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Hierarchical approach for computing spin glass ground states
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We describe a numerical algorithm for computing spin glass ground states with a high level of reliability.
The proposed method uses a population based search and applies optimization on multiple scales. Benchmarks
are given leading to estimates of the performance on large lattices.
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I. INTRODUCTION
H=— X 3;SS-2X hs:. &)
Discrete optimization plays a central role in many engi- tijeE v
neering problems, such as, scheduling and electronic circuit
design, but it is also important in fundamental science. Ond he “spins” S are of the Ising typeS,=+1, and lie on the
major open problem there concerns the nature of the energygrtices or “sites” of G. N is thesizeof our system, that is,
landscape of optimization problems with quenched disordeithe number of these vertices.is the set of edges @; each
It is generally agreed that these energy landscapes are rugdge connects two vertices. Finally, the and theh; can be
ged, but are they self-similar as predicted by the scalingny real numbers; th&; lie on the edges o€ while theh;
theories of spin glassé4,2]? Despite many years of contro- lie on its vertices. From here on, we call amstancethe
versy, this issue is still unsettled. In order to make progressspecification of all the parameters of the Hamiltonian, that is,
it is useful to be able to compute the ground states of thesthe specification of the grap® and of all the parameterd;
disordered systemg3]. Indeed, by applying a sensitivity andh;. Similarly, we call a(spin configurationthe assign-
analysis, that is by considering how a ground state change®ent of the values of th& (for all i, 1<i=<N).
when the parameters specifying the optimization problem The Hamiltonian in Eq(1) can be used to represent an
vary, one can probe the energy landscape and measure @goitrary spin glass, be it on a lattice, such as, the Edwards-
scaling exponents. For some types of optimization problemsinderson(EA) model[5], or on a random graph as for di-
finding ground states can be achieved with algorithms whoskited mean-field spin glasses. It can also be used to represent
CPU time grows polynomially with the size of probleithe  a random-field Ising mod€RFIM) with or without disorder
size is the number of discrete variables in the problem in the bond strengths. The algorithm we present in this work
However, in many other interesting cases, finding the groundloes not take advantage of any structurésinr in the pa-
state is an NP-hard problem sdficientalgorithms are par- rameters defining the Hamiltonian; owing to this, it cannot
ticularly called for. In this work, we present a method for be expected to be competitive in the special cases where
computing ground states heuristically; even though our algofinding the ground state is a polynomial probleiNote that
rithm is not guaranteed to provide the optimum as its outputjwo-dimensional spin glasses and the RFIM fall into this
the ground states can be found for significantly larger sysclass) Nevertheless, in the other cases we have found the
tems than with methods having such a guarantee. For irglgorithm to be very effective. It is possible that improve-
stance, the ground state of aX100x 10 Edwards-Anderson ments could be realized by taking advantage of additional
spin glass can be computed in a few minutes on a personatructure inH, but we shall not investigate that issue here.
computer, while 1% 13X 13 lattices can be solved on larger
computers. Results using exact methods, such as, branch and
bound have been publishé¢d], but only for much smaller
sizes (4<4x4). The algorithm we present is a genetic algorithm: we
In the following section, we give the general framework evolve a population of configurations from one generation to
in which we work. Section Ill introduces the main features ofthe next. The key elements of our approach(@r¢he use of
our algorithm that embeds both a local search and renormakn embedded local seard(ii;) the incorporation of a renor-
ization into a genetic algorithm; then Sec. IV describes themalization procedure among parents in the population that
over-all algorithm architecture. Finally, in Sec. V, we ex- allows one to consider multiple length scales; diiid the
plain how the algorithm behaves in practice on benchmarkise of recursion. Due to these features, we talk of a “Genetic
problems. Renormalization Algorithm”(GRA).
A previous GRA algorithm was described in RE8]. For
the readers aware of that work, our present approach has a
different structure for the recursive calls, leading to an expo-
We consider an Ising spin glass, defined on an arbitraryential speed up ilN compared to the older method. Before
nonoriented grapks; the Hamiltonian or energy function we describing our proposed algorithm, we first go over its main
seek to minimize is components.

IlIl. COMPONENTS OF THE ALGORITHM

II. GRAPHS AND HAMILTONIANS
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A. Local search first proposed by Kawashima and Suz(i; to keep this
ppaper self-contained, we describe this method again.

Let Eqg.(1) be the Hamiltonian of the system a@dbe the
associated graph. Suppose we h&vepin configurations
(S, (s}, ... {1, We then define thaignatureat
sitei to be the following vector oft 1 values:

Let us first define a few terms. Consider a configuratio
and one of its spin§; . We callgain of that spin the decrease
in the configuration’s energy whes; is flipped.(The gain is
thus minus the change in the total eneygk. spin is said
stable(resp.unstable if its gain is negativgresp. positive
Spin§ is said to be more unstable than s@nif gain of S 5:(8(1)3(2) 3(1)3(3) OIS )
is greater than the gain & . b ’ oo

It is straightforward to extend these single spin definitionsTwo sitesi andj have the same signature if and only if the
to setsof spins. We shall focus on the case of clusters; aspins at those sites have the samlative orientation(paral-
clusteris a set of spingvertices that is connectedusing the  lel or antiparallel in all of the k configurations. Now we
edges ofG). Then, extending the previous definitions, the partition the sites ofs according to their signature. Further-
gain of a cluster is just minus the change of the total energynore, given a set of sites of identical signature, we further
when all the spins of the cluster are flipped. Similarly, asubdivide this set into clustefse., the desired subsets are
cluster can be stable or unstable, etc. the connected components of that set, where as usual con-

A local search is a procedure that attempts at lowering th@ectivity is defined using the edges ®). Thus to each site
energy of a configuration by repeatedly changing a few varii corresponds a maximal connected clugtéi) of sites; then
ables at a time, accepting only improving changes. For oufor any sitej
system, this amounts to flipping sets of spins with positive
gain until no more favorable sets are found. Local search A(j)=A(i):>&j=5i_ 3
covers many different methods, because there is much free-
dom in the way one searches for and selects these sets. Ther each clusteA, we introduce the “block-spin”S, to be
method we have developped for our GRA is inspired from+1 if all the spins inA are parallel to those of the first
the Kernighan-Lir{7] algorithm. In that class of local search configuration, and-1 if they are all antiparallel. Thus for
algorithms, the number of variables that is changed at a timgonfiguration 1 we hav&,=1 for all A while for the nth
is not set before hand and, in practice can be quite large. F@onfiguration (kn<k) we have
our local search, we force the set of spins that will be flipped M) o(1)a(n .
to be connected, that is we restrict ourselves to clusters. In- Sy’=8§7§"7 foranyieA. 4
deed, if there is a set of spins with positive gain, at least one
connected component of that set has a positive gain. as can be seen frpm Eqﬂ) and(3). L

Our search for a “good” cluster proceeds as follows. The exact Hamiltonian for these block spins is of the form
First we choose a starting spin; it defines the initial cluster.

Second, we successively add new and promising spins to the H'[{Sa}1=— > JasSaSs— 2> haSa, (5
current cluster, maintaining the connectivity property. Dur- (AB)eE’ AeV’

ing this growth process, the gain of the cluster can go posi- . L
tive or negative, up or down. Third, we stop growing theWhereV is the set ofA clusters andE’ is the set of edges of

cluster when things no longer look promising. Finally, we the corresp_ondmg “renormahz_ed” grap_ﬂa’/. _Note that two
consider all the gains generated during the cluster’s growttt?k?Cked SPINsSy gndSB are nelghbors_ G If at least one
and select the largest one. If that gain is strictly positive, wePin Of ClusterA is a neighbor(according toG) of at least
flip the corresponding cluster, generating an improved con®N€ SPin of clusteB. A simple computation gives the cou-
figuration. These steps correspond to one pass of the locRlings between the block spins
search. We perform multiple passes until the search for an
improving cluster fails; then a local minimum bf has been Jag= 2, > J;Ssih. (6)
reached and the local search is finished. ieAjeB

Naturally, the description we have given of our local
search is rather schematic; one has to implement in the co
how to choose the starting spin, what is a promising spin,

d%imilarly, the fields are

etc. The reader interested in these details will find them in ha=>, hiS?Y. @)
Appendix A. Other types of local searches could be used TeA
instead; our choice is motivated by a trade off between speeghUS we have
and quality.
H[S*]=H'[Sz]+H,, (8)

B. Renormalization

Given a spin glass Hamiltonian fod spins and at least yvhgre H. is a constant representing the interaction energy
two spin configurations, there is a natural definition of alnSide the clusters
block spin; from that, one can extract an exact renormalized
spin glass Hamiltonian associated with a system having in Ho=— > 2 JijS(l)Sfl). (9)
generalN’ <N spins. Such a renormalization procedure was AeV' LieA
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_ _ _ _ _ _ Using the local search and the renormalization together
+++ ++ + requires working with gpopulation of configurations. Our
- - - + 4+ — — method is thus a generalized genetic algorithm; we evolve a
+ + + population of configurations whose energies we try to mini-
mize. To do this, we repeatedly choose subsets of the popu-
+ + + lation (the parents to which we apply the renormalization

+

+ +
+ +

|
+
+
+
++ +
|

procedure. For each such subset, we then obtain a smaller
l l l spin glass instance and a corresponding set of configurations.
We optimize(see the following sectigrthese configurations
—_ and deduce new configurations for the original Hamiltonian
+ — - (the children) that have a lower energy than their parents.
+ + + When all the parents have produced enough children, the
parents are replaced by the children, giving rise to a new
+ - + generation. When no further improvements are possible, the
+ — _ algorithm stops.

One of the essential features of our approach is that we

FIG. 1. Example of a renormalization with=16 andk=3 for  jmpose the children to be better than their parents. Let us

nearest neighbor interactions. If th.e interactions had been longefine this notion mathematically as follows. We say that a
range, the top left and the bottom right clus_ters vyould be merg?;)opulationP’ is more optimizedhan a populatio if there
since they would form a connected set of sites with the same si s a mapping from P to P’ such that(i) f is ontg, i.e., the
mapping ofP covers all ofP’; and(ii) f(C)=C'=H(C’)

nature.
In Fig. 1 we give an illustration of the construction of the =H(C). Furthermore, we say th&'’ is strictly more opti-

clusters(block sping generated by the renormalization when Mizéd tharP if f is not one-to-one or iH(C)>H(f(C)) for
using three configurationgin this example,G is a 4x4 & least oneC. These definitions introducegartial ordering
lattice) ’ relation on populations. According to this relation, you ob-

The renormalization procedure can be reversed in th&in @ strictly more optimized population in the following
sense that if you have a spin configuration ot you can cases:(i) you remove the worst configuratidigreatest en-

recover the corresponding one fdrusing Eq.(4) (provided ~ €r9¥; (i) you remove duplicated configurationsii) you

you rememberSY) and the definition of the clusterswe improve atlleast one .conf|gurat|0n;' a!(‘““ you replace a

will call this operation theaising of a configuration. s_ubpopulat_lon by a st_rlctly more optimized one. In our algo-
The idea is then as follows. If you have a set of Configu_rlthm, duplicated configurations are removed, so all the con-

rations forH, you first use the renormalization procedure tof|gurat|ons are different in any given population.
produce configurationsSi"} associated with a smaller num-
ber of spingthese are the block spinsSecond, you improve IV. ARCHITECTURE OF THE ALGORITHM
these configurations by a suitable optimization procedure. A. Recursion: The Next Generation function
Finally, you raise these improved configurations, obtaining -
new configurations for the initial Hamiltonian but with lower
energies than previously.

+
+

We can now discuss more precisely how the algorithm
works and, in particular, how the children are produced using
a recursivecall to the renormalization procedure. The heart
of this is a function that we call “Next_Generation.” We
first describe its main ingredients; details will be added later
The main problem encountered when searching for thén Appendix B. For its input, this function takes an instance
ground state via local search is that asymptotically one has @.e., a Hamiltoniah and a population of configurations
fixed percentage error on tliextensive ground state energy (hereafter called the old generatjoiit outputs a new gen-
and so the probability of reaching the ground state goes teration that is more optimized than the old one. This function
zero exponentially withN. To postpone this bad behavior proceeds as followésee Fig. 2
one could improve the local search but that is computation- (1) If the old generation contains only one configuration,
ally costly. Furthermore, in spin glassess in most difficult  do nothing and return that configuratithe new generation
optimization problemys low energy configurations may dif- is the same as the old one
fer from the ground state by a “large” number of spins, in  (2) Choosek configurationgor parentg at random in the
fact a number growing linearly with. (This is expected to old generation. If possible choose different parents each
happen when the overlap probability distributi®{q) is time.
broad, signaling replica symmetry breakif®j). When this (3) Apply the renormalization procedure to create a renor-
happens, improvements in the local search algorithm arenalized instance together with a setlofenormalized con-
doomed to be ineffective. So instead we appeal to renormafigurations.
ization in order to optimize on larger length scales while still  (4) Apply the local search to these renormalized configu-
using thesamelocal search. As a bonus, one may be able tarations.
perform optimization on all scales if the renormalization is  (5) Call Next_Generatiorfrecursively on the renormal-
done recursively. ized instance and the renormalized configurations. Raise the

C. Population evolution
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tion to bestrictly more optimized than the previous one. We

L o o ® enforce this at the level of Next_Generation as explained in

| [ [ Appendix B. Given this last detail, the high-level description
of the algorithm is now complete; let us now go on and see

Renormalization how well all this works in practice.
I:il:':l V. BEHAVIOR OF THE ALGORITHM
Local Search In the rest of this paper, we restrict ourselves to Edwards-
3 Anderson(EA) spin glasses in dimensions 2, 3, and 4 with
I:il:' periodic boundary conditions and nearest neighbor interac-

tions. Furthermore, our couplings are Gaussian and there is

Recursive call to Next_Generation no magnetic field. Thus in Eq1), hj=0 and theJ;; are
independent random variables having a normal distribution
Ej of zero mean and variance equal to(Generally speaking,

the algorithm has an easier time finding ground states when
Raising to the original size there is a magnetic field, justifying our choicelmf=0.)

To give the reader some intuition about how the algorithm
works, we can follow what happens when going from one
generation to the next; this is the object of the following
Local Search section. In Sec. V B, we shall see just how powerful the al-
gorithm is by measuring the probability with which it finds
the ground state.

A. Qualitative aspects

Children produced In our algorithm, there is only one free parameter: the

FIG. 2. Inner steps of Next_Generation. The dots mean that thQumb_erM of _conflguratlons in the first generation of _the
parent has already been used and thus should not be reused,gl‘?netIC algor'thm'(The other pa}rameters have bee'?‘ fixed
possible. The steps are repeated until all configurations have begice and for all in the code which thus becomes a “black-
used as parenté.e., have obtained a dot box™ routine.)

The choiceM =1 is special as it prevents any renormal-
ization; the algorithm then reduces to applying local search
These configurations are the children to a randomly generated configuration. How well does that

' work? LetAE be the difference between the output energy

(6) Add the children produced to the new generation. : .
(7) Return to step 2 until all the configurations from the f’ind the ground state energy. We find empirically thaE

: is self-averaging as the linear lattice slzgoes tox. Quan-
old generation have been used as parents at least once. . ~. ) ; :
(89) Return the new generatidall tr?e children produced titatively, the relative erroAE/E, at largeL is 5.1% ind
= 04 | = % id= i
The spirit of this function is roughly that each configura- b 2'. 6'?/’ Ilgdb 3, and 6'?1/0 'n; 4. This mayfseemzl%roge b
tion from the old generation gives birth to a more optimized ut it should be compared to the excesses of over 0 0b-

one in the new generation. This new configuration is esser‘kﬁined When using single spin optimizatigrero temperature
tially the old one optimized on many scales by the local etropolis. . . . .

search during the recursive calls. In the over-all genetic al- WhenM>1, the first .thlng_the _algonthm does IS apply
gorithm (see the following section this function is called local search to the configurations; thus before calling Next

repeatedly; thus previous improvements can influence theCeneration, we have configurations with the previously

ones to come. given excess energies. Then, as one goes from one genera-

tion to the next, the mean energy of the population decreases.

This is illustrated in Fig. 3 for a typical instance with

=12,d=3, andM =1000. We see that this decrease is ini-
At a high level of description, our algorithm computes antially quite rapid, while at the same time the population size

optimized configuratiorthopefully the ground statevhen it stays fixed at its initial valuéM. For later generations, the

is given an instance. Schematically, it proceeds by followingmean energy decreases more slowly whereas the population

resulting configurations and apply local search to them

B. Layout of the algorithm

these five steps. size decreases steadily. Finally, the population size reaches 1
(1) Randomly generat®l configurations. and the algorithm terminates; the last configuration is neces-
(2) Apply the local search to each one of them. sarily the best configuration found throughout the whole run.
(3) Call the Next_Generation function. The pattern shown in the figure is typical and arises for all
(4) Return to step 3 until only one configuration is left. lattice sizes and dimensions we have investigated.

(5) Output this last configuration that is the result. Naturally, the detailed evolution from generation to gen-

There is still one detail that must be fixed. We want to beeration does fluctuate from instance to instance. Neverthe-
sure that the loop terminates, and thus we want each genergss, we find that the generation number where the popula-
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-1550 . . TABLE I. Value of a (equation 10 for EA spin glasses in
1 1000 dimensions 2, 3, and 4L is the linear size of the system. The
values marked with &?) are unreliable because it was not clear
whether the ground states were found.
—a M(t)
]800 2D 3D 4D
-1600 |
<E0> L a L a L a
1800 10 5.3 4 4.4 3 5.6
20 9.4 6 14 4 27
1 400 30 11 8 53 5 230
-1650 40 16 10 200 6 5500)
60 27 12 650
1 200 80 43 14 2500?)
1700 kind of dependence ol can be motivated by a very simple

: 0

0 5 10 15 20 argument. Let us cali=1— p, the probability of not finding
t=generation number the ground state. If we run the programimes (with differ-

FIG. 3. The evolution with generation number of the mean en-€Nt random numbeysthe probability of not finding the op-

ergy (diamonds and left axisand of the population sizésquares ~ fimum n times' isq". .” we now run the program with a
and right axis. population of sizenM instead of\M, we should do at least as

well and thusg(nM)<q(M)". But for largenM, the algo-
tion begins to decrease is quite insensitive to the valud of rithm is expected to do no better, in which case we have the
while it clearly grows for increasinty. Furthermore, in the equalityq(nM)=q(M)" whenn—x; this leads directly to
great majority of cases, we find that the final configurationEq. (10).
(which is the outputfirst appears right after the population  The value ofa depends on the instance studied. However,
begins to decrease. Probably the most significant dependents our benchmarks, we are interestedamdomlygenerated
on M concerns the total number of generations produced benstances of the EA model. In that case, we find that the
fore termination. The fluctuations in that number are largeifluctuations ofa decrease aks increases, suggesting treais
than for other observables; also, the trend is towards morself-averaging. Table | shows thenean values ofa ob-
generations aM — . But even there the dependence is nottained from our runs. It is not clear what the functiafL)
so dramatic; to give some illustrative numbers, consideis, but as a first guessseems to grow exponentially with
againL=12 ford=3. There are typically ten generations for (at least in dimensions 3 and 4). Thpeedof the program
M =100; whenM increases, the number of generations in-appears to be roughly linear M andM (for large values

creases quite slowly, reaching about 20 Kbk 10 000. On a 180-MHz PC running under Linux the coefficient of
this law is 1.2<10"* sec that means that witkl =a one
B. Probability of finding the ground state requires 24 sec to find the ground state of & EA spin

o . lass and 135 sec for a 18pi .
To a large extent, the power of an optimization algonthmg pin glass

can be quantified by its probability of finding the ground
state and by the CPU time required to do so. For a fixed VI. DISCUSSION AND CONCLUSIONS

instance and a given numblgk, there is a certain probability As with all known algorithms, it becomes increasingly

p of finding the ground statgemember that our algorithm is difficult to find the true ground state as the number of spins

stochastic and thus depends on a random number ger)e'rat%creases. What is important though is that larger systems
To measureg, one should know the ground state, but since

that is not the case we proceed self-consistently. We choo%:%aenthtéﬁj St[alclklleé[ll(r)]]d\évgg %lé;o?g?k:gh;?jvtgﬁtn o\;vghR’rA)\r_%\llrl)c;uzl_

a largeM and we run the program many times; if the best . : . . :
: . . . ~ gorithms, it was not possible to solve reliably Gaussian EA
output(the putative ground statés found with a high prob models of sizes beyond>88x8. (Let us note, however,

ability (say 90%) we can reasonably expect that it is thethat larger sizes can be tackled for theJ model; both

grou_nd state._Moreover we checked the program against Bal [13] and Hartmanr{14] quote results for sizes up to
previous version that had been also tested against an ex Zx 14x14) Interestingly, if one looks at currently competi-

algorithm[6]. . . . -
Once we “know” the ground state, we can measpir tive methods, _they all rely on genetic algc_)rlthms, it thus
: . . seems essential to use multiple configuratigparent$ to
different values ofM. Empirically we find that for large : : : :
find very low energy configurations in spin glasses. Our ap-
enoughM we have ; . .
proach takes advantage of this, while at the same time allow-
p(M)~1—e Ma, (100  ing optimization on multiple scales; we believe this is the
source of our extra performance.
wherea is a number that depends on the actual instance. This There is every reason to believe that our hierarchical ap-
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proach can be useful for other optimization problems. Notties for the spin to add. In practice the execution time for our
only is the concept of a block spin natural, but also the use oimplementation is roughly linear iN.

recursion is not specific to spin glasses. In fact, we have

shown previously that a GRA-type approach is effecfi&k

for the traveling salesman problem; applications to other APPENDIX B:  THE NEXT_GENERATION FUNCTION

problems should appear soon. Naturally, to get the best pos- Here we give a more detailed view of this function. First,
sible performance, it is necessary to have a good local sear@ynsider the choice of, the number of parents used in a
method and to define intelligently the renormalization transyenormalizatior(step 2 of the Next_Generation functjoin
formation for the problem at hand. A certain amount of o approachk is not a fixed number, it is chosen dynami-
problem-specific fine tuning is possible here. In addition, itca)ly for each renormalization in such a way that the renor-
would be useful to investigate improvements to our GRAmglized instance is at leastimes smaller than the original
that areproblem independentAmong these, we consider gne (the size of an instance is the number of its spiris
particularly promising the possibility of selecting the parentsyraciice, we have set= 2.5. We proceed as follows. We first
in a nonrandom fashion in the Next_Generation functionigye a “large” number of putative parentsespecting the
and the maintaining of diversity of the population as theye that already used parents should not be used again un-
generation number increases. less no others are leftFor this large value ok, the renor-
malized instance is quite bighe largerk, the larger the
renormalized instangeThen we decreadeone unit at time
ACKNOWLEDGMENTS until we achieve the wanted size for the renormalized in-

We thank K. Pal and W. Krauth for helpful comments. Stancelor until we reactk=2). Naturally, only thex finally

The LPTMS is an Unitale Recherche de I'Universitearis  Selected parents are marked as “used” for the next iteration.
X| associe au CNRS. It may happen that the renormalized instance is the same as

the original one(with very small systems, for exampldn
this case, one possibility is to simply leave the parents un-
changed and use them as childfand thus directly go from
step 2 to step 6 During the recursive calls the system get
Our local search algorithm proceeds as follows. smaller and smaller; at some point, the local search is able to
(1) Choose a spin that will be the “seed” of the growing find the ground state with high probability, so going to
cluster. This is done by taking any of the strictly unstablesmaller sizes is uselegand uses CPU timeTo take advan-
spins of the current configuration; if there are none, choose tage of this, we put a barrier at the sixe= 15: kis no longer
spin at random anywhere. Virtually flip this spin and mark it decreased if there are 15 or less spiasd if the renormal-
so it cannot be flipped again at any time during the cluster'szed instance is smaller than the original pbne
growth. Compute the new gains of all the other spins of this A second issue concerns the size of the population re-
modified configuration. turned by Next_Generation: we want to ensure that the num-
(2) Add to the cluster the spin with the highest gain, be itber of configurations in the new generation is not greater
positive or negative with the constraint that the cluster musthan the old one. As described so far, the population size
remain connected. Update the configuration and the gainsould grow because when producing the last children, par-
and again mark this spin so it will not be considered forents that have been previously used can be used é&min
flipping during the growth of this cluster. Fig. 2 and thus some parents can produce more than one
(3) Return to step 2 unless there are no more spins to adchild. To prevent the population from growing, the simplest
to the cluster or more than 20 spins have been added to thmethod is to remove as many configurations as necessary at

APPENDIX A: LOCAL SEARCH

cluster since the greatest gain has been encountered. step 8 of Next_Generation. We have choosen to do this by
(4) If the best cluster encountered during the growth protemoving the worst configurations. Another possibility
cess has a strictly positive gain, flip it. would be to remove the most similar configuratighst this

(5) Return to step 1 unless step 4 has already failed 3 computationally more expensiverhus step 8 is replaced
times to find a cluster to flip, i.e., all clusters found hadby
negative gains. (8") Remove the worst configurations from the new gen-

At the end of this search, all spins have negative gains, seration so it is not larger than the old one. Return the result-
we guarantee that the configuration is at least one-spin-fliing population.
optimal. One of the important features of this Kernighan- Now the Next_Generation functions properly but we have
Lin-like algorithm is that the size of the cluster is not limited found it useful to introduce an algorithmic improvement as-
(except byN). It can be very large in practice, especially sociated with preserving diversity. This is the third point we
when the original configuration is random. In order to imple-wish to discuss. In a genetic algorithm, one evolves a popu-
ment this algorithm efficiently, we use adapted data structation and tries to improve it. One important characteristic is
tures. First, we dynamically maintain a list of the unstablethe diversity of the population: the more the configurations
spins; this allows step 1 to be done in ti@é1). Second, we differ, the more new configurations one can create. At step 4
use a dynamically maintained heap structure to find the nextf Next_Generation, where the local search is applied, some-
best spin to add to the cluster; this allows step 2 to behing bad can happen. Indeed, since for small enough sys-
achieved in timeéd(In K) whereK is the number of possibili- tems the local search is able to find the ground state with
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high probability, the(local searchoptimization ofk different  versity would diminish too quickly. Thus we need to give
configurations will leave us with just one child, thereby de-Next_Generation some additional information. To do that,
stroying diversity. To prevent this, we have changed step Sve add a Boolean flag to its arguments that allows one to
as follows: enforce or not improvement in the new generation. The flag
(5") If more than one configuration is left after eliminat- is set to true whernitiating the recursion, and its value is
ing duplicates in step 4, proceed as in step 5. Else raise thjgassed onward recursively. When the flag value is “false,”
unigue configuration and apply local search. The children ar&lext_Generation performs the steg 8escribed above.
the k best configurations out of this one and thparents. When its value is “true,” Next_Generation performs instead
The last point that needs to be discussed concerns how vibe original step 5. Furthermore, in the particular case where
force Next_Generation to return a more optimized populak=2 and the renormalized instance is the same as the origi-
tion than the one in its input, at least when this function isnal one, instead of returning both parents as children, only
called from the main program. On the contrary, when thethe best one is used. Finally, the flag is switched from true to
function is called from within the recursion, it would be a false as soon as step 4 of Next_Generation has improved the
mistake to impose strict improvement as the population diconfigurations, and that new value is passed on recursively.
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