"s, S-5=2"s, 7 e strategy of the last paragraph. However, for the KSS
—r=Z.1+71,, f—f=Zw"2u*"? etc. Herer, denotes the processes the time reflection symmetry V can be explored.

critical value of . The Z factors have to absorb all the UV With respect to this symmetry and E@), it is now conve-

infinities (the & poles in dimensional regularizatipnThey  nient to choose the ratf@/é:@/g trivially renormalized to-

can only depend on the invariant parametgrs, w, andp.  gether withZ,=Z;=Z2 Then the Green functiond have
The objects of the calculation are the vertex functionsthe same critical scaling as the invariant functiéiis The

I'fin;fam . €., the one-particle irreducible amputated dia-|ogarithmic derivative ofZ at the fixed point yields in this

grams withN s-legs,N slegs,M Cc-legs, andVl c-legs. Itis  case the value ofy=7.

easily seen that diagrams with loops do not contribute to |5 summary, the DP-C processes offer exact relations for

vertex functions witiVl =1. Thus, these vertex functions are some critical exponents including=2 and v=2/d. In the

trivial and given by the corresponding terms displayed in thess case, one hag= "7 as in DP, but with another value. In
dynamic functional7, Eq. (1). Hence, the renormalizations the more general case with cross-diffusior=0 (and of
are trivial: <0) one findsy=0, which yields via the relatiog= »(d
+ 7)/2 the exact order parameter expon@git 1. The dis-
crepancy with the exact and the simulational resultifdyy

Symmetry Il in connection with the trivial renormaliza- roughly 10% may have the origin in corrections to scaling. It
tion of ¢, Eq. (10), shows thatf is renormalized with the IS therefore desirable that the authors reconsider their simu-

sameZ factor asr: Z=Z,. It follows the simple relaton lations and provide a careful analysis of such corrections.
o o Another possible, though unlikely source of the discrepancy,
T _(1—7) L 12 (11) is that in such low dimensions ab=1 the membership of
el f ' the simulated WOH model to the KSS universality class is
spoiled. This may arise if further symmetry-breaking opera-
tors become relevant. Relevance is defined here with respect
%o the nontrivial fixed point. The relevance of quartic terms
for d<2 in the dynamic functiona{l) with respect to the
Gaussian fixed point is not a criterium for that. Additional
relevant quartic terms crucially differentiate between the
WOH and the KSS model and would destroy any of the
exact scaling properties derived from the dynamic functional

J. In particular, also the relationg=7, z=2, and ¢’ =
— nlz, used by the authors ¢f], would become doubtful.

t=¢, c¢=c, y=1v, 0S=0s. (10)

At a fixed pointv, different from 0 and=, 7 changes ac-
cording to this relation by a change of the momentum scal
u— pl (holding bare parameters fixeads r— 7(1)=71%/2.
Thus, one finds from the Eq€8,9) the scaling properties of
the Green functions at a fixed point with finite valuesdgqr,

v, , W, , andp, different from 0 and= (the existence of
such fixed points can be demonstrated in thexpansion
[214!5])

G({x,t},7)=1%G({ulx, yu?1?t}, u 2712722, (12

In Eq. (12) Sg=(N+N+M+M)d/2+(Nn+N7)/2 de- Note added in proofA recent Monte Carlo simulatiof8]
notes the scaling exponent &. d; combines the normal shows that indee@=2 in one spatial dimension.
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