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Thermodynamic functions of harmonic Coulomb crystals
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Phonon frequency moments and thermodynamic functiefectrostatic and vibrational parts of the free
energy, internal energy, and heat capacitye calculated for bcc and fcc Coulomb crystals in the harmonic
approximation with a fractional accuracy10 °. Temperature dependence of thermodynamic functions is
fitted by analytical formulas with an accuracy of a few parts if. he static-latticMadelung part of the
free energy is calculated with an accuracy-0f0 2. The Madelung constant and frequency moments of hcp
crystals are also computed.
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l. INTRODUCTION and fcc lattices are simplghe lowestN ;= 1), whereas for
_ _ _ the hcp lattice one has the lowdsdt,=2.
Coulomb crystals, introduced into theory by Wigriéf, Along with the primitive cell one usually considers the

were studied by many authors. A thorough discussion wagvigner-Seitz(WS) cell, which is a polyhedron with faces
given, e.g., in Refs[2,3]. The Ewald techniqué4,5] was  crossing the lattice vectors at their midpoints at the right
used to calculate shear constaiband dispersion relations angle. The volume of the WS cell is equal to that of the
[7] of such crystals. Thermodynamics in the harmonic-latticeprimitive cell, N /n;. A convenient measure of interpar-
approximation was analyzed, e.g., in R€f3,8,9. Anhar-  ticle spacing is the ion-sphere radias= (3/4mn;)%. The
monic corrections were discussed in R¢t—-12. Chabrier WS cell of the reciprocal lattice is the first Brillouin zone
et al. [13] suggested an approximate analytical model of thqBz); its volume is equal t&/g,=(27)°n; .

harmonic Coulomb crystal, which is widely used in astro-  The frequenciesss and polarization vectors, of lattice
physics(e.g., Refs[9,14,15). However, precise numerical viprations 6=1, . . . , 3 enumerates vibration modeat

calculations of the thermodynamic functions, valid at anyany pointq of the BZ are determined bfe.g., Ref.[5])
temperaturel, have not been published.

Here we report highly accurate calculations of phonon w? ok , oK
spectra and frequency moments of body-centered-cubic a?es —Z Dp(k,k",q)es™ =0, @
(bco), face-centered-cubidcc), and hexagonal-close-packed P KB

(hcp) one-component Coulomb lattices in the harmonic apyhere the summation is over three Cartesian coordinates
proximation. We also present accurate calculations of ther,

’ i ) gGreek indicesand over the ions in the primitive celk();
modynamic functions for bcc and fcc lattices at any values o
the quantum paramete§=T,/T, where T,=hw,/Kg is 1 a3l &2 ,e—iq~l
the ion plasma temperature aag,= Jamn,Z?e?/M is the Dop(KK',0) = 5600k — = >
: : , 3 3| au,oug G [r—uf
ion plasma frequencyn{, M, andZe being the ion number u—0
density, mass, and charge, respectivelyhe numerical 2
results are given in the easy-to-use form of tables and fittin
formulas.

93 the dynamical matrix; =+ x(k) —x(k"), andx(k) speci-
fies the ion position within the primitive cell. The primed
sum means that the terta 0 is excluded ifk=k'.

The elements of the dynamical matrix can be calculated
using the Ewald technique o#-function transformations

Consider a crystal of identical ions immersed in the uni-(€-g- Ref[5]), which yields
form compensating background. The basic definitions are as 53
follows (see, e.g., Ref5]). Let us take an arbitrary ion as the D (kK .q) = 15 s _4P a 5.8
origin of a Cartesian reference, frame and specify the lattice apl KL A)= 3 CapOkic 9ym P
basisl,l,,l3 generating direct lattice vectodgn,,n,,ns3)
=n4l4+nsl,+nsl3, whereny, n,, andns are arbitrary inte-
gers. The vectorg(n,,n,,n3)=n;0;+Ny0,+N3g;, where _EI'
gi-lj=2m¢;;, form the reciprocal lattice. Also consider the
primitive cell, the parallelepipe@lv,l,+ v,l,+ v5l3}, with O
<vq,v,,v3<1. LetNg be the number of ions in the primi-

II. PHONON SPECTRUM AND ELECTROSTATIC
ENERGY

4 r,r 22
p3a3 azﬁe*p r
3\/; r

. pa® (31,1 g= Sap'?)

tive cell enumerated with an indéx The choice of the vec- 3rt

tors |; is not unique, and one can describe a given lattice

using differentN..,. We will adopt the standard convention % ( erfc(pr) + ie—pzrz) e ia!
and choose the primitive cell with the lowest,,. The bcc pr Jr
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TABLE |. Parameters of Coulomb crystals.

Lattice type Kwm ((w/wp)_2> <(w/wp)_1> ((wlwp)) ((w/wp)3> (In(w/wp))
bcc —0.895929 255682 12.972 2.798 55 0.5113875 0.2503%+0.831298
fcc —0.895873615195 12.143 2.71982 0.5131940 0.249840.817 908
hcp —0.895838 120459 12.015 2.7026 0.51333 0.249 84-0.81597
1 (9.—9.) (95— qp) where &, 7, and are appropriate BZ coordinates. For the
3 e bce crystal, F{f}=6f(q), with q=(ay,q,,q,)=(2
cell @ lg—a| —-n,n,ml)wélq, and the lattice constard; is given by
9—qP2 n;a’=2. We calculate the integrals in E€f) by the Gauss
% p( _ 1974 method involving the nodes of the Jacobi polynomR{$?.
4p® The integral ovem is alternatively treated by the generalized
Gauss scheme with weight functiop which involves the
(1,0)
—i(g=a)-[x(k)—x(k")]|. (3  nodes ofPy 7.
This approach can also be developed for fcc and hcp lat-

tices. In both cases we again come to Ef), but with dif-

The last sum is over all reciprocal lattice vectors, and a  forent FIf}. For the fcc lattice, we haver{fl=2[2f(qy)

free parameter adjusted to yield equally rapid convergenc
of direct and reciprocal sums; a suitable choicep#s~2.
Numerical calculations according to E®) become unstable
atga<1 (near the BZ centgrIn this region we replacB .z

by an appropriate asymptof&6], whose coefficients have

®331(qp) +1(ds)], where g=Qmé/(2a), Qi=(2+7

+ 78,2+ n—nl,2-27n), Q=(2+29,2—n+nl{,2—7n
—n¢), Q3= (4,n+ n¢,n— n¢), andn;a}=4.

For the hcp lattice,F{f}=2f(q,)/ n+2f(q,), whereg;

been recalculated with an accuraeyl0® using the Ewald = Qi27¢/(3a)), Qu=(\3.4,37l0), Qo=(7V3,n¢,3/0),

technique.

andn;a’=\2. Hereo=/8/3 is twice the ratio of the dis-

The static-lattice binding energy of a Coulomb lattice is tance between the hcp lattice planes to the distance between

neighbors within one plane.
Eo=KuZ’e’/a, (4) Phonon frequency momen{$w/w,)"), and the average
(In(w/wy)), obtained by this method, are given in Table I. We

where the Madelung constal¥, can be written as remind the reader thd{w/w,)?)= 3, according to the Kohn
rule (e.g., Ref.[17]). The accuracy of the data in Table |
Ky = a S erfolpr) 3 pa corresponds to the number of digits shown; it is the same or
2N el Kk T r 8p’a’® \/; higher than the accuracy of the previous res(dtg., Refs.
[11,17,19,20), except only the value dfw/w,) for the hcp
3 o1 lattice, calculated more accurately in RE2O| ((w/wp)nep
o > 2=5 —0.5133368).
cell k' .k 9 g7a
% gz ) IV. THERMODYNAMIC FUNCTIONS
xXexp — ——=+ig-[x(k)—x(k")]]. (5) ] ]
4p? The free energy of a harmonic Coulomb crystal consists

of the static-lattice contributiory; the contribution from

PreviouslyKy was calculated, e.g., in Reffl7,18. Our  zero-point ion vibrationsi N7 (w); and thermal free energy
calculated values oKy for bee, fce, and hep crystals are jn the harmonic lattice approximatioRy,. Accordingly, the

given in Table 1.

reduced free energly=F/(NKkgT) is

Il. BZ INTEGRATION AND FREQUENCY MOMENTS f=Kyl+1.5w)+fy, 8

In many physical

problems, one needs to average funGyheref,,(6)=23(In(1—e™"), and

tions f(w) over phonon branches and wave vectors:

(Ze)? hw 1)
(Hh=s—2 1, f_=if f(q)da (6) et Vet Yy
3Neat & ' VezJez ’ ° ° °
) Thus the reduced internal energyu=U/(NkgT)
where f(q)=f(ws(q)). In Eq. (6) we will use the Holas _ _ 5¢/51nTis

integration method considered in REE9] for the bcc lattice:

f= folds fold ] foldznfzf{f}. (7

u=Ky I'+ L.5w)+uy,, 9)
where
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TABLE Il. Parameters of the analytical approximatideg. (13)] of the thermal free energies of bcc and
fcc Coulomb lattices. Powers of 10 are given in square brackets.

bcc lattice fcc lattice
n an a, b, an a, b,
0 1 261.66 1 303.20
1 0.932446 0.1839 0 0.916707 0 0
2 0.334547 0.593586 7.07997 0.365284 0.532535 7.7255
3 0.265764 5.481¢— 3] 0 0.257591 0 0
4 5.01813 -4]  0.0409484 3.76545-4]  0.0439597
5 0 3.97355 —4] 0 1.14295 — 4]
6 4.757014-3] 3.9247-7] 5.1114§-5] 4.92380—3] 2.63013-7] 5.63434-5]
7 0 2.19749 — 6] 0 1.36489 — 6]
8  4.777093%5—3] 5.835¢ —11] 4.37506 —3] 6.6318 —11]
df w !
Usn(60) = |ntha =3< ew_1>. (10) B(0)=nzo bn0"+ ag ag 09+ agagh™; (14
The harmonic constituent of the reduced heat capacity, the parameters,, a,, andb, are given in Table II.
=(Nkg) "*9U/dT=u+u/dInT, is Calculation of the harmonic thermal energy and heat ca-
pacity from Eq.(13) using Egs.(10) and(11), yields
dug, wle W
Cv(6)= U dln6_3 (1—e W2/’ (1) i an A’(6)B(8)—A(6)B’(6) L
Uih =4 e“na—l 0 Bz( 0) ’ ( 5)
Using the results of Secs. Il and Ill, we have calculated
fin(6), uyn(0), andcy(6) for bcc and fcc crystals as corre- 3
sponding BZ averages. The mean numerical error is esti- aﬁaz
mated as~10 ©, and it is a few times larger a@t=1. Let us Cv=E & (emn0I2_ g~ an0l2)2
discuss possible analytical approximations. The model of
Chabrieret al.[13] assumed a linear dispersion law for two A"B?-2A'B'B+2A(B’)>~ABB’
acoustic(Debye-typ¢ modes,w, = @w,d/qgg, and an opti- +6° 53 , (16)

cal (Einstein-typ¢ mode, w|=yw,. The known phonon
spectrum moments of a Coulomb crystal are approximately
reproduced with the choice~0.4, y=~0.9. In this model,  where the first and second derivatives A”, B’, andB" are
readily obtained from Eq(14). Approximations(13), (15),
2 and (16) have a fractional accuracy within>510"%, 2
fn=2In(1—e *")+In(1—e" %)~ 3Ds(ad), (120 x1075, and 5<10°®, respectively.
In the classical limitd— 0, the exact expansion &f, is

where D5(z)=(3/2%) [§t3/(e'— 1)dt is the Debye function. . )
This model reproduces numerical valuesfgf, uy, andcy, _ ® w >
with an accuracy of-10%. fn=3In6+3 < In(w—p) > a §<w_p> OF 280+
A heuristic generalization of Eq12) provides a conve-
nient fitting formula tofy,. Introducing three logarithmic
terms (according to three phonon modeand replacindds  Note that the term-3(w/w,) 8 cancels the zero-point en-
by an arbitrary rational-polynomial function possessing theargy in Eq.(8). Our fit [Eq. (13)] reproduces the logarithmic,

correct asymptotes 6~ ° at large6, we obtain constant, and linear terms of E(L7) exactly (by construc-
. tion), whereas the lastquadrati¢ term is reproduced with
3 o ACO) the relative accuracy of 10 ° and 10 ® for bcc and fcc

fth_ngl In(1—e “n )_W' (13 |attices, respectively. Although we do not present calcula-

tions of the thermal thermodynamic functions for hcp crys-
tals, our analysis reveals that they do not deviate from the
functions for fcc crystals by more than a few parts irf.10
8 Our results can be used in any applications which require a
A(0)= 2 a,o", fast and accurate evaluation of the thermodynamic functions
n=0 of the Coulomb crystals.

where
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