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Numerically complemented analytic method for solving the time-independent
one-dimensional Schro¨dinger equation
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A general method of solving the one-dimensional Schro¨dinger equation is developed. The first step is to
construct an exactly solvable reference potential of several smoothly joined Morse-type components, which
should be a good approximation to a given potential. The exact solutions for that reference Hamiltonian are
then combined with a nonperturbative approach@R. G. Gordon, J. Chem. Phys.51, 14 ~1969!#, which enables
us to numerically solve the energy eigenvalue problem for the original potential to any desired accuracy. A full
description of the analytical procedures is given and examples of both exact and numerical solutions, are
presented.
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I. INTRODUCTION

Seventy-five years after the birth of wave mechanics@1#
the Schro¨dinger’s famous equation still remains a subject
numerous studies, aiming at extending its field of appli
tions and at developing more efficient solution metho
Concerning confining one-dimensional quantum syste
such a long-standing interest might seem surprising. Ind
the relevant Schro¨dinger equation can always be solved n
merically, which nowadays seems elementary, in view of
immensely increased computational power. However, e
in this simplest case, the success of applying any direct
merical integration method depends on the quality of ini
guesses for the boundary conditions and energy eigenva
These kinds of difficulties have stimulated development
more sophisticated integration approaches, e.g., embe
exponentially-fitted Runge-Kutta @2# and dissipative
Numerov-type@3# methods, as well as interesting techniqu
such as a relaxational approach@4# based on the Henye
algorithm@5#, an adaptive basis set using a hierarchical fin
element method@6#, and an approach based on microgene
algorithm @7#, which is a variation of a global optimizatio
strategy proposed by Holland@8#.

Inevitably, to apply any numerical or other approxima
method of solving the Schro¨dinger equation, one needs to fi
the interaction potential for the system. Unfortunately,
proved long ago@9#, even the complete knowledge of th
discrete energy spectrum complemented with full scatte
information is insufficient to ascertain a confining potent
uniquely. On the other hand, one hardly could calculate
ab initio potential, which would be reliable in the whol
physical domain. Thus, the regrettable conclusion is t
one’s knowledge of the real interaction potential for alm
any quantum system to study is more or less incomplete

As a kind of counterweight to this principle ambiguit
there has always been a remarkable interest in studying
actly solvable Schro¨dinger equations. At this point, we hav
to specify that traditionally the term ‘‘exactly solvable’’ ha
been used in a well-defined mathematical sense, mea
that eigenvalues and eigenfunctions of the Hamiltonian
der consideration may be expressed in an explicit and clo
1063-651X/2001/64~5!/056701~12!/$20.00 64 0567
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form @10#. In this sense, the exact solubility has been fou
for only a very limited number of potentials, most of the
being classified already by Infeld and Hull@11# on the basis
of the Schro¨dinger factorization method@12#, which in turn
appeared to be a rediscovery of the formalism stated ne
120 years ago by Darboux@13#.

An important innovation for classifying the exactly solv
able potentials was the concept of supersymmetry~SUSY!
shape invariance introduced by Gendenshtein@14#. His
simple and elegant method of solving the quantu
mechanical eigenvalue problem, however, was shown to
equivalent to the factorization method@15#. Another proce-
dure for generating families of isospectral Hamiltonians h
been devised by Abraham and Moses@16#. It is based on the
Gel’fand-Levitan equation@17# and is, in general, inequiva
lent @18# to the Darboux construction. In recent years,
method of constructing nonshape-invariant so-called con
tionally exactly solvable potentials has been developed@10#,
and several more attempts for the unified treatment of
known cases have been reported@19,20#, along with a sys-
tematic search for other classes of solvable potentials.

Most works in this field concern exact solubility in th
above-specified mathematical sense. For practical purpo
however, one may prefer a slightly modified definition, a
cepting a Hamiltonian as exactly solvable, if one can,
principle, calculate its eigenvalues and eigenfunctions w
arbitrary accuracy@21#, not necessarily in explicit form. In
this sense, any potential giving a piecewise analytic solut
of the Schro¨dinger equation in the whole physical doma
would be exactly solvable. The latter definition also has
stronger impact on relevant numerical studies, becaus
some extent, any potential can be approximated by a su
tute that enables a piecewise analytic solution. This kind
‘‘reference potential’’ method was proposed over 30 ye
ago by Gordon@22# with an emphasis on the piecewise line
approximation of the initial potential. For any linear interva
the two independent solutions of the Schro¨dinger equation
can be written in terms of the well-known Airy function
Ai( x) and Bi(x), nowadays available as standard functio
in most math-oriented programming environments, such
MAPLE. This way Gordon elaborated an efficient numeric
method. However, the real essence of his work was the d
©2001 The American Physical Society01-1



ial

on

s

en
lly
ap
nt
in

e
ac
ig
ac

ib
al
n
te
h
w
se
re
ho
m

n

e

o

tu
h
ra
a

ts
s

rbi-
n-

any

t
p-
the
ap-

-

m-
one

no
an

an

at-

of
an

in-
at

ty
se
al
ts
re-

en-
and
sily.
si-
ble
he
ec.
is

give
-

sist

ch
ieve
ne
nts

po-
will
con-

n

M. SELG PHYSICAL REVIEW E 64 056701
vation of a closed pair of coupled first-order different
equations, exactly equivalent to the original Schro¨dinger
equation, but far more convenient for the numerical soluti
We will make use of these equations in this paper.

Recently, the author proposed a similar approach ba
on several smoothly joined Morse-type potentials@23#,
which leads to an analytic solution in terms of the conflu
hypergeometric functions, also well-studied mathematica
Compared with the linear fit, the main advantage of this
proximation is the small number of analytically differe
components that are needed to get a good fit with the orig
potential~which may be of rather different shape! in a rea-
sonably wide distance range@24#. In this paper, using the
same approach, we demonstrate how easily one can solv
mentioned pair of Gordon equations to any desired accur
and thus, the whole energy eigenvalue problem for the or
nal potential, provided the two linearly independent ex
solutions for the reference potential are known.

The paper is organized as follows. In Sec. II, we descr
the constructing of smooth Morse-type reference potenti
and the needed analytic procedures for an exact solutio
the related Schro¨dinger equations. In Sec. III, a comple
analytic solution of the Schro¨dinger equation for a smoot
three-Morse-component potential is given. In Sec. IV,
specify Gordon equations relevant to the case, and pre
direct examples of their solution, in comparison with cor
sponding exact solutions. A possible extension of the met
to many-body systems is discussed in Sec. V. Finally, so
concluding remarks are presented in Sec. VI.

II. SOLUTION OF THE SCHRÖ DINGER EQUATION
FOR MORSE-TYPE REFERENCE POTENTIALS

A. Model

Let us consider the time-independent one-dimensio
Schrödinger equation

d2C~R!

dR2
1

2m

\2
@E2U~R!#C~R!50, ~1!

whereE is energy andm, the reduced masss. We will assum
U(R) to be an arbitraryeffectiveradial potential~i.e., it may
include centrifugal energy, proportional toR22) permitting a
physical solution, meaning thatC(R)→0 as R→0 @25#.
Throughout this paper, we will examine only bound states
U(R), and therefore, for the true eigenstates,C(R)→0 with
R→` as well. In addition, we will assume thatU(R) has at
least one minimum point (R1).

The next step is to construct an exactly solvable substi
to the original potential. According to the general idea of t
approach@23#, the reference potential consists of seve
smoothly joined components, all having the well-known an
lytic form of the Morse potential@26#

Uk~R!5Vk1Dk@e2ak(R2Rk)21#2, k50,1,2, . . . .
~2!

Here, k is a subscript to distinguish different componen
and in contrast to the classical Morse case, the parameterDk
05670
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andak can be negative. The number of components is a
trary, but let us fixk50 for a so-called pseudo-Morse pote
tial, whose main peculiarity is that the parametersD0 anda0

are not independent, butD05\2a0
2/(8m). It means that such

a tiny potential well~if considered separately! is just of the
limit depth when there is no discrete energy spectrum
more @27#.

The regionX1<R<X2 (k51) around the minimum poin
R1 is fitted by an ordinary Morse potential, while the a
proximation in the long-distance region depends on
shape of the original potential. Let us assume that it
proaches a finite limit asR→`. Then the regionR>X2 (k
52) is fitted by a ‘‘reversed’’ Morse potential, with a pa
rameterD2 being negative.

The latter approximation probably needs to be co
mented. Indeed, by introducing such a reversed potential
actually prescribes a maximum~at R2) to the reference po-
tential, which seems unjustified. However, even if there is
hump on the original potential curve, one may choose
arbitrarily large value forR2 to create a tiny hump~the ab-
solute value ofD2 being very small! in the far long-distance
region of the reference potential. This artificial trick has
almost negligible effect on the solutions of the Schro¨dinger
equation, but has proved very useful for the unified tre
ment.

Now, having fixed the number and the analytic form
the components, their parameters can be determined from
appropriate least squares’ fit to the original potential. In pr
ciple, one may introduce some boundary conditions
X1 ,X2, etc. To be more specific, we will require continui
of the reference potential and its first derivative at the
boundary points. From the ‘‘pure’’ quantum-mechanic
point of view there is no need for any further constrain
regarding the reference potential. On the other hand, by
quiring its smoothness at the boundary points, we will ess
tially decrease the number of independent paramaters,
the remaining ones can therefore be determined more ea
In addition, the smooth reference potential is more ‘‘phy
cal’’ and can often be used simply as an exactly solva
substitute to the original potential, without any need for t
additional numerical procedures, which we describe in S
IV. However, the smooth merging of Morse-type functions
not always possible. In such cases one may, of course,
up with the ‘‘voluntary’’ requirement of the derivative’s con
tinuity or use linear fitting in a tiny ‘‘critical’’ range. Further
treatment concerns reference potentials that entirely con
of smoothly joined Morse-type components.

Naturally, there are no restrictions for introducing mu
more than just three exactly solvable components, to ach
a better fit with the original potential. For example, o
could introduce additional pseudo-Morse compone
(k521,22,23, . . . ,), butwith an eye to the efficacy of the
method, it is recommended to keep the number of com
nents as low as possible. Therefore, in this paper we
examine reference potentials having no more than three
stituents in total, including no more than one~if any! pseudo-
Morse component (k50), used for the small-distance regio
0<R<X1.
1-2
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B. General solution scheme

Let us briefly recall the solution scheme for Morse-ty
potentials. First, one introduces dimensionless variablesyk
52akexp@2ak(R2Rk)#, where the subscriptsk50,1,2 have
the same meaning as specified in the previous subsec
andak5A2mDk/(\ak). The relevant Schro¨dinger equations
then read

d2C~yk!

dyk
2

1
1

yk

dC~yk!

dyk
1F2

mk
2

yk
2

6S ak

yk
2

1

4D GC~yk!50,

~3!

where the plus sign in square brackets corresponds to
subscriptsk50 andk51, and minus–tok52. The quntities
mk

2 are defined as follows:mk
25(ak

2/Dk)•(Vk1Dk2E). Note
that D2,0,a051/2 andm0 is a pure imaginary quantity fo
any bound state of the reference potential, since alwayE
.V01D0.

Next, using a transformationC;exp(2x/2)xcG(b,c;x),
one converts Eq.~3! into the confluent hypergeometric form

x
d2G~b,c;x!

dx2
1~2c112x!

dG~b,c;x!

dx

1~b2c21/2!G~b,c;x!50, ~4!

with the parametersb,c, and the dimensionless coordinatex,
which for different energy and distance regions are speci
in Table I (bk[umku):

The fundamental solution of Eq.~3! may be always built
up of the special solutionsG1[C(2b1c11/2,2c11;x)
and G2[exp(x)C(b1c11/2,2c11;2x) @28#, containing
special functions introduced by Tricomi@29#, which for suf-
ficiently largex, can be evaluated from the asymptotic ser

C~a,c;x!5x2a(
n50

N
~a!n~a2c11!n

n! ~2x!n
, ~5!

where (a)n[G(a1n)/G(a)5a(a11)(a12)•••(a1n21)
is the Pochhammer symbol, andN must not be too large
This simple formula may not work for smallerx, directing
one to a more complicated but universal expansion@28#

C~a,c;x!5
G~12c!

G~a112c!
F~a,c;x!1

G~c21!

G~a!
x12c

3F~a112c,22c;x!, ~6!

TABLE I. The quantities related to Eq.~4!.

X1<R<X2 X1<R<X2 R>X2

R<X1 E<V11D1 E>V11D1 E<V21D2

b 1/2 a1 a1 ia2

c ib0 m1 ib1 m2

x y0 y1 y1 iy2
05670
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where the symbols

F~a,c;x!511
a

c

x

1!
1

a~a11!

c~c11!

x2

2!
1••• ~7!

denote the well-known confluent hypergeometric functio
Equivalently, the general solution of Eq.~4! can be directly
constructed fromF1[F(2b1c11/2,2c11;x) and F2
[x22cF(2b2c11/2,22c11;x).

C. Solutions for a two-Morse-component potential

In Sec. IV, to illustrate the solution of Gordon equation
we will make use of a reference potential, which consists
only two components: an ordinary Morse potential (k51),
and a reversed potential (k52), smoothly joined at a bound
ary point X2. The most convenient unified form of the tw
linearly independent solutions of Eq.~3! for this case is as
follows:

Ck15exp~2xk/2!xk
mkF~2bk1mk11/2,2mk11;xk!,

~8!

Ck25exp~2xk/2!xk
2mkF~2bk2mk11/2,22mk11;xk!,

k51,2. ~9!

Note that, according to Table I,b15a1 ,b25 ia2 ,x15y1 ,x2
5 iy2, andm15 ib1 is a pure imaginary quantity in the en
ergy rangeE>V11D1. Naturally, when looking for the true
bound states~which is not our goal in this section!, one has
to choose the correct linear combination of Eqs.~8! and~9!,
which means, for example, thatC22 should be omitted due to
its unphysical asymptotic behavior asR→`.

We will also need explicit expressions for the derivativ
of Eqs.~8! and ~9! in the rangeR<X2, which read

dC11

dR
5a1e2y1/2y1

m1$@~y111!/22a1#F~m1!

1~a12m121/2!F1~m1!%, ~10!

dC12

dR
5a1e2y1/2y1

2m1$@~y111!/22a1#F~2m1!

1~a11m121/2!F1~2m1!%, ~11!

with F(m1)[F(2a11m111/2,2m111;y1) and F1(m1)
[F(2a11m113/2,2m111;y1).

III. EXACTLY SOLVABLE THREE-COMPONENT
REFERENCE POTENTIAL

Our main analytic goal in this paper is the exact soluti
of the energy eigenvalue problem for the three-compon
smooth Morse-type reference potential, as specified ab
In this case, the physical domain is divided into three a
lytically different subregions (0,X1),(X1 ,X2), and (X2 ,`),
described in terms of pseudo-Morse, ordinary, and rever
Morse potential, respectively. Concerning true bound sta
we have to take account of the general boundary conditi
1-3
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M. SELG PHYSICAL REVIEW E 64 056701
C(R)→0 asR→0 or R→`. Since there are two equivalen
possibilities of constructing the physical solution~see Sec.
II B !, we can always choose just that one that better suits
purposes.

The wave function’s logarithmic derivative, which play
so important a role in SUSY quantum mechanics, here fo
the basis for ascertaining the true eigenstates. Indeed, for
energyE within the scope, one can formally find two inde
pendent solutions of the Schro¨dinger equation, vanishing a
R→0 or R→`, respectively. From continuity requiremen
one therefore gets two estimations for the logarithmic deri
tive of the physical solution at any reference pointR
P(0,̀ ). Naturally, these two independent estimations of
same quantity can only coincide for the true energy eig
valuesE5En . Consequently, the demand of continuity
the wave function’s logarithmic derivative at an arbitrary re
erence point represents a universal quantization rule for m
ticomponent confining potentials. Having found the true
genvalues, one then fixes the relevant normalization fac
from demand of continuity of the wave function at th
boundary pointsX1 andX2.

We will often exploit a very useful Tricomi expansion o
the confluent hypergeometric functions through the Bes
functions@30#, whose quantum-mechanical content becom
transparent in terms of the followingS functions@23#, used
throughout this paper

S~a,m;x![e2x/2F~2a1m11/2,2m11;x!5 (
n50

`

Bn ,

~12!

where B051, B152ax/(2m11), Bn5x(2aBn21
1xBn22/4)/@n(2m1n)#, n52,3, . . . .

A. Solution in the small-distance range 0ÏRÏX1 „kÄ0…

In this region the special solution of Eq.~4! G2→` as
R→0 ~i.e., x→`), and should therefore be omitted. Thu
substitutingy05exp(2a(R2R0)) and making use of Eqs.~6!
and ~12!, one immediately gets the right solution

C05N0C0~y0!cos@w01D0~y0!2a0b0R#, ~13!

whereN0 is the normalization factor,

C0~y0!eiD 0(y0)[S~1/2,ib0 ;y0!

512
y0/4

b011/2
1

~y0/4!2

~b011/2!1! S 12
y0/4

b013/2D
1

~y0/4!4

~b011/2!~b013/2!2! S 12
y0/4

b015/2D
1•••, ~14!

and the phase shift can be calculated from an exact form
~see@24# for details!
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w0[a0b0R02arg@G~2ib0!/G~ ib0!#

5b0Fa0R0112 ln 22
1

2
ln~114b0

2!G
1

1

2E0

`S cotht2
1

t De2tsin~2b0t !
dt

t
. ~15!

The integral in Eq.~15! can be, in principle, calculated ana
lytically, but is more conveniently evaluated numerically, u
ing the expansion

I ~v![E
0

`S cotht2
1

t De2tsin~vt !
dt

t

5E
0

T

e2tsinS p
t

TD f ~ t !dt, ~16!

with T5p/v and

f ~ t !5
cotht21/t

t
2e2T

coth~ t1T!21/~ t1T!

t1T

1e22T
coth~ t12T!21/~ t12T!

t12T
2•••.

The wave function’s logarithmic derivative then becom

C08

C0
5a0H y0

2
1b0

C00~y0!

C0~y0!

sin@w01D00~y0!2a0b0R#

cos@w01D0~y0!2a0b0R# J ,

~17!

where C00(y0)eiD 00(y0)[S(1/2,ib0 ;2y0), in accordance
with Eq. ~12! and the general relation@28#

exp~2y0/2!F~ ib011,2ib011;y0!

5exp~y0/2!F~ ib0,2ib011;2y0!. ~18!

B. Solutions for central X1ÏRÏX2 „kÄ1… and long-distance
RÐX2 „kÄ2… regions

In the rangeR>X2, the solutionC22 given by Eq.~9!
tends to infinity asR→`, and should be omitted. In acco
dance with Eqs.~8! and~12!, one then immediately gets th
solution

C25N2y2
m2S~ ia2 ,m2 ; iy2!, ~19!

whereN2 is a normalization factor. The relevant logarithm
derivative becomes

C28

C2
5a2H S~ ia2 ,m211;iy2!

S~ ia2 ,m2 ; iy2!

y2
2

8~m211! F11
a2

2

~m211/2!2G
2m22

a2y2

2m211J . ~20!

In the central regionX1<R<X2 where an ordinary Morse
approximation is used, one has to examine the general s
1-4
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tion built up of Eqs.~8! and~9!, while according to Table I,
the two energy regionsE<V11D1 andE>V11D1 should
be treated separately.

The caseE>V11D1, when special solutions from Eqs
~8! and~9! become complex conjugate to each other, is m
simple for the analysis~naturally, there are no real boun
states in this range, ifV11D1.V21D2, which is typical to
potentials with pronounced humps@31#!. As the energy
eigenfunction for any nondegenerate state should be
~apart from inessential phase factor! @27#, the general solu-
tion and its logarithmic derivative read@23#

C.5N1C1~y1!cos@w11D1~y1!2a1b1R#,E>V11D1 ,

~21!

1

a1

C.8

C.
5~a121/2!

C11~y1!cos@w11D11~y1!2a1b1R#

C1~y1!cos@w11D1~y1!2a1b1R#

1b1

C11~y1!sin@w11D11~y1!2a1b1R#

C1~y1!cos@w11D1~y1!2a1b1R#

1
y111

2
2a1 , ~22!
ac

05670
e
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where C1(y1)eiD 1(y1)[S(a1 ,ib1 ;y1), C11(y1)eiD 11(y1)

[S(a121,ib1 ;y1), while the constantsN1 andw1 should be
determined from the boundary conditions atX1 and X2.
Thus, from condition C08(E,X1)/C0(E,X1)
5C.8 (E,X1)/C.(E,X1) one easily gets the relation be
tween the phase constantsw0 andw1. Then, using Eq.~22!,
one calculates the logarithmic derivativ
C.8 (E,X2)/C.(E,X2) and compares it with the estimatio
for C28(E,X2)/C2(E,X2) obtained from Eq.~20!. As ex-
plained above, these two independent estimations of
same quantity can only coincide for the true energy eig
valuesE5En .

In the rangeE<V11D1, the most convenient form fo
the solution is

C,5N1
(1)y1

m1S~a1 ,m1 ;y1!1N1
(2)y1

2m1S~a1 ,2m1 ;y1!,

E<V11D1 , ~23!

whereN1
(1) and N1

(2) are some real constants to be det
mined from the boundary conditions. Correspondingly,
wave function’s logarithmic derivative reads
the
1

a1

C,8

C,
5~a121/2!

N1y1
m1S~a121,m1 ;y1!1y1

2m1S~a121,2m1 ;y1!

N1y1
m1S~a1 ,m1 ;y1!1y1

2m1S~a1 ,2m1 ;y1!

2m1

N1y1
m1S~a121,m1 ;y1!2y1

2m1S~a121,2m1 ;y1!

N1y1
m1S~a1 ,m1 ;y1!1y1

2m1S~a1 ,2m1 ;y1!
1

y111

2
2a1 , ~24!

whereN1[N1
(1)/N1

(2) . Using Eq.~24! and requiring, as usual, continuity of the logarithmic derivative, one comes to
following quantization equation:

@F01S~a1 ,2m1 ;y11!2B1S~a121,2m1 ;y11!#exp~y11/212m1a1X1!

F01F~2A1,2m111;y11!2A1F~2A111,2m111;y11!

5
@F12S~a1 ,2m1 ;y12!2B1S~a121,2m1 ;y12!#exp~y12/212m1a1X2!

F12F~2A1,2m111;y12!2A1F~2A111,2m111;y12!
, ~25!
e
he

h
rst,
wherey11[y1(X1),y12[y1(X2),F01[C08(X1)/@a1C0(X1)#
1a12(y1111)/2, F12[C28(X2)/@a1C2(X2)#1a12(y12
11)/2, A1[a121/22m1, andB1[a121/21m1.

Slightly rearranging and taking the logarithm of Eq.~25!,
the quantization condition can be written in a more comp
form

F~E![ lnUT1~E!

T2~E!
U2 y112y12

2
12m1a1~X22X1!50,

~26!

where

T1~E!5A1F12F11
1 S122F01F12F11S122A1B1F11

1 S12
1

1B1F01F11S12
1 , ~27!
t

T2~E!5A1F01F12
1 S112F01F12F12S112A1B1F12

1 S11
1

1B1F12F12S11
1 , ~28!

in terms of the functionsF1k[F(2A1,2m111;y1k),F1k
1

[F(2A111,2m111;y1k),S1k[S(a1 ,2m1 ;y1k), and S1k
1

[S(a121,2m1 ;y1k) for k51,2.
Thus, according to Eq.~26!, the energy eigenvalues in th

rangeE<V11D1 may be determined as the zeros of t
function F(E). Note thatT1(E)/T2(E).0 for any physical
solution, i.e., in this sense, Eqs.~25! and~26! are equivalent.
However, Eq.~26! contains some additional solutions, whic
should be ruled out by the zero-searching algorithm. Fi
there may be such unphysical zerosEn for which
1-5
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T1(En)/T2(En),0. Second, it can be shown thatF(E)→0
as m1→mN[N21/2, whereN is a positive integer. Thes
kinds of solutions are also unphysical. Indeed, according
the well-elaborated theory of confluent hypergeometric eq
tions @28#, the special solutionsF1 andF2 of Eq. ~4! are not
linearly independent, if 2m1115N, which means that in
this case the general solution should be written in terms
the Tricomi functionsG1 andG2 ~see Sec. II B!. Since one
of them (G2) will contain a logarithm of a negative argu
ment, there is no way to construct a general solution for
relevant Schro¨dinger Eq.~3!, which would be real. Conse
quently, any solution of Eq.~26! with 2m1115N should be
excluded. To this end one may, for example, search fo
zero in an energy range fixed by neighboringmN values:
EN5V11D1(12(N21)2/4a1

2) and EN115V11D1(1
2N2/4a1

2). Now, if one finds a zeroEn within the range
(EN11 ,EN), andT1(En)/T2(En).0, this will definitely be a
true energy eigenvalue.

C. Examples of exact solution

We have calculated the whole spectrum of bound sta
for a smooth three-Morse-component potential whose
rameters were specified elsewhere@31#. The continuity of the
potential and its first derivative at the boundary pointsX1
52.95 Å andX255.08 Å has been demanded, and an
ditional conditionU(X0)5U0 (X052.7 Å,U053 eV) has
been used to fix the pseudo-Morse component. This po
tial, which is shown in Fig. 1, is realistic for the excimer Xe2*
in 0u

1 state, but here it is used as a model potential to test
elaborated method of solving the Schro¨dinger equation.

A set of energy eigenvalues for the two- and thre
component potentials~pseudo-Morse constituent being a
sent in the first case! are presented in Table II. Note tha
although the three-component levels are slightly ‘‘lifted up
by the pseudo-Morse potential wall, their total number
mains unchanged (nmax590). Some typical illustrations re
lated to the zero-searching procedure ofF(E) are presented
in Fig. 2, while Fig. 3 demonstrates the shape of the relev
normalized energy eigenfunctions.

IV. SOLUTION OF THE ENERGY EIGENVALUE
PROBLEM FOR THE ORIGINAL POTENTIAL

A. Gordon method

Suppose we have constructed an exactly solvable re
ence potentialU0(R), a good approximation to the origina
potentialU(R) in some limited distance range. Correspon
ingly, the exact solutions of the Schro¨dinger equation for
U0(R) provide reasonable estimations to those forU(R), as
well. In this section, however, we try to improve these es
mations to a desired degree of accuracy.

Let A0(R) andB0(R) be two linearly independent exac
solutions of the reference Schro¨dinger equation for a given
energyE, which, in general, is not any true eigenvalue. T
basic idea of the Gordon method@22# is to express the gen
eral solutionC(R) of Eq. ~1! in terms of the special solu
tions for U0(R):
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C~R!5a~R!A~R!1b~R!B~R!, ~29!

whereA(R)5a0A0(R), B(R)5b0B0(R), and the constants
a0 and b0 were introduced to ensure just the right line
combination of the reference solutions in Eq.~29!. Gordon
demonstrated that the wave function’s derivative can also
expressed in terms of the functionsa(R) andb(R)

C8~R!5a~R!A8~R!1b~R!B8~R!. ~30!

The essence of the method is the pair of equations for
expansion coefficients

a8~R!52
2m

\2
W21B~R!@U~R!2U0~R!#@A~R!a~R!

1B~R!b~R!#, ~31!

FIG. 1. Three-component model potential analyzed in this
per. Pseudo-Morse~0! and ordinary Morse~1! potentials are
smoothly joined atX152.95 Å, while a smooth ‘‘transition’’ to
reversed Morse potential~2! occurs atX255.08 Å. Dotted lines
show the components’ behavior outside their range of applicabi
Although invisible in the scale of the figure, the pseudo-Morse
tential has a minimum atR053.7028 Å. The difference betwee
three- and two-component potentials is brought forth in the ins
1-6
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TABLE II. Exact positions of the upper vibrational levels (n552–90) for the specified two- and three-component models. All ener
@in ~meV!# are calculated relative to the bottom of the potential well.

n 2 Morse 3 Morse n 2 Morse 3 Morse n 2 Morse 3 Morse

52 492.454 492.773 65 525.885 526.127 78 544.100 544.238
53 495.756 496.071 66 527.750 527.985 79 545.010 545.139
54 498.911 499.221 67 529.531 529.758 80 545.856 545.976
55 501.927 502.232 68 531.229 531.449 81 546.639 546.751
56 504.816 505.116 69 532.847 533.059 82 547.360 547.464
57 507.581 507.875 70 534.387 534.591 83 548.021 548.116
58 510.231 510.519 71 535.851 536.047 84 548.621 548.707
59 512.768 513.051 72 537.243 537.429 85 549.162 549.239
60 515.199 515.476 73 538.557 538.737 86 549.643 549.711
61 517.528 517.798 74 539.803 539.974 87 550.065 550.124
62 519.757 520.021 75 540.978 541.141 88 550.427 550.478
63 521.891 522.148 76 542.086 542.240 89 550.730 550.771
64 523.933 524.183 77 543.126 543.272 90 550.971 551.002
b
f
n- in

the
FIG. 2. Energy dependence of the quantization functionF(E)
for the levelsn554 and 59 whose exact positions are shown
arrows. Discontinuity pointsE1 andE2 are related to the zeros o
Eqs. ~27! and ~28!, respectively, while the dotted lines denote u
physical regions whereT1(E)/T2(E),0. The energy range in the
upper graph is fixed bymN512 andmN511.5, and the starting
point of the lower graph corresponds tomN55.
05670
y
FIG. 3. Normalized wave functions of the eigenstatesn555 and

75 for the three-component model potential. Thin vertical lines
both graphs separate the three analytically different regions for
model potential used:R<2.95 Å, RP(2.95 Å,5.08 Å), andR
>5.08 Å.
1-7
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b8~R!5
2m

\2
W21A~R!@U~R!2U0~R!#@A~R!a~R!

1B~R!b~R!#, ~32!

whereW5a0b0W0 andW0[A0(R)B08(R)2A08(R)B0(R) is
the Wronskian of the reference solutionsA0(R) andB0(R),
independent ofR, as needed.

Equations~31! and ~32! are mathematically equivalent t
Eq. ~1!, but far more convenient in the sense of ease
numerical solution. Indeed, compared with the rapidly os
lating solutions of the original Schro¨dinger equation, the ex
pansion coefficientsa(R) andb(R) are slowly varying func-
tions, since their derivatives are proportional to t
difference of two close potentials. Naturally, the function
form of a(R) andb(R) related to analytically different part
of the reference potential is also different. Correlation b
tween these different pairs of coefficients is determined
the continuity conditions of the wave function and its deriv
tive at the boundary points, in accordance with Eqs.~29! and
~30!.

To solve Eqs.~31! and ~32! we have to fix appropriate
initial conditions. Suppose we have determined the farth
left-side extremum pointRL of the wave function~a com-
pletely analogous approach can be related to the wave f
tion’s farthest right-side extremum pointRR). Then, accord-
ing to Eq.~30!
d
e.

th

he
r

r-
lv

-
n

.

05670
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a0

b0
52

b1

a1

B08~RL!

A08~RL!
, ~33!

wherea1[a(RL) andb1[b(RL). Now, let us define dimen-
sionless functionsy(R)[a(R)/a1 ,z(R)[b(R)/b1, to get
transformed Gordon equations

y8~R!52
DU~R!

W0

B0~R!

B08~RL!
@B08~RL!A0~R!y~R!

2A08~RL!B0~R!z~R!#, ~34!

z8~R!52
DU~R!

W0
•

A0~R!

A08~RL!
@B08~RL!A0~R!y~R!

2A08~RL!B0~R!z~R!#, ~35!

with DU(R)5U(R)2U0(R) and the initial conditions
y(RL)51,z(RL)51.

Fortunately, the farthest extremum points can be as
tained easily and accurately for any given energyE. Indeed,
one may choose a trial valueR1 for RL and fix arbitrarily
C1[C(R1). Then, using the conditionC8(R1)50 and
choosing a suitably small stepD, one applies, for example
the Numerov method to calculateC0[C(R0) at the neigh-
boring nodal pointR05R11D:
nal
C05
11~D2!/12~5w123«22w2!2~5D4!/72~«2w1!~«2w2!

11~D2!/8~2«2w02w2!1~D4!/72~«2w0!~«2w2!
C1 , ~36!

where«[(2mE)/\2 andwk[@2mU(Rk)#/\2 with Rk5R02kD. Thereafter, one uses the Numerov method in its traditio
form ~see, e.g.,@32#! to get

Ck11[C~Rk11!5
2Ck2Ck211~D2!/12@10~wk2«!Ck1~wk212«!Ck21#

12~D2!/12~wk112«!
, k51,2, . . . . ~37!
ei-
es

on
tions
i.e.,
n

The proposed method is convenient and sensitive for
termining the solution with correct asymptotic behavior, i.
vanishing asR→0. Indeed, the solutions with ‘‘wrong’’ trial
value forRL will rapidly tend to infinity asR→0 ~see Fig.
4!. An analogous procedure may be applied for locating
farthest right-side extremum pointRR for the wave function,
vanishing asR→`.

The solution of the energy eigenvalue problem for t
original potentialU(R) now becomes straightforward. Fo
any trial value ofE, one first locates the extremum pointsRL

andRR for the two solutions, which are asymptotically co
rect at one end of the physical domain. Thereafter, one so
numerically the pair of Gordon Eqs.~34! and~35! ~and their
analogues adjusted toRR), to get two independent estima
tions for the wave function’s logarithmic derivative at a
arbitrary reference pointRP(RL ,RR). As explained in Sec
e-
,

e

es

III, these two estimations can only coincide for the true
genvaluesE5En . Examples to the described procedur
will be given in the next section.

To complete the analysis of the general form of Gord
equations, let us examine the case when the special solu
for the reference potential are complex conjugates,
A* (R)5B(R). With reference to the real physical solutio
in the form of Eq.~29!, it then follows thatA0* (R)5B0(R)
anda0* (R)5b0(R). Defining x(R)[y(R)B08(RL), one may
unify Eqs.~34! and ~35!

x8~R!52
DU~R!B0~R!

W0
@A0~R!x~R!2A0* ~R!x* ~R!#.

~38!

Thus, introducing a complex function x(R)
[X(R)uB08(RL)uexp@iw(R)#, putting A0(R)[uA0(R)u
1-8
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3exp@id(R)#, and taking into account thatW0 becomes a
pure imaginary quantity,W0[ iW00, one comes to anothe
transformed pair of Gordon equations

X8~R!52
DU~R!uA0~R!u2

W00
sin$2@d~R!1w~R!#%X~R!,

~39!

w8~R!5
2DU~R!uA0~R!u2

W00
sin2@d~R!1w~R!#, ~40!

with the initial conditions X(RL)51 and w(RL)
5arg@B08(RL)#.

B. Examples of numerical solution

To illustrate the general method described in the previ
section, we will return to the model specified in Sec. III
Namely, losing for a moment the remembrance of its ex
solubility, we will consider the three-Morse potential as
‘‘original,’’ which is approximated by a two-Morse substitu
ent. This way we can easily compare the exact solutions

FIG. 4. Demonstration of locating the farthest left-side ext
mum pointRL of the wave function forE5500 meV. The solution
of Eq. ~1! vanishing asR→0 is shown by solid line, while the
dotted lines represent calculated wave functions resulting f
‘‘wrong’’ trial values for RL .
05670
s
.
ct

or

the three-component ‘‘original’’ with those obtained fro
the two-component ‘‘reference’’ solutions by applying th
Gordon method. SinceDU(R)50 as R>X1, there is no
need to search for the right-side extremum pointRR ~pro-
vided RR.X2). Indeed, the wave function’s logarithmic de
rivative for the whole rangeR>X2 is given by Eq.~20!.

To concern both general pairs of Gordon equations,
Eqs. ~34!–~35! and Eqs.~39!–~40!, we will examine the
same solutions for the eigenstatesn555 and 75, which are
shown in Fig. 3. First, we consider the energy regionE
<V11D1. In this case, the special solutions and their deri
tives for the reference potential are given by Eqs.~8!–~9! and
Eqs. ~10!–~11!, respectively. Let us fixA0(R)5C11 and
B0(R)5C12. The Wronskian then becomes~taking R arbi-
trarily!

W05a1exp~2y1!@~a11m121/2!F~m1!F1~2m1!

2~a12m121/2!F~2m1!F1~m1!#. ~41!

Now one can solve the Gordon equations~34!–~35!, starting
from the initial conditionsy(RL)51,z(RL)51. The standard
fourth-order Runge-Kutta method is well suited for this pu
pose, asy(R) andz(R) are slowly varying functions. Natu
rally, the solutionsy(R)5y(X1) and z(R)5z(X1) become
constants in the rangeR>X1. According to Eqs.~29!–~30!
and general continuity requirements, one gets

a0a~X1!A08~X2!1b0b~X1!B08~X2!

a0a~X1!A0~X2!1b0b~X1!B0~X2!
5F22, ~42!

whereF22[C28(E,X2)/C2(E,X2) is obtained from Eq.~20!.
Finally, using Eq.~33!, one comes to the following quanti
zation condition:

y~X1!

z~X1!
52C0

A08~RL!

B08~RL!
, ~43!

where

C0[
a0a~X1!

b0b~X1!
52

B08~X2!2B0~X2!F22

A08~X2!2A0~X2!F22

. ~44!

The results for the eigenstaten555 are shown in Fig. 5.
Only the rangeR<X1 is depicted where the two- and thre
component potentials actually differ. One can see thaty(R)
and z(R) are indeed slowly varying functions, and the n
merically calculated wave functionC;B08(RL)A0(R)y(R)
2A08(RL)B0(R)z(R) practically coincides with the relevan
exact solution.

Now, let us consider the energy rangeV11D1,E<V2
1D2, whereA0(R) andB0(R) become complex conjugates
Here, the treatment is based on Eqs.~39!–~40! and, accord-
ing to Eqs.~43!–~44!, the quantization condition becomes

w~X1!52arg@A08~X2!2A0~X2!F22#

52~b02a1b1X21argf !. ~45!

-

m
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The phase shiftb0 can be calculated from the followin
exact formula@24#:

b05b1@11 ln~4a1!1a1R120.5 ln~1116b1
2!#

1I ~4b1!/42
p1arg@H~m1!#

2
, ~46!

where

H~m1!5 (
n50

`
~22a112m1!n~24m1!n

2nn! ~2a12m111/2!n

3F (
n50

`
~4m1!n

2n~2m111!n
G 2

, ~47!

I (4b1) is given by Eq.~16!, and other quantities are define
in Sec. II ~note thatm15 ib1 is a pure imaginary paramete
here!. Further, using Eqs.~8!–~11! and ~42!, one gets

FIG. 5. Comparison between the exact three-component ei
function for the leveln555 and the numerical solution of Gordo
equations~34!–~35! for the two-component reference potentia
whose relevant exact solution is shown by a dotted line. Nume
method has been used for the rangeR<RL . The lower graph dem-
onstrates the coordinate dependencies of the Gordon functionsy(R)
andz(R).
05670
f 5Fa1S y1211

2
2a1D2F22GReS11a1@~a121/2!ReS2

1b1Im S2#1 i H Fa1S y1211

2
2a1D2F22G Im S1

1a1@~a121/2!Im S22b1ReS2#J , ~48!

where S1[S(a1 ,ib1 ;y12) and S2[S(a121,ib1 ;y12) are
calculated aty125y1(X2), using Eq.~12!.

A convenient form for the wave function is

C~R!5
C~R!X~R!sin@d~R!1w~R!#

C~RL!sin@d~RL!1w~RL!#
, ~49!

with C(R)5uS1(R)u and d(R)5b02a1b1R1argS1(R).
Finally, the initial condition forw(R) becomes

w~RL!5arg@B08~RL!#5b02a1b1RL1argf 0 , ~50!

where

f 05S y1011

2
2a1DReS101~a121/2!ReS201b1Im S20

1 i F S y1011

2
2a1D Im S101~a121/2!Im S20

2b1ReS20G , ~51!

S105S1(y10), S205S2(y10), andy10[y1(RL).
A comparison between calculated wave functions for

eigenstaten575 is seen in Fig. 6. Again, the numerical r
sult by the Gordon method practically coincides with t
exact solution, thus confirming the validity of the approac

V. MULTIDIMENSIONAL CASE

An accurate solution of the two-body problem forms
natural basis for an adequate description of the propertie
simple quantum systems, such as diatomic molecules. In
dition, two-body methods can be sometimes applied to st
rather complicated phenomena in solids, e.g., hot lumin
cence of strong vibrational excitations~self-trapped excitons!
in rare-gas crystals@33#. In most cases of practical interes
however, one has to deal with complex many-body syste
when an exact solution of the quantum-mechanical prob
is not possible even in principle. Fortunately, remarka
progress has been achieved in recent years in develo
special many-body techniques, but their use would be ou
the scope of this paper. Instead, once again being guide
Gordon’s work@22#, let us examine how and to what exte
our concept might be adjusted to a multidimensional cas

Direct generalization is easily obtained if the wave fun
tion can be expanded as

C5 (
n51

N

Cn~R!Fn~Q!, ~52!

n-

v
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where R is a specially separated coordinate in which t
wave function shows its most oscillatory behavior~an ana-
logue of the radial coordinate in one-dimensional proble!,
andQ stands for the collection of all other coordinates in t
multidimensional problem. Correspondingly,Fn(Q) repre-
sent some ‘‘global’’ basis functions, which should form
sufficiently complete set and are considered orthonor
over the domain of interest

E Fm~Q!Fn~Q!dQ5dmn . ~53!

Using Eqs.~52!–~53!, one comes to a set of coupled di
ferential equations

(
n51

N

@dmn~d2/dR21«!2Vmn~R!#Cn~R!50,

m51,2, . . . ,N, ~54!

whereVmn(R) is the reduced matrix element of the Ham
tonian ~leaving out the kinetic-energy term inR)

FIG. 6. Exact three-component eigenfunction for the leven
575 in comparison with the numerical solution of Gordon equ
tions ~39!–~40! for the two-component reference potential, who
relevant exact solution is shown by a dotted line. The coordin
dependencies of the Gordon functionsX(R) and w(R) @note that
2w(R) is depicted# are seen in the lower graph.
05670
al

Vmn~R!5
2m

\2 E Fm~Q!H~R,Q!Fn~Q!dQ. ~55!

Thus, assuming the ‘‘radial’’ functionsCn(R) to be com-
ponents of anN-dimensional vector function, Eq.~54! repre-
sents an analogue of Eq.~1! in matrix notation. Next, accord
ing to the general idea of the approach, we have to choos
appropriate reference potential matrix to approxim
Vmn(R). The most convenient choice for this purpose wou
be a diagonal matrix. Indeed, in this case, we getN un-
coupled reference Schro¨dinger equations, each of the sam
form as in the one-dimensional case, and each can be so
separately. Further, to make any use of the analytical to
described in Secs. II and III, the diagonal elementsVnn

(0)(R)
(n51,2, . . . ,N) of the reference potential matrix should e
sure exact solubility of the relevant one-dimensional Sch¨-
dinger equations. Naturally, the diagonal form of the ref
ence matrix is only justified if the actual Hamiltonian itse
would be as nearly diagonal as possible. Such a desir
form of Vmn(R) may be achieved with the help of an appr
priate unitary transformation of the initial basis functio
Fn(Q).

Provided one can overcome the described technical d
culties to the desired extent, the solution of the multidime
sional eigenvalue problem is a simple generalization of
one-dimensional scheme. First, one finds the two linea
independent solution vectors for the reference Hamiltoni
Threafter, one locates the extremum pointsRL

(n) andRR
(n) for

all componentsCn(R), using matrix analogues of Eqs.~36!–
~37!. For example, Eq.~37! transforms as follows:

F12
D2

12
~wk112«!GCk11

5F21
5D2

6
~wk2«!GCk2F12

D2

12
~wk212«!GCk21 ,

k51,2, . . . . ~56!

Here, Ck represents anN-dimensional vector function and
wk is anN3N matrix. Thus, given the vectorsCk21 andCk
at Rk21 andRk , respectively~note thatRk also represents a
vector with componentsRk

(1) ,Rk
(2) , . . . ,Rk

(N)), one solves a
system of linear equations to find the next vec
Ck11(Rk11) in succession. This way, moving step by st
into the classically forbidden region, one can gradually
cate the true solution vector whose components should v
ish at both ends of the physical domain. Then, having fix
all the extremum pointsRL

(n) andRR
(n) , one can solve matrix

Gordon equations to get the expansion coefficientsan(R)
and bn(R) (n51,2, . . . ,N) in the matrix analogue of Eq
~29!, and therefore, the wave function’s ‘‘radial’’ compo
nentsCn(R) in the rangeRP(RL

(n) ,RR
(n)).

The overall analytical-numerical procedure looks arduo
but still manageable. However, one has to bear in mind
the described simple extension of the one-dimensio
method becomes meaningless if one cannot actually fix
‘‘radial’’ coordinate for the real multidimensional system

-

te
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Then one should use special multidimensional tools, suc
the Monte Carlo Green’s function method~see@32#, Chap.
11, for a good introductory overview!.

VI. CONCLUSION

In this paper, our aim is to elaborate a possibly univer
and accurate method of solving the energy eigenvalue p
lem for simple one-dimensional quantum systems. For
purpose, a unified analytical-numerical approach has b
developed. First, one constructs an appropriate reference
tential consisting of several smoothly joined Morse-ty
components, and finds the exact solutions of the relev
Schrödinger equations. These solutions are then used to
ply a nonperturbative approach proposed by Gordon@22#,
which enables us to calculate the energy eigenvalues
eigenfunctions for the original potential. The overall succ
of the method mainly depends on the quality of the prepa
tory analytical work. Indeed, the numerical method of fin
ing the slowly varying expansion coefficients in Eq.~29! is
easily realizable and effective, if the reference potential i
sufficiently good approximation to the original one.

Involving Morse-type potentials as the constituents of r
erence potentials is not at all incidental for our conce
ys
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There are not so many multicomponent potentials whose
linearly independent exact solutions of the relevant Sch¨-
dinger equations could be easily found in the whole phys
domain. One such possibility, the piecewise linear appro
mation, has been used by Gordon himself. Another ea
realizable option, which can take advantage of the w
elaborated theory of confluent hypergeometric equations
the piecewise Morse approach described in this paper.
have studied a confining three-component model poten
which might often be just the optimal choice for two-bod
systems. Naturally, one can construct a potential of m
more Morse components to study both the scattering an
the bound states of a given potential. However, there sho
always be a reasonable balance between the analytical
numerical efforts when aiming at developing a really ef
cient solution method.
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