
PHYSICAL REVIEW E, VOLUME 64, 057402
Thermodynamic functions of harmonic Coulomb crystals
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Phonon frequency moments and thermodynamic functions~electrostatic and vibrational parts of the free
energy, internal energy, and heat capacity! are calculated for bcc and fcc Coulomb crystals in the harmonic
approximation with a fractional accuracy&1025. Temperature dependence of thermodynamic functions is
fitted by analytical formulas with an accuracy of a few parts in 105. The static-lattice~Madelung! part of the
free energy is calculated with an accuracy of;10212. The Madelung constant and frequency moments of hcp
crystals are also computed.
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I. INTRODUCTION

Coulomb crystals, introduced into theory by Wigner@1#,
were studied by many authors. A thorough discussion w
given, e.g., in Refs.@2,3#. The Ewald technique@4,5# was
used to calculate shear constants@6# and dispersion relation
@7# of such crystals. Thermodynamics in the harmonic-latt
approximation was analyzed, e.g., in Refs.@3,8,9#. Anhar-
monic corrections were discussed in Refs.@10–12#. Chabrier
et al. @13# suggested an approximate analytical model of
harmonic Coulomb crystal, which is widely used in astr
physics~e.g., Refs.@9,14,15#!. However, precise numerica
calculations of the thermodynamic functions, valid at a
temperatureT, have not been published.

Here we report highly accurate calculations of phon
spectra and frequency moments of body-centered-c
~bcc!, face-centered-cubic~fcc!, and hexagonal-close-packe
~hcp! one-component Coulomb lattices in the harmonic
proximation. We also present accurate calculations of th
modynamic functions for bcc and fcc lattices at any values
the quantum parameteru5Tp /T, where Tp5\vp /kB is
the ion plasma temperature andvp5A4pniZ

2e2/M is the
ion plasma frequency (ni , M, andZe being the ion number
density, mass, and charge, respectively!. The numerical
results are given in the easy-to-use form of tables and fit
formulas.

II. PHONON SPECTRUM AND ELECTROSTATIC
ENERGY

Consider a crystal of identical ions immersed in the u
form compensating background. The basic definitions ar
follows ~see, e.g., Ref.@5#!. Let us take an arbitrary ion as th
origin of a Cartesian reference, frame and specify the lat
basis l1 ,l2 ,l3 generating direct lattice vectorsl(n1 ,n2 ,n3)
5n1l11n2l21n3l3, wheren1 , n2, andn3 are arbitrary inte-
gers. The vectorsg(n1 ,n2 ,n3)5n1g11n2g21n3g3, where
gi• l j52pd i j , form the reciprocal lattice. Also consider th
primitive cell, the parallelepiped$n1l11n2l21n3l3%, with 0
<n1 ,n2 ,n3,1. Let Ncell be the number of ions in the primi
tive cell enumerated with an indexk. The choice of the vec-
tors l i is not unique, and one can describe a given latt
using differentNcell . We will adopt the standard conventio
and choose the primitive cell with the lowestNcell . The bcc
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and fcc lattices are simple~the lowestNcell51!, whereas for
the hcp lattice one has the lowestNcell52.

Along with the primitive cell one usually considers th
Wigner-Seitz~WS! cell, which is a polyhedron with face
crossing the lattice vectors at their midpoints at the rig
angle. The volume of the WS cell is equal to that of t
primitive cell, Ncell /ni . A convenient measure of interpa
ticle spacing is the ion-sphere radiusa5(3/4pni)

1/3. The
WS cell of the reciprocal lattice is the first Brillouin zon
~BZ!; its volume is equal toVBZ5(2p)3ni .

The frequenciesvs and polarization vectorses of lattice
vibrations (s51, . . . ,3Ncell enumerates vibration modes! at
any pointq of the BZ are determined by~e.g., Ref.@5#!

v2

vp
2 es

ak2(
k8b

Dab~k,k8,q!es
bk850, ~1!

where the summation is over three Cartesian coordin
~Greek indices! and over the ions in the primitive cell (k8);

Dab~k,k8,q!5
1

3
dabdkk82

a3

3 S ]2

]ua]ub
(

l
8
e2 iq• l

ur2uu D
u→0

~2!

is the dynamical matrix,r5 l1x(k)2x(k8), andx(k) speci-
fies the ion position within the primitive cell. The prime
sum means that the terml50 is excluded ifk5k8.

The elements of the dynamical matrix can be calcula
using the Ewald technique ofu-function transformations
~e.g., Ref.@5#!, which yields

Dab~k,k8,q!5
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TABLE I. Parameters of Coulomb crystals.

Lattice type KM ^(v/vp)22& ^(v/vp)21& ^(v/vp)& ^(v/vp)3& ^ ln(v/vp)&

bcc 20.895 929 255 682 12.972 2.798 55 0.511 3875 0.250 3120.831 298
fcc 20.895 873 615 195 12.143 2.719 82 0.513 1940 0.249 8420.817 908
hcp 20.895 838 120 459 12.015 2.7026 0.513 33 0.249 8420.815 97
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2 i ~g2q!•@x~k!2x~k8!# D . ~3!

The last sum is over all reciprocal lattice vectors, andr is a
free parameter adjusted to yield equally rapid convergen
of direct and reciprocal sums; a suitable choice isra'2.
Numerical calculations according to Eq.~3! become unstable
at qa!1 ~near the BZ center!. In this region we replaceDab
by an appropriate asymptote@16#, whose coefficients have
been recalculated with an accuracy;1028 using the Ewald
technique.

The static-lattice binding energy of a Coulomb lattice

E05KMZ2e2/a, ~4!

where the Madelung constantKM can be written as

KM5
a

2Ncell
(
k8,k
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4r2
1 ig•@x~k!2x~k8!# D . ~5!

PreviouslyKM was calculated, e.g., in Refs.@17,18#. Our
calculated values ofKM for bcc, fcc, and hcp crystals ar
given in Table I.

III. BZ INTEGRATION AND FREQUENCY MOMENTS

In many physical problems, one needs to average fu
tions f (v) over phonon branches and wave vectors:

^ f &5
1

3Ncell
(

s
f̄ , f̄ 5

1

VBZ
E

BZ
f ~q!dq, ~6!

where f (q)[ f (vs(q)). In Eq. ~6! we will use the Holas
integration method considered in Ref.@19# for the bcc lattice:

f̄ 5E
0

1

djE
0

1

dhE
0

1

dzhj2F$ f %, ~7!
05740
es
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wherej, h, and z are appropriate BZ coordinates. For th
bcc crystal, F$ f %56 f (q), with q[(qx ,qy ,qz)5(2
2h,h,hz)pj/al , and the lattice constantal is given by
nial

352. We calculate the integrals in Eq.~7! by the Gauss
method involving the nodes of the Jacobi polynomialsPn

(0,0) .
The integral overh is alternatively treated by the generalize
Gauss scheme with weight functionh, which involves the
nodes ofPn

(1,0) .
This approach can also be developed for fcc and hcp

tices. In both cases we again come to Eq.~7!, but with dif-

ferent F$ f %. For the fcc lattice, we haveF$ f %5 3
2 @ 3

2 f (q1)
1 3

2 f (q2)1 f (q3)#, where qi5Qipj/(2al), Q15(21h
1hz,21h2hz,222h), Q25(212h,22h1hz,22h
2hz), Q35(4,h1hz,h2hz), andnial

354.
For the hcp lattice,F$ f %52 f (q1)/h12 f (q2), whereqi

5Qi2pj/(3al), Q15(A3,z, 3
2 h/s), Q25(hA3,hz, 3

2 /s),
and nial

35A2. Heres5A8/3 is twice the ratio of the dis-
tance between the hcp lattice planes to the distance betw
neighbors within one plane.

Phonon frequency moments^(v/vp)n&, and the average
^ ln(v/vp)&, obtained by this method, are given in Table I. W
remind the reader that^(v/vp)2&5 1

3 , according to the Kohn
rule ~e.g., Ref.@17#!. The accuracy of the data in Table
corresponds to the number of digits shown; it is the same
higher than the accuracy of the previous results~e.g., Refs.
@11,17,19,20#!, except only the value of̂v/vp& for the hcp
lattice, calculated more accurately in Ref.@20# (^v/vp&hcp
50.5133368).

IV. THERMODYNAMIC FUNCTIONS

The free energyF of a harmonic Coulomb crystal consis
of the static-lattice contributionE0; the contribution from
zero-point ion vibrations,32 N\^v&; and thermal free energy
in the harmonic lattice approximation,F th . Accordingly, the
reduced free energyf [F/(NkBT) is

f 5KMG11.5̂ w&1 f th , ~8!

where f th(u)53^ ln(12e2w)&, and

G5
~Ze!2

akBT
, w5

\v

kBT
5u

v

vp
.

Thus the reduced internal energyu[U/(NkBT)
52] f /] ln T is

u5KM G11.5̂ w&1uth , ~9!

where
2-2
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TABLE II. Parameters of the analytical approximation@Eq. ~13!# of the thermal free energies of bcc an
fcc Coulomb lattices. Powers of 10 are given in square brackets.

bcc lattice fcc lattice
n an an bn an an bn

0 1 261.66 1 303.20
1 0.932446 0.1839 0 0.916707 0 0
2 0.334547 0.593586 7.07997 0.365284 0.532535 7.7255
3 0.265764 5.4814@23# 0 0.257591 0 0
4 5.01813@24# 0.0409484 3.76545@24# 0.0439597
5 0 3.97355@24# 0 1.14295@24#

6 4.757014@23# 3.9247@27# 5.11148@25# 4.92387@23# 2.63013@27# 5.63434@25#

7 0 2.19749@26# 0 1.36488@26#

8 4.7770935@23# 5.8356@211# 4.37506@23# 6.6318@211#
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53K w

ew21
L . ~10!

The harmonic constituent of the reduced heat capacitycV
5(NkB)21]U/]T5u1]u/] lnT, is

cV~u!5uth2
duth

d ln u
53K w2e2w

~12e2w!2L . ~11!

Using the results of Secs. II and III, we have calcula
f th(u), uth(u), andcV(u) for bcc and fcc crystals as corre
sponding BZ averages. The mean numerical error is e
mated as;1026, and it is a few times larger atu@1. Let us
discuss possible analytical approximations. The mode
Chabrieret al. @13# assumed a linear dispersion law for tw
acoustic~Debye-type! modes,v'5avpq/qB , and an opti-
cal ~Einstein-type! mode, v i5gvp . The known phonon
spectrum moments of a Coulomb crystal are approxima
reproduced with the choicea'0.4, g'0.9. In this model,

f th52 ln~12e2au!1 ln~12e2gu!2
2

3
D3~au!, ~12!

whereD3(z)[(3/z3)*0
zt3/(et21)dt is the Debye function

This model reproduces numerical values off th , uth , andcV
with an accuracy of;10%.

A heuristic generalization of Eq.~12! provides a conve-
nient fitting formula to f th . Introducing three logarithmic
terms~according to three phonon modes! and replacingD3
by an arbitrary rational-polynomial function possessing
correct asymptote}u23 at largeu, we obtain

f th5 (
n51

3

ln~12e2anu!2
A~u!

B~u!
, ~13!

where

A~u!5 (
n50

8

anun,
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7

bnun1a6 a6 u91a8 a8u11; ~14!

the parametersan , an , andbn are given in Table II.
Calculation of the harmonic thermal energy and heat

pacity from Eq.~13! using Eqs.~10! and ~11!, yields

uth5 (
n51

3
anu

eanu21
2u

A8~u!B~u!2A~u!B8~u!

B2~u!
, ~15!

cV5 (
n51

3 an
2u2

~eanu/22e2anu/2!2

1u2
A9 B222A8 B8 B12 A ~B8!22A B B9

B3
, ~16!

where the first and second derivativesA8, A9, B8, andB9 are
readily obtained from Eq.~14!. Approximations~13!, ~15!,
and ~16! have a fractional accuracy within 531026, 2
31025, and 531025, respectively.

In the classical limitu→0, the exact expansion off th is

f th53 lnu13 K lnS v

vp
D L 2

3

2 K v

vp
L u1

1

24
u21•••.

~17!

Note that the term2 3
2 ^v/vp&u cancels the zero-point en

ergy in Eq.~8!. Our fit @Eq. ~13!# reproduces the logarithmic
constant, and linear terms of Eq.~17! exactly ~by construc-
tion!, whereas the last~quadratic! term is reproduced with
the relative accuracy of 531025 and 1026 for bcc and fcc
lattices, respectively. Although we do not present calcu
tions of the thermal thermodynamic functions for hcp cry
tals, our analysis reveals that they do not deviate from
functions for fcc crystals by more than a few parts in 13.
Our results can be used in any applications which requi
fast and accurate evaluation of the thermodynamic functi
of the Coulomb crystals.
2-3
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