PHYSICAL REVIEW E, VOLUME 64, 057601
Dynamics of localized and nonlocalized optical vortex solitons in cubic-quintic nonlinear media
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The nonlinear dynamics of laser beams carrying phase singularity in media with cubic-quintic nonlinearity
changing from self-focusing to self-defocusing is examined. A novel kind of stable nonlocalized optical
vortices appears in such media as well as localized vortex solitons. Linear stability analysis and numerical
simulations show the stability of localized vortices only in the defocusing region.
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The generation, propagation, and interaction of opticafects, their nonlinearity can be approximated with good ac-
vortices in nonlinear media have been the subject of extensuracy by the cubic-quintic model.
sive studies. In a self-defocusing media transverse instability Recent measurements show that the polydiacetylana
of dark solitary stripe results in the generation of an opticaltoluene sulfonat¢PTS exhibits this kind of saturating non-
vortex soliton(OVS). These solitons are (21)-dimensional ~ linearities with large cubic-quintic indic¢g]. Moreover, the
(two “transverse” and a propagation dimensjstationary ~Nnonlinear index of refraction becomes negative at the peak
beam structures with phase singularity and nonzero anguldyhilé remaining positive in the wings of the beam intensity
momentum. An OVS is a dark spot, i.e., a zero intensityp_roflle._Bemg a self-focusing med|_um, PTS can exhibit at
center surrounded by a bright infinite background. Generabigher intensity features of defocusing media. We show that
tion, dynamics, and interactions of an OVS exhibit interest-due to this peculiarity in such a material it is possible to
ing features and are the subject of ongoing theoretical an@réate both LOVS and OVS. _ o
experimental researdi]. Self-focusing media also support The dynam|_cs of vortices in non_llnear mat_erlals is based
localized soliton solutions with phase dislocation surrounde®n the analysis of a (21)-dimensional nonlinear Schro
by one or many bright rings. To distinguish these solitonicdinger equatioNSE)
structures from OVS’s which have nonzero asymptotes at 5
infinity we term them as localized optical vortex solitons 2ik§+AL5+2k2 on(|é] )5:0' (1)
(LOVS). Recently, it was shown that LOVS are unstable Jz No
against symmetry breaking perturbations that lead to the
breakup of rings into filamen{&]. These filaments form the Where¢ is a slowly varying field envelopey, and on(|£]%)
stable bright solitons which, like free Newtonian particles,are, respectively, linear and nonlinear optical indicas,
fly off tangentially to the initial rings conserving total angu- = d?/dx?+ % gy is the two-dimensional Laplacian describ-
lar momentuni3]. ing beam diffraction, and is a wave vector. In order to

Either OVS or LOVS can be generated using an inputorevent the wave collapse the saturating nonlinearity is re-
light beam with an externally superimposed vortex structurequired. The nonlinear index of refractidhIR) correspond-
Such beams are known in optics as “singular beams” andng to PTS is established to b&n=n,l+n,l? wherel
can be readily generated using different techniques, for in=noc|&|%/4m is the intensity of the electromagnetiEM)
stance, computer synthesized holograms and prescribgddiation. For the\=1.6 um laser radiation the measured
phase mask$4]. At the singularity the field amplitude is values of second- and fourth-order optical indices are, re-
strictly zero while the phase becomes undetermined. Angulaspectively, n,=2.2X 102 cm?/GW and n,=-0.8
momentum of the beam is proportional toN, whereN is x 1073 cm*/GW?. The critical intensity at the peak of the
the beam power and integerdefines its topological charge. pulse profile givingdn=0 is 1,=|n,/n,/=2.75 GW/cns.

In this paper we study the dynamics of a self-trappedSuch a self-focusing mediundén/dI>0) at higher inten-
singular beam in saturating nonlinear media. We investigatsity, | >0.5 3, becomes defocusing, i.e., NIR changes have a
the generation and dynamics of OVS and LOVS. As a modehegative slope. For the peak intendify>0.9 o the NIR be-
nonlinearity we consider the cubic-quintic saturating nonlin-comes defocusing at the peak while remaining focusing at
earity. This kind of nonlinearity has been widely applied inthe wings of the laser beam intensity profile. A spatial ring
different domains of research not only in nonlinear optics buformation has been observed in PTS due to the nonlinearity
also in plasma physid$] as well as in the context of Bose sign changes at the beam center when the beam intensity
superfluid[6]. Taking into account that some of the materials|,(=8 GWr/cn¥) is above the critical ong7].
currently used in optical systems exhibit weak saturation ef- Equation(1) can be rewritten in dimensionless form as
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FIG. 1. Potential as a function of the amplitude for different  FIG. 2. Stationary OVS solution fg8=0.16 (h). Damping of
values of the propagation constghit the perturbed OVS solutioni ). Stationary LOVS solution fo3
=0.18 (j).
JE )
|E+ALE+f(|E| JE=0, (2

at points A= *[0.5+ (0.25+|B])¥?]*? (see curvea in
Fig. 1. For >0 the potential acquires minima at points

. B 2 .
where the nonlinear functiof(|E|?) is A= +[05-(0.25- B)*2Y2 (curve b in Fig. 1). If A

f(|E[2) =|E|2—|E|*. ) > 3/16 the potential maxima become negatigervec). For
B>1/4 the lateral maxima vanidisee lined).
The following normalizations are used/Z, r, /R, andl/I, The numerically obtained LOVS solutions of Ed) cor-
whereZ=\/(2mn,l,) andR=\/(872ngn,l ). respond to the “effective particle” beginning its motion at

Let us now consider the soliton solutions carrying vorti- 0rigin and returning back asymptotically to the initial posi-
ces. Assuming that solutions in polar coordinates are of théon. Such solutions exist for0 3=3/16 where the potential
form E=A(r)exp(imé+iBz), Eq. (2) reduces to an ordi- has a shape similar to cur¥ein Fig. 1. The maximum am-

nary differential equation plitude of LOVS is bounded from above by the condition
An<|Ana{3/4)|~0.87. Form=1 and for givens the “par-
d’A  1dA m? ticle” with “initial velocity” A’(0)=c4, in its way back

FJF Tar PA- r_2A+A3_A5:O’ (4)  due to the “damping,” cannot overpass the potential maxi-

mum at (0,0)-point. However, increasing its initial velocity
the particle can make many oscillations between both poten-
tial wells before its final asymptotic settlement at origin;
such solutions of Eq(4) correspond to many rings LOVS.
For the critical velocity, the effective particle reaches asymp-
éotically the higher maximum of the potential; this solution
corresponds to the OV@ne hin Fig. 2). With increase of3
the central part of the LOVS flattefi8] and widens converg-
ing to the OVS( line j in Fig. 2). In principle, it is possible
to create LOVS with a large transverse width. Notice that the
bulk part of such flattened LOVS is in the region of defocus-
) _ 2 ; _ e ing NIR. The NSE admits both LOVS and OVS solutions.
f’(A+)<0 providedA:>0.5. In dimensional units this cOn-  hejr coexistence is mainly possible due to the particular
dition corresponds to the negative slope of NIRSG/dI ¢ypic-quintic nonlinearity changing from the self-focusing to
<0), i.e, in the asymptotic region of the solutioh(r)  the self-defocusing one. The switching from LOVS to OVS
>0.3] the medium is defocusing. . and vice versa may be used in information processing.

In order to obtain a better understanding we use the anal- |, other domains of the parametgrLOVS solutions do
ogy with a nonconservative motion of a particle. Indeed, Eqnot exist while OVS still appears. Indeed, OVS solutions are

whereA is r-dependent amplitude3 is a propagation con-
stant, andm(#0) is an integer known as the topological
charge of optical vortex.

Numerically obtained solutions of Eq4) with both
boundaries at zero correspond to the LOVS, while the OV
has a nonzero constant field backgroulnd. Asymptotic
formulas for LOVS areA(r—>0)—>r‘mc1 and A(r—x)
—cyrY2exp(-rB). OVS solutions have the same as-
ymptote forr—0 while for r —o the amplitude has a non-
zero valueA(r)=A..+m?/(r?f'(A.)). Here,=f(A.) and

(4) can be rewritten as generated for3<0 corresponding to the potential shape
5 5 ir2 5 similar to curvea (in Fig. 1). We also found out that the
E[(d_A V(A 1%_3((’_’*) ®) OVS solutions exist for3>3/16 (see curvec). In other
dr|\dr 2 dr  r\dr)’ words, the “effective particle” cannot overpass but only ap-

proach asymptotically the lower potential maximum. For fur-

where the “effective potential” isV(A)=—BA2+A%2  ther increases oB lateral maximum is not high enough to

—A/3. stop the particle. FoB>1/4 solutions are no more bounded

The profile of the potential/(A) for different values of (see curved). Numerical simulations for a single charge
the propagation constart is presented in Fig. 1. IB<0, show that the stable OVS appears 3/16 (A2>0.75).

the potential has a minimum at the poitE0 and maxima It is usually believed that for the ordinary self-defocusing
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FIG. 4. Growth ratey as a function of the azimuthal indéxfor
propagation constarg=0.10 (curveq), B=0.13(curves), and

-0.05 0.00 0.05 0.10 0.15 020 B B=0.14 (curve )

FIG. 3. Field derivative at the origin versus propagation con- . ) )
stantB for OVS (0) and LOVS ). Growth ratey as a function of the azimuthal indéxfor
different values of propagation constgiitand form=1 is
media “single-charged” OVS are topologically stable given in Fig. 4. PhysicallyL must be an integer to ensure
whereas vortices with a larger valuerafmay decay into the ~@zimuthal periodicity, but it appears in the linearized equa-
single-charged onEl]. We would like to emphasize that in tion as a real parametgg]. N
the case of cubic-quintic nonlinearity the same beam can If the constantB is smaller than the critical value 0.145,
contain regions with not only defocusing but also focusingtOVS are stable for radial perturbatioh {0) but not for
NIR. Indeed, near its center £0) such a novel kind of azimuthal perturbations. Fg>0.145 LOVS become stable
OVS is in the focusing regime. Already for small radius (maximal growth ratel’=0). OVS is stable in the whole
amplitude maximum(larger than 0.707) is reached corre- Studied rangéthe corresponding curve coincides with agis
sponding to the defocusing NIR. in Fig. 9).

The intensity dependent switching from the focusing to Numerical simulations of Eq(2) performed using the
defocusing regime influences the Stabi”ty properties' Som@ethOd of finite differences confirm the Stabl'lty of an OVS
insight can be obtained comparing the behavior of the field®redicted by linear stability analysis. Indeed, the evolution of
derivative at the origirc; as a function of the propagation an OVS stationary state perturbed by Gaussian rioiseei
parametes for a single charged OV&lotted lineo in Fig. i Fig. 2) converges to the stationary staliee h) due to the
3) and LOVS(full line p similar to the one in Ref8]). The  generation of radiation spectrum.
bulk of the OVS is always in the defocusing regime. Thus on [N order to obtain a better insight in nonlinear dynamics of
the monotonically decreasing curve deepening of the poter-OVS one can analyze integrals of motion of Eg). For
tial near the originsee Fig. 1 for larger 8 will be balanced ~Zero boundary conditions it is easy to demonstrate that Eq.
by a decrease of the “initial velocity¢,. The LOVS has the (4) conserves the following integrals of motion: the “photon
same behavior on the negative slope of the cygviee., for ~ humber” (or beam power
B larger than the maximum g=0.145) in the self-
defocusing region. Howev_er, on _the positive slopep¢B N:f dr |E[?, 9)
<0.145), in the self-focusing region, the effects due to the
increase ofB are enhanced by the increase of the “initial
velocities” c;.

In order to perform linear stability analysis of both OVS
and LOVS the assumed steady state solution is perturbed H :f dr, (|V, E|?—|E|*2+|E|%/3), (10)

the Hamiltonian

E={A(r)+[a"(r,2)expiLO)+a (r,z)
and the angular momentum

Xexp(—iL §)]}exp(imo+iBz), (6)
wherea™ <A and azimuthal index=1,2,3 ... . T
Substituting such a solution in E() and linearizing with -
respect to the perturbations the following coupled equations
are obtained: 0.05 - .
Q*a"+A%(1-2A?%(a*)*=0, (7) -
where operato~ reads — T | - T -
0.00 0.05 0.10 015 B
4132
Q =i i‘ﬂ‘*’ E ir i — H +A?(2—3A2). FIG. 5. Forp<0.145 LOVS is unstablémaximal growth rate
Iz ror or r2 ['#0) but it becomes stable fg8>0.145. OVS is stable in the

(80  whole examined range.
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ay ax
Any initial field distribution has to conserve these integrals
during their evolution. Following Zakharost al. [5], if the
Hamiltonian is negative there is no diffraction since the
maximum value of the field intensity haszindependent
lower bound|E|2_,>2|H|/N. Saturating nonlinearity pre-
vents the wave collapse to develop. As a consequence, the FIG. 6. Break of the beam into two filaments running away
beam is self-trapped. For steady state solution, ., tangentially forz=50, z=100, andz= 160.
=Eq(x,y)exp(iBz) the Hamiltonian is

11

authors argue that the stability of LOVS f@:>0.145[8] is
observed most probably due to an insufficiently long run. We
also simulated, for differens, the evolution of an initial
stationary state perturbed radially and azimuthally by Gauss-
Therefore the LOVS appears to be in the self-trapped regiman noise. In order to be sure that some very slow instability
and consequently neither azimuthal nor radial modulatioris not developing we performed numerical simulations until
instability leads to either its diffraction or collapse. However, z=6000, i.e., for 150 soliton period&,=2w/B8~40. Our
modulation instability usually leads to the beam breaking insimulations confirm the result of Rgf8]. With the increase
multiple filaments. These filaments have to conserve the totalf 8 (0.145< 8<3/16) curves for LOVS and OV8espec-
angular momentunjM|=|m|N. Since the fusion of fila- tively, p and o in Fig. 3) converge suggesting the similar
ments is not possible due to the topological reasons, they catability properties.
eventually spiral about each other or fly off tangentially to We established a novel kind of stable OVS in the
the initial ring generating bright solitonic structures found focusing—defocusing optical and other media. The linear sta-
for index saturation nonlinearity3]. Our numerical simula-  bility analysis and numerical simulations confirm the stabil-
tions for 8<0.145 give evidence of a quickly developing ity of LOVS in the defocusing region and show its breaking
instability. In agreement with predictions of linear stability into filaments in a focusing one. We demonstrated the coex-
analysis ¢y=1" for L=2 in Fig. 4 the beam breaks into two istence of LOVS and OVS solutions in such media due to the
filaments running away tangentially in opposite directionscubic-quintic nonlinearity switching from the self-focusing
without spiraling(see Fig. 6 for3=0.1). Both filaments like to the self-defocusing regime and vice versa. Such a switch-
spatial solitons remain stab[8]. ing may open for different kinds of materials a new domain
We hope that our results obtained by linear stabilityof potential applications for integrated all-optical signal
analysis can help in resolving a controversy; in Réf0] processing.
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