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Ising model on a small world network
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A one-dimensional Ising model is studied, via Monte Carlo simulations, on a small world network, where
each site has, apart from couplings to its two nearest neighbors, a certain probability to be linked to one of its
farther neighbors. It is demonstrated that even a small fraction of such links enables the system to order at finite
temperatures. The critical exponghis smaller than the two-dimensional value, and seems to be independent
of the concentration of the extra links. The dependence of the magnetization and the critical temperature on the
concentration of the small world links is also presented.
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Static and dynamic properties of different models on It seems, therefore, interesting to investigate the problem
small world networks have been extensively studied. Suclof existence of a ferromagnetic state in the Ising model on a
networks interpolate between topologically ordered and ransmall world network. In view of the complexity of the prob-
dom systems. In one extreme there is a one-dimension&m and following from it need for approximations in an
(1D) chain where each lattice site is connected to its twoanalytic approach, we shall use Monte Caf¢C) simula-
nearest neighboréNN). On the other end is a completely tions performed on much longer chains. Although one cannot
random system in which some NN bonds are exchanged fdxPect from MC simulations to prove or disprove the exis-
links to more distant neighbors. The model has been introtence of finiteT, for, e.g., single additional link, such simu-
duced by Watts and Strogdftz]. It has been then applied to 'ations give however valuable arguments. _ ,
study disease transmission and probability of reaching epi-  OUr model is constructed as follows. We consider a chain
demic behaviof2], percolation[3] or minimal path[4,5]. of L sites, each of them characterized by a two-valued func-

Some dynamic properties like diffusigf] or relaxation[7] EOE (sp.m) i~ iéévr\]/e 'mﬁ’gfi F():?nev?tlﬁ bc::undﬁrr]y contd|—
have been also investigated. An elegant mean-field-like 500N (U'“-_(.T')' =ach spin Interacts acoupiing, set as

: . equal 1 for simplicity, with its two nearest neighbors. This
lution of the small world network has been proposed in Ref.

. corresponds to taking=1 in the model of Watts and Stro-
[8]. Watts and Strogatil-] suggested that.by cha_nglng 2 gatz [1]. In contrast to the Watts and Strogatz model, here
small amount of regular links to nearest neighbors into mor

. e he couplings between NN remain unchanged. We add new
distant ones the system undergoes a transition to a NeWandom links without modifying the old onésee Fig. 1 In

small world type of behavior. This has been challenged in, gense this preserves the colloquial “small world” charac-
Ref.[9], where the authors claim that the onset of the smallg, \yhere we find unexpected mutual friends without loosing
world behavior is a crossover phenomenon, not a phase tragpntact with the old ones. With a probability a spin is
sition. linked additionally (with the same unit strengtho a ran-

It is well known that the one-dimensional Ising model domly chosen spin, provided the two are not nearest neigh-
cannot exist in an ordered state at any finite temperature. Aors. Each spin may have at most one such extra link. This
simple argument proving itsee, e.g., Ref{10]) does not type of construction is similar to the one used in R&f.
give a clear answer in the small world network, where theThe casep=0 corresponds to the 1D Ising model where
lattice siteq(spins in the Ising modghkre additionally linked every spin interacts only with its two nearest neighbors. For
by random couplings. Increasing the domain of overturned=1 each spin has three couplings—two as before to NN
(sayS=—1) spins until their number is equal that =1, and one to some more distant spin.
may, or may not, cost energy, depending on the configura-
tion of the long range links.

The problem of existence of a finit&, in the Ising model
on a small world network has been studied in Ré&d]. The
authors used analytic approach, but because of the math-
ematical problems they had to make some approximations.
They concluded that for arbitrarily small but finite disorder
and at sufficiently low temperatures, the system shows a
mean-field-like low-temperature behavior. Analytic calcula-
tions have been augmented by numerical simulations on
chains of up to 8000 spins. On that basis the authors claimed
that any fraction ofp results in ordering of the system. The
early findings[12] seem, however, to suggest that adding
finite long-range interactions to the 1D Ising system may not
be sufficient to create a ferromagnetic state. FIG. 1. Example of a small world network far=0.5.
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The MC simulation, based on the Metropolis algorithm, ]
goes as follows. At the beginning, for a chosen valug,of 1.0 cmesoreee,,
the additional small world links are created between lattice ] s ° + ®
sites. Then all the spins are given the same valdudsor 05 ° © * N *
+1. Next, a sping; is randomly chosen and its energy is o o .
calculated as < 0.7 DD o + .
§ °°] o P e
g ]
€=—oi(oi_1t0i1) 00, N § 054 o + \
= +
g > ° ? !
where the last term is present if there is a long-range link 03 o o + 2.
from the sitei to the sitej, ando; is the value of the spin at 02] |9 Booy o + .
the site to which the siteis connected. If flipping the spin N R e * H
o,— — a; lowers the energy, the flip is accepted. Otherwise a 5 8 % %
random number is generated and if it is smaller than S e S U S e S UL S S B
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 038 0.9 1.0
temperature

u=ex — (€ini— €fin)/ (ksT)], 2
where theg;,; and ey, are the energies before and after the
flip and T is the dimensionless temperature reduced by th
coupling constant, then the spin is also flipped. After choos-
ing in such a wayL spins, one MC stegMCS) has been
accomplished. Time is measured in MCS. At a given time
interval all spin values are added and the sum divided. by
gives the net magnetizatiom(p,t), as a function of the
concentratiorp of the extra links and the time To get the

FIG. 2. Magnetization versus temperature for=0.01(open
squarep 0.1 (open circleg, 0.3 (crosses and 1(full circles). Mag-
getization and temperature in this and the following figures are
dimensionless.

regions—below and above=0.5. In both the critical tem-
perature as a function of the concentratjpis given by a
power law

. : o : te~p*, 3
asymptotic (—o°) value, a simple but efficient technique ~P &

known in the high-temperature series expansion analysis hag;; with different exponentsa=0.02 for p>0.5 and @
been usedn(p,t) were plotted against Land then linear fit  _ 4 36 for p>0.5. When every second spin is linked to a

gave the desired asymptotics. The runs were repeated fQfistant neighbor, adding extra links has smaller effect on the

different configurations of links. The resulting asymptotic ghitt of the critical temperature than when the number of the
values of the magnetization have been then averaged. i i o |inks is small.

turned out that the results, apart from th_e temperatures close Unfortunately we are unable to answer unequivocally the
to the critical one, do not depend on the initial distribution quuestion whether there is a threshold valug,dielow which

links. the system will behave as 1D Ising modeh£0 for T

The simulations were made on a ring of typicaly -y 3nd above which it will have small world character
=10 sites and lasted till the system reached a statlonaré%

h h ation fi d dth m# 0 for T> 0). At very low temperatures the conver-
state where the magnetization fluctuated around the average. .o to a stationary state is extremely slow and the

valug. Increasing the size ’LOle6 did not alter the results. asymptotic magnetization depends on the topology of the
At higher temperatures the stationary state was reached after

several hundred MCS, while at lower temperatures severa!
thousand were needed. In general, we run the simulations til
t=5x10> MCS, rejecting the first X 10° MCS. For the
Ising model without any additional linkp& 0) we obtained

1.0 Q——— Q0

0.8 4

for the magnetization values of the order~10 3 (for T
=<0.3) or smaller(for T=0.4). Forp>0 we observe, how-

ever, a honzero magnetization below a certain critical tem-:
perature(see Fig. 2 ;

The curves have a typical pattern and with increaging
the critical temperature moves to higher values. In numerical
simulations it is of course very difficult, if possible at all, to
determineT.. Rather arbitrarily we have decided that
<10 % corresponds to a paramagnetic state, white
=102 means a ferromagnetic state. Fortunately, as seel
from Fig. 3, aroundr . the magnetization grows rapidly and
there is no doubt about the onset of the ordering.
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The dependence of the critical temperature on the concen-

tration of linksp estimated in such a way, is shown in Fig. 4.  FIG. 3. Magnetization versus concentratiprof extra links for
It is clear that there is a crossover between two distinctiver=0.5 andT=0.7.
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FIG. 4. Critical temperature versyson the log-log plane. The

. . FIG. 6. Critical temperature versus number of extra links per
lines are power fits.

site.

additional links. The obtained data seem rather to suggest the
existence of a threshold value. It is evident that the orderingince the mean standard deviation in determining the mag-
in a small world Ising model exists and that it grows very netization ranged fromdm=0.001 toAm=0.07, close to
rapidly with the amount of the extra links. T., the precise determination ¢f is a very delicate prob-

We have also estimated tieexponent, defining the criti- lem. It is, however, clear that the obtained value is different
cal behavior of the magnetization as a function of the temfrom the 2D(square latticevalue 3= 1/8[14]. Before claim-
perature. Using the final size scaling techniid] we ob-  ing that the small world Ising model belongs to a different
tained the results shown in Fig. 5. The slope seems to be théniversality class, other critical exponents should be also in-
same for all values of the concentratiopspf the additional  vestigated, using also different than Monte Carlo simulation
links and is very close to zero8(0.0001 from the fit =~ methods.

Suppose now that a site may have not just one but a

10.00 3 certain number NIP) links to farther than NN sites. The
] dependence of the critical temperature on the number of
] ®  p-10 links each site may have, is shown in Fig. 6. RoP=0 we
J Fit top =10 have of cours& .=0. The cas@=1 of the previous model
J O peod corresponds tdtNP=1 here. The model is not completely

random, since each site has the same number of extra links
but to randomly chosen neighbors. Again, like in the previ-
ous model, we have found the power law dependence of the
1.00 ° S S Y S reduced critical temperature versus the number of the small
world links [Eqg. (3)]. Here, however, the exponent
=0.109, a value between the two found previously. Adding
the first extra links has more effect on the behavior of the
system. Subsequent increasing the number of connections
modifies only slightly the pattern.
- Our investigations of the 1D Ising model on a small world
network show that adding more distant than NN interactions
changes entirely the behavior of the system. The net mag-
netic moment is different from zero if the temperature is low
enough andprobably if the number of extra links is above
a certain threshold. The dependence of the magnetization on

FIG. 5. Finite size scaling estimate of tife exponent as the the temperature follows a typical 2D pattern.
slope of the data. The magnetizatiorertical axig is scaled byt #'”

and the size of the systefihorizontal axi is scaled bye= (T,
—T)/T,. Two values ofp,p=1 (full circles) and p=0.1 (open | am grateful to M. Ausloos and N. Vandewalle for help-
diamonds. The line is the fit to thep=1 data. ful discussions.
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