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A general method of solving the one-dimensional Sdimger equation is developed. The first step is to
construct an exactly solvable reference potential of several smoothly joined Morse-type components, which
should be a good approximation to a given potential. The exact solutions for that reference Hamiltonian are
then combined with a nonperturbative approfieh G. Gordon, J. Chem. Phys1, 14 (1969], which enables
us to numerically solve the energy eigenvalue problem for the original potential to any desired accuracy. A full
description of the analytical procedures is given and examples of both exact and numerical solutions, are
presented.
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I. INTRODUCTION form [10]. In this sense, the exact solubility has been found
for only a very limited number of potentials, most of them

Seventy-five years after the birth of wave mechaifids being classified already by Infeld and H{dl1] on the basis
the Schrdinger’'s famous equation still remains a subject forof the Schrdinger factorization methofL2], which in turn
numerous studies, aiming at extending its field of applica@ppeared to be a rediscovery of the formalism stated nearly
tions and at developing more efficient solution methods120 years ago by Darboy43].
Concerning confining one-dimensional quantum systems, AN impor_tant innovation for classifying the exactly solv-
such a long-standing interest might seem surprising. Indee@Ple potentials was the concept of supersymmeiysSY)
the relevant Schidinger equation can always be solved nu-Shape invariance introduced by GendenshtEid]. His

merically, which nowadays seems elementary, in view of the'mPle and elegant method of solving the quantum-

immensely increased computational power. However, eveFPEChan'C"’1| eigenvalue problem, however, was shown to be

in this simplest case, the success of applying any direct nu(ngvalent to the factorization meth¢d5]. Another proce-

merical integration method depends on the quality of initialldure for generating families of isospectral Hamiltonians has

- g been devised by Abraham and Mo$&8]. It is based on the
guesses for the boundary conditions and energy e'genvalue@el'fand-Levitan equatiofil7] and is, in general, inequiva-
These kinds of difficulties have stimulated development of|e t [18] to the Darboux constructi’on In recént years, a

more sophisticated integration approaches, e.g., embedd@guthod of constructing nonshape-invariant so-called condi-
exponentially-fitted  Runge-Kutta[2] and dissipative {onally exactly solvable potentials has been develdi
Numerov-type 3] methods, as well as interesting techniques,ang several more attempts for the unified treatment of all
such as a relaxational approaph| based on the Henyey known cases have been reporfd®,20, along with a sys-
algorithm[5], an adaptive basis set using a hierarchical finitetematic search for other classes of solvable potentials.
element method6], and an approach based on microgenetic Most works in this field concern exact solubility in the
algorithm[7], which is a variation of a global optimization above-specified mathematical sense. For practical purposes,
strategy proposed by Hollar@]. however, one may prefer a slightly modified definition, ac-
Inevitably, to apply any numerical or other approximatecepting a Hamiltonian as exactly solvable, if one can, in
method of solving the Schdinger equation, one needs to fix principle, calculate its eigenvalues and eigenfunctions with
the interaction potential for the system. Unfortunately, asarbitrary accuracy21], not necessarily in explicit form. In
proved long agd9], even the complete knowledge of the this sense, any potential giving a piecewise analytic solution
discrete energy spectrum complemented with full scatteringf the Schrdinger equation in the whole physical domain
information is insufficient to ascertain a confining potentialwould be exactly solvable. The latter definition also has a
uniquely. On the other hand, one hardly could calculate astronger impact on relevant numerical studies, because to
ab initio potential, which would be reliable in the whole some extent, any potential can be approximated by a substi-
physical domain. Thus, the regrettable conclusion is thatute that enables a piecewise analytic solution. This kind of
one’s knowledge of the real interaction potential for almost‘reference potential” method was proposed over 30 years
any quantum system to study is more or less incomplete. ago by Gordori22] with an emphasis on the piecewise linear
As a kind of counterweight to this principle ambiguity, approximation of the initial potential. For any linear interval,
there has always been a remarkable interest in studying exhe two independent solutions of the Satirmer equation
actly solvable Schidinger equations. At this point, we have can be written in terms of the well-known Airy functions
to specify that traditionally the term “exactly solvable” has Ai(x) and Bi(x), nowadays available as standard functions
been used in a well-defined mathematical sense, meaning most math-oriented programming environments, such as
that eigenvalues and eigenfunctions of the Hamiltonian unmAPLE. This way Gordon elaborated an efficient numerical
der consideration may be expressed in an explicit and closesiethod. However, the real essence of his work was the deri-
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vation of a closed pair of coupled first-order differential and o, can be negative. The number of components is arbi-
equations, exactly equivalent to the original Salinger trary, but let us fixk=0 for a so-called pseudo-Morse poten-
equation, but far more convenient for the numerical solutiontial, whose main peculiarity is that the paramet@gsand a

We will make use of these equations in this paper. are not independent, blX,=#%2«3/(8m). It means that such
Recently, the author proposed a similar approach baseg iy notential well(if considered separatelys just of the
on several smoothly joined Morse-type potentidB3], |t depth when there is no discrete energy spectrum any

which leads tq an anglytic solution in terms of the comfluentmore[zﬂ_
hypergeomet_rlc func_uons, also well-stud|ed mathemat!cally. The regiorX,<R<=X, (k= 1) around the minimum point
Compared with the linear fit, the main advantage of this ap-, . . ) . .
RS . . R, is fitted by an ordinary Morse potential, while the ap-

proximation is the small number of analytically different LT . :
components that are needed to get a good fit with the origin(’;ﬁrox'matlon n t_hg Iong-dlst_ance region depends on the
potential (which may be of rather different shapia a rea- shape of the_ _orlg!na_ll potential. Let us assume that it ap-
sonably wide distance range4]. In this paper, using the Proaches afinite limit aR—c. Then the regiorR=X,; (k
same approach, we demonstrate how easily one can solve tie?) IS fitted by a “reversed” Morse potential, with a pa-
mentioned pair of Gordon equations to any desired accuracyameterD, being negative.
and thus, the whole energy eigenvalue problem for the origi- The latter approximation probably needs to be com-
nal potential, provided the two linearly independent exactmented. Indeed, by introducing such a reversed potential one
solutions for the reference potential are known. actually prescribes a maximufat R,) to the reference po-

The paper is organized as follows. In Sec. I, we describdential, which seems unjustified. However, even if there is no
the constructing of smooth Morse-type reference potentialfjump on the original potential curve, one may choose an
and the needed analytic procedures for an exact solution frbitrarily large value folR, to create a tiny humithe ab-
the related Schiinger equations. In Sec. I, a complete solute value oD, being very smajlin the far long-distance
analytic solution of the Schdinger equation for a smooth region of the reference potential. This artificial trick has an
three-Morse-component potential is given. In Sec. IV, weaimost negligible effect on the solutions of the Satinger
specify Gordon equations relevant to the case, and presegfuation, but has proved very useful for the unified treat-
direct examples of their solution, in comparison with corre-ent.
sponding exact solutions. A possible extension of the method Now, having fixed the number and the analytic form of
to many-body systems is discussed in Sec. V. Finally, Somgye components, their parameters can be determined from an

concluding remarks are presented in Sec. VI. appropriate least squares’ fit to the original potential. In prin-
) ciple, one may introduce some boundary conditions at

Il. SOLUTION OF THE SCHRO DINGER EQUATION X41,X,, etc. To be more specific, we will require continuity
FOR MORSE-TYPE REFERENCE POTENTIALS of the reference potential and its first derivative at these

boundary points. From the “pure” quantum-mechanical
_ o _ ~point of view there is no need for any further constraints
Let us consider the time-independent one-dimensionalegarding the reference potential. On the other hand, by re-

A. Model

Schralinger equation quiring its smoothness at the boundary points, we will essen-
TR tially decrease the number of independent paramaters, and
R) 2m the remaining ones can therefore be determined more easily.

dR2 + ﬁ[E_U(R)]\P(R)_O’ @ In addition, the smooth reference potential is more “physi-

cal” and can often be used simply as an exactly solvable
whereE is energy anan, the reduced masss. We will assume substitute to the original potential, without any need for the
U(R) to be an arbitrargffectiveradial potentiali.e., it may  additional numerical procedures, which we describe in Sec.
include centrifugal energy, proportional ® 2) permittinga V. However, the smooth merging of Morse-type functions is
physical solution, meaning that’(R)—0 as R—0 [25].  hot always possible. In such cases one may, of course, give
Throughout this paper, we will examine only bound states ot/P With the “voluntary” requirement of the derivative’s con-

U(R), and therefore, for the true eigenstatégR) —0 with  tinuity or use linear fitting in a tiny “critical” range. Further
R—o as well. In addition, we will assume the(R) has at  treatment concerns reference potentials that entirely consist

least one minimum pointR;). of smoothly joined Morse-type components.

The next step is to construct an exactly solvable substitute Naturally, there are no restrictions for introducing much
to the original potential. According to the general idea of theMore than just three exactly solvable components, to achieve
approach[23], the reference potential consists of several@ better fit with the original potential. For example, one
smoothly joined components, all having the well-known anaould introduce additional ~pseudo-Morse components

method, it is recommended to keep the number of compo-
UR) =V, +DJe  «RRI_172 k=0,12... . nents as low as possible. Therefore, in this paper we will

2) examine reference potentials having no more than three con-
stituents in total, including no more than ofileany) pseudo-
Here, k is a subscript to distinguish different components,Morse componentk=0), used for the small-distance region
and in contrast to the classical Morse case, the paran@fers 0<R<Xj.
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TABLE |. The quantities related to Eg4). where the symbols

X1<R=X,  X;<RsX, R=X, ax a(a+tl) x?

R<X; E<V;+D; E=V;+D;  EsV,+D, ®(a,c;x)=1+ = —+

c1 e 2 T @

_1/2 a & ia; denote the well-known confluent hypergeometric functions.
¢ 1Bo M1 151 M2 Equivalently, the general solution of E@) can be directly
X Yo Y1 Y1 1y2 constructed fromF,;=®(—b+c+1/2,2c+1;x) and F,

=x"2O(—b—c+1/2,-2c+1;X).
B. General solution scheme

C. Solutions for a two-Morse-component potential
Let us briefly recall the solution scheme for Morse-type

potentials. First, one introduces dimensionless variapjes . . ; .
we will make use of a reference potential, which consists of

= 2aex —aR-Ry], where the subscripte=0,1,2 have only two components: an ordinary Morse potentiki=(1),
the same meaning as specified in the previous subsection

- Lo . ahd a reversed potentidd€ 2), smoothly joined at a bound-
anday= y2mDy/(%ay). The relevant Schainger equations ary pointX,. The most convenient unified form of the two

In Sec. IV, to illustrate the solution of Gordon equations,

then read linearly independent solutions of E¢) for this case is as
follows:
Wy 1 ¥y _M_§+(%_}) Yy =0
dy? Ve dyk ye Yk 4 W W1 = expl — Xu/2) X KD (— byt pye+ 112,20+ 1%,
3 (8

where the plus sign in square brackets corresponds to theWo=exp(—X/2)x, “*®(—by— uy+1/2,— 2+ 1;x),
subscriptk=0 andk=1, and minus—t&=2. The quntities
w? are defined as followsz2=(a2/D,) - (Vi+ Dy— E). Note k=1,2. 9
thatD,<0,ap=1/2 andy is a pure imaginary quantity for
any bound state of the reference potential, since alviays
>Vy+Dy.

Next, using a transformatio ~exp(—x/2)x°G(b,c;x),
one converts Eq.3) into the confluent hypergeometric form

Note that, according to Table bh;=a;,b,=ia5,X;=Y1,X,
=iy,, andu,=1B is a pure imaginary quantity in the en-
ergy rangeE=V, +D;. Naturally, when looking for the true
bound stateswhich is not our goal in this sectipnone has
to choose the correct linear combination of E@.and(9),
which means, for example, thét,, should be omitted due to

Xde(va?X) +(20+1-x) dG(b,c;x) its unphysical asymptotic behavior Bs—oe.
dx? dx We will also need explicit expressions for the derivatives
of Egs.(8) and(9) in the rangeR<X,, which read
+(b—c—1/2)G(b,c;x)=0, (4)
War_ e iy +1)/2—a,JF

with the parameterb, c, and the dimensionless coordinate drR M€ TN {[ys+ D)/2=as]F ()

which for different energy and distance regions are specified N

in Table | (8,=|wd): (a1~ = V2F ()}, (10

The fundamental solution of E¢3) may be always built
up of the special solution&;=W(—b+c+1/2,2c+1;x)
and G,=expX)W(b+c+1/2,2c+1;—x) [28], containing
special functions introduced by Tricorf29], which for suf-
ficiently largex, can be evaluated from the asymptotic series

with F(u)=®(—a;+u+1/2,2u;+1;y;) and F*(uq)

(a)n(a—c+1), 5) =O(—ar+uy+3/2,2u,+13y1).

dw -
SR = @ie Py, Y1+ D)2 ag R (— )

+(ag+p—12F (=)}, (11)

N

\I’(a,c;x)=x*az
n=0 nl(—x)"
I1l. EXACTLY SOLVABLE THREE-COMPONENT

where @),=T'(a+n)/T'(a)=a(a+1)(a+2)--(a+n—1) REFERENCE POTENTIAL

is the Pochhammer symbol, amtl must not be too large. Our main analytic goal in this paper is the exact solution
This simple formula may not work for smalles directing  of the energy eigenvalue problem for the three-component
one to a more complicated but universal expan$is] smooth Morse-type reference potential, as specified above.
In this case, the physical domain is divided into three ana-

I'(l1—c) I'(c—1) lytically different subregions (®;),(X{,X,), and (X,,»),

W(a,c;x)= mq)(a,C;XHTa)Xl_C described in terms of pseudo-Morse, ordinary, and reversed
Morse potential, respectively. Concerning true bound states,
X®P(a+1-c,2—cC;x), (6) we have to take account of the general boundary conditions
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¥ (R)—0 asR—0 orR—. Since there are two equivalent ©o=apBoRo—ard I'(2i By)/T(iBo)]
possibilities of constructing the physical soluti¢see Sec.
IIB), we can always choose just that one that better suits our

1
_ _ _ - 2
purposes. _BO CYoR0+1 |n2 2|n(l+4BO):|
The wave function’s logarithmic derivative, which plays 1 1 dt
so important a role in SUSY quantum mechanics, here forms +_J°°( ht— _) R at 1
the basis for ascertaining the true eigenstates. Indeed, for any 2Jo cotht t e 'sin(2fot) (. (15

energyE within the scope, one can formally find two inde-

pendent solutions of the Schtinger equation, vanishing as The integral in Eq(15) can be, in principle, calculated ana-

R—0 or R—x, respectively. From continuity requirements lytically, but is more conveniently evaluated numerically, us-

one therefore gets two estimations for the logarithmic derivaing the expansion

tive of the physical solution at any reference poiRt

€ (0,2). Natgrally, these twp independent estimations of the (w)= jw( cotht— E) e tsin(wt)

same quantity can only coincide for the true energy eigen- 0 t

valuese=E, . Consequently, the demand of continuity of

the wave function’s logarithmic derivative at an arbitrary ref- _ jTetSin( Tri) f(t)dt (16)

erence point represents a universal quantization rule for mul- 0 T ’

ticomponent confining potentials. Having found the true ei-

genvalues, one then fixes the relevant normalization factorgith T=/w and

from demand of continuity of the wave function at the

boundary pointsX; andX.. f(t)= cotht— 14 _e_Tcotf’(H-T)— U(t+T)
We will often exploit a very useful Tricomi expansion of t t+T

the confluent hypergeometric functions through the Bessel

functions[30], whose quantum-mechanical content becomes te 2T coth(t+2T) — 1(t+2T) .

transparent in terms of the following functions[23], used t+2T

throughout this paper

dt
t

The wave function’s logarithmic derivative then becomes

- v, Yo Coo(Yo) Sil ¢o+ Doo(Yo) — @oBoR]
wix)=e 2h(—a+pu+122u+1,x)= 2, By, o=@ 5t ,
Sa.px)=e (matu 2 X) ngo . Yo *ol2 OCO(YO) cog o+ Do(Yo) — apBoR]

12

where Cyo(yo)e'Po¥d=5(1/2jBy;:—Yo), in accordance
where Bo=1, By=-ax/(2u+1l), By,=x(—-aB,-1 with Eq.(12) and the general relatiof28]

+XxB,_o/4)/[n(2u+n)], n=2,3, ... .
exp(—Yol2) P (i Bo+ 1,21 Bo+ 1;Yo)

A. Solution in the small-distance range 6sR<X; (k=0) =expyYo/2) P (i B2 Bot1;—VYo). (18
In this region the special solution of E¢d) G,—> as
R—0 (i.e., x—=), and should therefore be omitted. Thus, B. Solutions for central X;<R<X, (k=1) and long-distance
substitutingy ;= exp(— a(R—R,)) and making use of Eq$6) R=X, (k=2) regions
and(12), one immediately gets the right solution In the rangeR=X,, the solution¥,, given by Eq.(9)

_ _ tends to infinity asR— o, and should be omitted. In accor-
Wo=NoCo(Yo)C0$ 0o+ Do(Yo) ~@oBoRl. (13 jo 00 ith Eqgs(8) and(12), one then immediately gets the

solution
whereNj is the normalization factor,
W,=Noyh?S(iag, m2;iya), (19
iDo(Yo) = io
Colyo)e™oM'=S(112 o;Yo) whereN, is a normalization factor. The relevant logarithmic
L yol4 . (Yol4)? ( - Vol4 ) derivative becomes
a +1/2 +1/2)1! +3/2 : . :
Po (Bo ) Po \]2: S(iaz, uat+13iy>) Y5 aj
(Yol4)* _ Yol4 v, Sliaz,u2;iy2) 8(uat1)| ™ (py+1/2)2
(Bot1/2)(Bgt+3/2)2! Bot+5/2
+ (14) P (20
o YR

and the phase shift can be calculated from an exact formula In the central regioiX;<R< X, where an ordinary Morse
(see[24] for detallg approximation is used, one has to examine the general solu-
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tion built up of Egs.(8) and(9), while according to Table I, where C;(y;)e®1¥V=S(a;,iB;1;y1), Cii(y;)ePudv

the two energy regionE<V,;+D,; andE=V,+D; should =S(a;—1,8;;y1), while the constantsl; and¢; should be
be treated separately. determined from the boundary conditions Xt and X,.
The caseE=V;+D,, when special solutions from Egs. Thus, from condition WH(E, X)W o(E,Xy,)

(8) and(9) become complex conjugate to each other, is more=vy’ (E,X;)/¥_(E,X;) one easily gets the relation be-
Simple for the analy3i$naturally, there are no real bound tween the phase constangg and 1. Then, using Eq(22)’
states in this range, ¥, +D;>V,+D,, which is typical to  one calculates the logarithmic derivative
potentials with pronounced humgd81]). As the energy W' (E,X,)/¥-(E,X,) and compares it with the estimation
eigenfunction for any nondegenerate state should be regh, W4(E,X,)/W,(E,X,) obtained from Eq.(20). As ex-
(apart from inessential phase fagtpe7], the general solu-  jained above, these two independent estimations of the
tion and its logarithmic derivative red@3] same quantity can only coincide for the true energy eigen-

v.=N,;C cogp;+D - R],E=V,+D,, valuese=E,.
: 1Gyeos e 1Y)~ @1faR] ! ! In the rangeE<V,+D;,, the most convenient form for

(21 the solution is
1 vl Cia(y1)cod o1+ D1s(y1) — @1 81R]
R — — Ny M . (=)~ _ .
o \If> (al 1/2) Cl(y1)00§1<P1+ Dl(yl)_alﬂlR] \If<— Nl yllS(al,Ml,Y1)+N1 yl 1S(a11 Mlayl)y
Cia(y1)siM @1+ Day(y1) — @181R] E<V;+Dy, (23

+
A1 Ci(y1)cog @1+ Da(y1) —@181R] +) )
whereN; "’ and Nj ’ are some real constants to be deter-
y1+1 mined from the boundary conditions. Correspondingly, the
2 wave function’s logarithmic derivative reads

1 vl - le}fls(al_1,,U~1;Y1)+y1_ﬂls(al_11_ “1:Y1)
N1y *S(ag, m1;y1) +y, “*S(ar, — m1;y1)

N1y 'S(a;—Luaiya) =y, “*S(ar—1,— ua;y1) + Yol

— all (24)
lelfls(al,,“l;yl)‘Fh MS(ay,— pm1y1) 2

M1
whereN;=N{"/N{"). Using Eq.(24) and requiring, as usual, continuity of the logarithmic derivative, one comes to the
following quantization equation:

[FoiS(a1, = u1;¥10) —BiS(a1—1,— uq;y10) [exply14/2+ 2 uy a4 Xq)
Foj_q)( _A1,2/.L1+ 1,y11) _Alq)( _A1+ 1,2/.L1+ 1,y11)

_ [FioS(a1, —p#1;¥12) = BiS(a1—1,— w15y 1) [exply 12+ 2 u a1 X5)

) 25

FioP(—A12u1+ 1Y) — AP (— A1+ 1,201+ 15y10) @9
|

wherey;;=Yy1(X1),Y12=Y1(X2) ,For=VY5(X1)/[ a1 ¥ o(X1) ] To(E)=AF1® 5511~ FoiF 1291551 — A1B1 P ,S);

+ta;—(yut1)/2,  Fip=Vy(X)/[a1¥,(Xo)]+ar— (Y1 N

+1)/2, A15a1—1/2—,ul, andBlEa1—1/2+,u1. +BlF12cI)12$ll’ (28)

Slightly rearranging and taking the logarithm of Eg5),

the quantization condition can be written in a more compact ) N
form in terms of the functionsD (, =P (—A1,2u1+1;y1x), Py

=®(—A1+1,2u:+1y1), Sue=S(ay, — p1:y1), and Sy,
=S(a;—1,— puq;y1) for k=1,2.
Thus, according to Eq26), the energy eigenvalues in the
(26) rangeE<V;+D; may be determined as the zeros of the
function F(E). Note thatT,(E)/T»(E)>0 for any physical
solution, i.e., in this sense, Eq25) and(26) are equivalent.
TU(E)=AF1,P,1S1o— FoiF 129 1:S1,— A1 B1 P S), However, Eq(26) contains some additional solutions, which
should be ruled out by the zero-searching algorithm. First,
+B1F 1P 1151, (27)  there may be such unphysical zerds, for which

Ti(E)| yu—Yi
LB 2

F(E)=In +2p1a1(Xy—X1)=0,

where
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T.(E,)/T,(E,)<0. Second, it can be shown tha{E)— 0
as u1— un=N—1/2, whereN is a positive integer. These 600 1
kinds of solutions are also unphysical. Indeed, according to  ggq |
the well-elaborated theory of confluent hypergeometric equa-
tions[28], the special solutiong; andF, of Eq. (4) are not

linearly independent, if 2;,+1=N, which means that in

this case the general solution should be written in terms of

the Tricomi functionsG; and G, (see Sec. IIR Since one 600 | °2 - 250 2{'35 2'90 208
of them (G,) will contain a logarithm of a negative argu- ' | “URA) < '
ment, there is no way to construct a general solution for the
relevant Schidinger Eq.(3), which would be real. Conse-
quently, any solution of Eq26) with 2.+ 1=N should be
excluded. To this end one may, for example, search for a
zero in an energy range fixed by neighboripg, values:
En=V;+Dy(1—(N-1)%4a%) and Ey,;=V;+D;(1
—N2/4a§). Now, if one finds a zerde, within the range
(En+1.EN), andT4(E)/T,(E,) >0, this will definitely be a
true energy eigenvalue.

AU(R) (meV

400 -

Potential energy (meV)

200

C. Examples of exact solution

We have calculated the whole spectrum of bound states
for a smooth three-Morse-component potential whose pa-
rameters were specified elsewhfs&]. The continuity of the 0 -
potential and its first derivative at the boundary poiKts
=2.95 A andX,=5.08 A has been demanded, and an ad-
ditional conditionU(Xy)=Uq (Xo=2.7 A,Uy=3 eV) has
been used to fix the pseudo-Morse component. This poten-
tial, which is shown in Fig. 1, is realistic for the excimer3Xe
in OJ state, but here it is used as a model potential to test the FIG. 1. Three-component model potential analyzed in this pa-
elaborated method of solving the Sctimger equation. per. Pseudo-Morsd€0) and ordinary Morse(l) potentials are

A set of energy eigenvalues for the two- and three-smoothly joined atX;=2.95 A, while a smooth “transition” to
component potentialépseudo-Morse constituent being ab- reversed Morse potentidR) occurs atX,=5.08 A. Dotted lines
sent in the first cageare presented in Table Il. Note that show the components’ behavior outside their range of applicability.
although the three-component levels are slightly “lifted up” Although invisible in the scale of the figure, the pseudo-Morse po-
by the pseudo-Morse potential wall, their total number re-tential has a minimum aR,=3.7028 A. The difference between
mains unchangedn(,,,=90). Some typical illustrations re- three- and two-component potentials is brought forth in the inset.
lated to the zero-searching procedure~¢E) are presented
in Fig. 2, while Fig. 3 demonstrates the shape of the relevant V¥ (R)=a(R)A(R)+b(R)B(R), (29
normalized energy eigenfunctions.

X2
!
5

6 7 .8 9
Nuclear separation (A)

IV. SOLUTION OF THE ENERGY EIGENVALUE whereA(R) =apAo(R), B(R)=boBy(R), and the constants
PROBLEM FOR THE ORIGINAL POTENTIAL a, and by were introduced to ensure just the right linear
combination of the reference solutions in Eg9). Gordon
A. Gordon method demonstrated that the wave function’s derivative can also be

Suppose we have constructed an exactly solvable refe@xpressed in terms of the functioagR) andb(R)
ence potentialy(R), a good approximation to the original
potentialU(R) in some limited distance range. Correspond- (B — / ,
ingly, the exact solutions of the Scliinger equation for P (R)=a(RA (R +bRIB(R). (30
Uo(R) provide reasonable estimations to thoseUdR), as
well. In this section, however, we try to improve these esti-The essence of the method is the pair of equations for the
mations to a desired degree of accuracy. expansion coefficients

Let Ap(R) andBy(R) be two linearly independent exact
solutions of the reference Schiinger equation for a given
energyE, which, in general, is not any true eigenvalue. The
basic idea of the Gordon meth¢@2] is to express the gen-
eral solutionW(R) of Eq. (1) in terms of the special solu-
tions for Uy(R): +B(R)b(R)], (31

2m
a'(R)=- ?W*B(R)[U(R)—Uo(R)][A(R)a(R)
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TABLE II. Exact positions of the upper vibrational levels=€52-90) for the specified two- and three-component models. All energies
[in (meV)] are calculated relative to the bottom of the potential well.

n 2 Morse 3 Morse n 2 Morse 3 Morse n 2 Morse 3 Morse
52 492.454 492.773 65 525.885 526.127 78 544.100 544.238
53 495.756 496.071 66 527.750 527.985 79 545.010 545.139
54 498.911 499.221 67 529.531 529.758 80 545.856 545.976
55 501.927 502.232 68 531.229 531.449 81 546.639 546.751
56 504.816 505.116 69 532.847 533.059 82 547.360 547.464
57 507.581 507.875 70 534.387 534.591 83 548.021 548.116
58 510.231 510.519 71 535.851 536.047 84 548.621 548.707
59 512.768 513.051 72 537.243 537.429 85 549.162 549.239
60 515.199 515.476 73 538.557 538.737 86 549.643 549.711
61 517.528 517.798 74 539.803 539.974 87 550.065 550.124
62 519.757 520.021 75 540.978 541.141 88 550.427 550.478
63 521.891 522.148 76 542.086 542.240 89 550.730 550.771
64 523.933 524.183 77 543.126 543.272 90 550.971 551.002
6 E,
4 4 1.5
n=>54
2 Lﬁ s 101 n=55
0 2 05
=
2 1 2 001
g
-4
3051
& N
E, g 10
-8 T T T T T T <]
499.0 4992 499.4 499.6 499.8 500.0 Z 151
Energy (meV)
2.0 . T . T . T .
6 1E, 0.0 3.0 3.5 4.0 4.5 50 5.5 6.0
) Nuclear separation (A
4 ™ 15 i (A)
IJ‘N =] 4.5
N N .
A .2
g
° 3
o
-2 4 (>U
n=>59 2
-4 A °
it
N
_6 4 E1 g
-8 ; ; ; ; . ; S 1.0
5127 5128 5129 5130 513.1 513.2 5133
Energy (meV) 1.5 L, . . . . .
L 3 4 5 6 7 8
FIG. 2. Energy dependence of the quantization funckgi) Nuclear separation (A)

for the levelsn=54 and 59 whose exact positions are shown by

arrows. Discontinuity point&; andE, are related to the zeros of FIG. 3. Normalized wave functions of the eigenstatess5 and
Egs. (27) and (28), respectively, while the dotted lines denote un- 75 for the three-component model potential. Thin vertical lines in
physical regions wher&,(E)/T,(E)<0. The energy range in the both graphs separate the three analytically different regions for the
upper graph is fixed byuy=12 anduy=11.5, and the starting model potential usedR<2.95 A, Re(2.95 A,5.08 A), andR
point of the lower graph corresponds ig,=5. =5.08 A.
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b'(R):Z—mWﬂA(R)[U(R)_U (RI[AR)a(R) @=—EB()(RL) (33
72 0 bo A AYR)’
+B(R)b(R)], (32 wherea;=a(R,) andb;=b(R,). Now, let us define dimen-

sionless functionsy(R)=a(R)/a;,z(R)=b(R)/b,, to get

whereW=a,0Wo andWo=Ao(R)Bo(R) — Ag(R)Bo(R) is transformed Gordon equations

the Wronskian of the reference solutioAg(R) andBy(R),

independent oR, as needed. _ ' AU(R) Bo(R)
Equations(31) and(32) are mathematically equivalent to y'(R)=— ————[Boy(RD)AN(R)Y(R)
Eq. (1), but far more convenient in the sense of ease of Wo  By(Ry)

numerical solution. Indeed, compared with the rapidly oscil-
lating solutions of the original Schdinger equation, the ex-
pansion coefficienta(R) andb(R) are slowly varying func-
tions, since their derivatives are proportional to the
difference of two close potentials. Naturally, the functional
form of a(R) andb(R) related to analytically different parts
of the reference potential is also different. Correlation be- —AN(RBy(R)zZ(R)], (35
tween these different pairs of coefficients is determined by
the continuity conditions of the wave function and its deriva-with  AU(R)=U(R)—U(R) and the initial conditions
tive at the boundary points, in accordance with 89) and  y(R.)=1z(R.)=1.
(30). Fortunately, the farthest extremum points can be ascer-
To solve Egs.(31) and (32) we have to fix appropriate tained easily and accurately for any given enefgyndeed,
initial conditions. Suppose we have determined the farthestne may choose a trial value, for R_ and fix arbitrarily
left-side extremum poinR, of the wave functionla com- ¥;=¥(R;). Then, using the condition?'(R;)=0 and
pletely analogous approach can be related to the wave funchoosing a suitably small stefp, one applies, for example,
tion’s farthest right-side extremum poiRg). Then, accord- the Numerov method to calculate,=V¥ (R,) at the neigh-
ing to Eq.(30) boring nodal poinRy=R;+ A:

—Ao(RBo(R)Z(R)], (34)

AU(R) Ao(R)
Wo  AyRL)

z'(R)=- [Bo(RDA(R)Y(R)

1+ (A?)/12(5w;—3e —2W,) — (5A%)/72(e — W) (& — W,)
T 14+ (A2)/8(26 — Wo—Ws) + (AY) T2 £ — W) (8 —Wy)

0 ¥, (36)

wheree=(2mE)/A? andw,=[2mU(R,) /%2 with R,=R,—kA. Thereafter, one uses the Numerov method in its traditional
form (see, e.g.[32]) to get
20— Wi+ (AP /1A 10(Wy— &) W+ (Wy— 1~ &) W4 ]

Wi 1=W(Rys1)=
K+1 (Rk+1) l—(AZ)/lZ(Wk+1_8)

k=1,2,... . (37)

The proposed method is convenient and sensitive for deHl, these two estimations can only coincide for the true ei-
termining the solution with correct asymptotic behavior, i.e.,genvaluese=E,. Examples to the described procedures
vanishing aRR— 0. Indeed, the solutions with “wrong” trial ~ will be given in the next section.
value forR, will rapidly tend to infinity asR—0 (see Fig. To complete the analysis of the general form of Gordon
4). An analogous procedure may be applied for locating theequations, let us examine the case when the special solutions
farthest right-side extremum poiR for the wave function, for the reference potential are complex conjugates, i.e.,
vanishing aR— . A*(R)zB(R). With refgrence to the real physical solution

The solution of the energy eigenvalue problem for theln the form of Eq.(29), it then follows thatAg (R) = Bo(R)
original potentialU(R) now becomes straightforward. For andag(R)=bo(R). Definingx(R)=y(R)By(R.), one may
any trial value ofE, one first locates the extremum poifg ~ Unify Egs.(34) and (35
and Rg for the two solutions, which are asymptotically cor- AU(R)By(R)
rect at one end of the physical domain. Thereafter, one solves x’(R)=— W [A)(R)X(R)—AF (R)X* (R)].
numerically the pair of Gordon Egé34) and(35) (and their 0 (39)
analogues adjusted tRg), to get two independent estima-
tions for the wave function’s logarithmic derivative at an Thus, introducing a complex function x(R)
arbitrary reference poirRe (R ,Rg). As explained in Sec. =X(R)|By(R.)|exdie(R)],  putting  Ag(R)=|Ay(R)|
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the three-component “original” with those obtained from
the two-component “reference” solutions by applying the
Gordon method. SincdU(R)=0 as R=X;,, there is no
need to search for the right-side extremum pdat (pro-
vided Rg>X,). Indeed, the wave function’s logarithmic de-
rivative for the whole rang&= X, is given by Eq.(20).

To concern both general pairs of Gordon equations, i.e.,
Egs. (34)—(35 and Egs.(39-(40), we will examine the
same solutions for the eigenstates 55 and 75, which are
shown in Fig. 3. First, we consider the energy regiBn
<V, +D;. In this case, the special solutions and their deriva-
tives for the reference potential are given by E&§%-(9) and
Egs. (100—(11), respectively. Let us fixAg(R)=¥,, and
Bo(R) =V 4,. The Wronskian then becomésking R arbi-
trarily)

Wo=arexp(—y)[(a;+m1—12F () F (= uq)

—(a1= 1~ V2)F(— 1) F 7 (p1)]- (41)
Now one can solve the Gordon equatidB4)—(35), starting
from the initial conditions/(R, )=1,z2(R.)=1. The standard
fourth-order Runge-Kutta method is well suited for this pur-
pose, ag/(R) andz(R) are slowly varying functions. Natu-
rally, the solutionsy(R)=y(X;) and z(R)=2z(X;) become
constants in the range=X;. According to Eqs(29)—(30)
and general continuity requirements, one gets

apga(X1)Ag(Xz) +bob(X1)Bg(X2)
apa(X1)Ag(Xz) +bob(X1)Bo(X3)

=Fy, (42)

FIG. 4. Demonstration of locating the farthest left-side extre-WhereFz="W3(E,Xo)/W,(E,Xy) is obtained from Eq(20).

mum pointR, of the wave function foE=500 meV. The solution
of Eqg. (1) vanishing asR—0 is shown by solid line, while the

Finally, using Eq.(33), one comes to the following quanti-
zation condition:

dotted lines represent calculated wave functions resulting from

“wrong” trial values for R, .

xexdidR)], and taking into account that, becomes a
pure imaginary quantityW,=iW,,, one comes to another
transformed pair of Gordon equations

AU(R)|Ay(R)|?

X~ W,

sin{2[ 5(R) + ¢(R) }X(R),
(39

2AU(R)|Ao(R)|?
WOO

¢ (R)= Sif[8(R)+¢(R)], (40

with the initial
=ard Bo(Ry)]-

conditions X(R))=1 and ¢(R))

B. Examples of numerical solution

y(X1) Ao(R)
-—C , 43
2(Xy) °By(Ry) “3
where
aca(Xy)  Bo(Xz) = Bo(X2)F2

Co= (44)

bob(Xy) AG(Xz)—Ag(Xp)Fap

The results for the eigenstate=55 are shown in Fig. 5.
Only the rangeR=<X; is depicted where the two- and three-
component potentials actually differ. One can see &)
and z(R) are indeed slowly varying functions, and the nu-
merically calculated wave functioW ~Bg(R.)As(R)Y(R)
—A{(R)Bo(R)z(R) practically coincides with the relevant
exact solution.

Now, let us consider the energy rangyg+D,<E<V,
+D,, whereAy(R) andBy(R) become complex conjugates.

To illustrate the general method described in the previougiere the treatment is based on E€89)—(40) and, accord-

section, we _WiII return to the model specified in Se_c. I C. ing to Egs.(43)—(44), the quantization condition becomes
Namely, losing for a moment the remembrance of its exact

solubility, we will consider the three-Morse potential as an
“original,” which is approximated by a two-Morse substitu-
ent. This way we can easily compare the exact solutions for

o(X1)=—ard Ap(Xz) = Ag(X2)F 2l
=—(Bo— a1 B1X,targf). (45
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M. SELG
1.5 - yiot1
R_=2.907238 A =|ar| =5 ——a - F,,|ReS;+ aq[(a;— 1/2)ReS,
1.0 |
. yiot1
g +,81|m Sz:|+| aq 2 _al _F22 Imsl
%5 0.5
5
© +ayf(a;—1/2)Im Sz—ﬁlReSz]), (48)
Z 0.0 1
= . .
Numerical solution (E., = 502.232 meV) where §,=S(a,,iB;;y12) and S,=S(a;— 1,61,y are
0.5 +  Three-Morse solution (E,; = 502.232 meV) calculated at/1,=Yy1(X5), using Eq.(12).
-+ Two-Morse solution (E,, = 501.927 meV) A convenient form for the wave function is
-1.0 y y ' ' - - - C(R)X(R)siN 6(R)+ ¢(R
282 284 28 283 290 292 294 V(R)= B _) LR+ ¢ (R)] , (49
104 Nuclear separation (A) C(R)SINO(RL) + @(RL)]
with C(R)=|S;(R)| and &(R)=B,— a18:R+argS;(R).
@ 1.02 1 Finally, the initial condition fore(R) becomes
i)
2,00 ok e(RU=ard By(R)]=Bo— arBiR, +arglo,  (50)
S
s 2(R) where
B0.98 -
S Yiotl
0.96 | fo: 2 _al Reslo+(al_1/2)ReSZO+Bllm SZO
' ' ' ' |(Ywotl
2.91 2.92 2.93 2.94 2.95 _ _
Nuclear separation (A) i 2 3 |IM Syot(85=1/2)Im Sy
FIG. 5. Comparison between the exact three-component eigen-
function for the leveln=55 and the numerical solution of Gordon ~ B1ReSy|, (51

equations(34)—(35) for the two-component reference potential,

whose relevant exact solution is shown by a dotted line. NUmero\g, ;= S, (y;0), S;0=Sx(Y10), andy;;=Y1(R.).

method has been used for the rafmje R, . The lower graph dem-
onstrates the coordinate dependencies of the Gordon fungt{®&)s

andz(R).

The phase shift3, can be calculated from the following
exact formulg[24]:

Bo=B1[1+In(4a;)+ a;R,;—0.5In(1+1689)]

A 0
where
5 (—2a3+ 2u0)0(— 4y
H e
(/-Ll) nZO 2nn!(_a1—lu,1+1/2)n
4y |

Y 4
Lo 2"(2p1+ 1), “

[(48,) is given by Eq.(16), and other quantities are defined
in Sec. Il (note thatu,;=i8, is a pure imaginary parameter
here. Further, using Eqe8)—(11) and(42), one gets

A comparison between calculated wave functions for the
eigenstatsn=75 is seen in Fig. 6. Again, the numerical re-
sult by the Gordon method practically coincides with the
exact solution, thus confirming the validity of the approach.

V. MULTIDIMENSIONAL CASE

An accurate solution of the two-body problem forms a
natural basis for an adequate description of the properties of
simple quantum systems, such as diatomic molecules. In ad-
dition, two-body methods can be sometimes applied to study
rather complicated phenomena in solids, e.g., hot lumines-
cence of strong vibrational excitatiofself-trapped excitons
in rare-gas crystalg33]. In most cases of practical interest,
however, one has to deal with complex many-body systems
when an exact solution of the quantum-mechanical problem
is not possible even in principle. Fortunately, remarkable
progress has been achieved in recent years in developing
special many-body techniques, but their use would be out of
the scope of this paper. Instead, once again being guided by
Gordon’s work[22], let us examine how and to what extent
our concept might be adjusted to a multidimensional case.

Direct generalization is easily obtained if the wave func-
tion can be expanded as

N
~If=n§1 ¥ (R)D,(Q), (52)
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1.5 N 2
fL-2808722 4 vmnm):ﬁ—rl1 f O (QH(RQ)D(QAQ. (55

N
=)
.

Thus, assuming the “radial” function¥ ,(R) to be com-
ponents of aN-dimensional vector function, E¢54) repre-
sents an analogue of E@.) in matrix notation. Next, accord-
ing to the general idea of the approach, we have to choose an
appropriate reference potential matrix to approximate
Vmn(R). The most convenient choice for this purpose would
be a diagonal matrix. Indeed, in this case, we jetn-
coupled reference Schiimger equations, each of the same
form as in the one-dimensional case, and each can be solved

J T ' ' " " " separately. Further, to make any use of the analytical tools
28z 284 Nui?:ar 526'88 290 292 29 described in Secs. Il and lll, the diagonal eIeméﬂﬁ(R)

paration (A) : _

1.20 (n=1,2,...N) of the reference potential matrix should en-
sure exact solubility of the relevant one-dimensional Schro
dinger equations. Naturally, the diagonal form of the refer-
ence matrix is only justified if the actual Hamiltonian itself
would be as nearly diagonal as possible. Such a desirable
form of V,,,,(R) may be achieved with the help of an appro-
priate unitary transformation of the initial basis functions
@n(Q).

Provided one can overcome the described technical diffi-
culties to the desired extent, the solution of the multidimen-

; ' ' ' - sional eigenvalue problem is a simple generalization of the

2.90 291 N 2.92 293 = 294 295 one-dimensional scheme. First, one finds the two linearly
uclear separation (A) . - . .

independent solution vectors for the reference Hamiltonian.

FIG. 6. Exact three-component eigenfunction for the level Threafter, one locates the extremum poiRf¥ andRY’ for
=75 in comparison with the numerical solution of Gordon equa-all componentsl ,(R), using matrix analogues of Eq86)—
tions (39)—(40) for the two-component reference potential, whose (37). For example, Eq(37) transforms as follows:
relevant exact solution is shown by a dotted line. The coordinate
dependencies of the Gordon functiodéR) and ¢(R) [note that
—¢(R) is depicted are seen in the lower graph.

o
)
1

o
o
N

Wave function

Numerical solution (£,; = 541.151 meV)
« Three-Morse solution (E,; = 541.151 meV)
» « Two-Morse solution (E,; = 540.978 meV)

o
]
)

-1.0

-y

iy

[4,]
L

-

-

o
L

-

o

o
.

X(R)

Gordon functions
p=3
3

-
[=
=}

0.95

AZ

1- E(WkJrl_g) Wiiq

AZ
=2+ T(Wk—s)

where R is a specially separated coordinate in which the A2

wave function shows its most oscillatory behavian ana- ‘I’k_[l_ E(kal_s)
logue of the radial coordinate in one-dimensional problem

andQ stands for the collection of all other coordinates inthe  k=1,2,... . (56)
multidimensional problem. Correspondinglp,,(Q) repre-

sent some “global” basis functions, which should form a Here, ¥, represents am-dimensional vector function and

sufficiently complete set and are considered orthonormal is anNXN matrix. Thus, given the vectors,_, andW¥
over the domain of interest atR,_; andRy, respectively(note thatR, also represents a

Vi1,

vector with component&? ,R(?, ... RM), one solves a
system of linear equations to find the next vector
f D ,(Q)P(Q)dQ= Spmn- (53 W, ,(Ry.1) in succession. This way, moving step by step

into the classically forbidden region, one can gradually lo-
. .. cate the true solution vector whose components should van-
US|_ng Eqs.(52)—(53), one comes to a set of coupled dif- ish at both ends of the physical domain.pThen, having fixed
ferential equations all the extremum point&™ andR{" , one can solve matrix
N Gordon equations to get the expansion coefficienER)
andb,(R) (n=1,2,...N) in the matrix analogue of Eq.
nzl [5mn(d2/dR2+8)_an(R)]\Pn(R):O’ (29), and therefore, the wave function’s “radial” compo-
nents¥,(R) in the rangeRe (R ,RY).
The overall analytical-numerical procedure looks arduous
m=12,...N, (54) but still manageable. However, one has to bear in mind that
the described simple extension of the one-dimensional
whereV,,(R) is the reduced matrix element of the Hamil- method becomes meaningless if one cannot actually fix any
tonian (leaving out the kinetic-energy term R) “radial” coordinate for the real multidimensional system.
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Then one should use special multidimensional tools, such aBhere are not so many multicomponent potentials whose two
the Monte Carlo Green’s function methgsee[32], Chap. linearly independent exact solutions of the relevant Schro

11, for a good introductory overview dinger equations could be easily found in the whole physical
domain. One such possibility, the piecewise linear approxi-
VI. CONCLUSION mation, has been used by Gordon himself. Another easily

] o . ) realizable option, which can take advantage of the well-
In this paper, our aim is to elaborate a possibly universagjahorated theory of confluent hypergeometric equations, is
and accurate method of solving the energy eigenvalue prope piecewise Morse approach described in this paper. We
lem for simple one-dimensional quantum systems. For thi$iaye studied a confining three-component model potential,
purpose, a unified analytical-numerical approach has beefhich might often be just the optimal choice for two-body
developed. First, one constructs an appropriate reference PSystems. Naturally, one can construct a potential of much
tential consisting of several smoothly joined Morse-typemore Morse components to study both the scattering and/or
components, and finds the exact solutions of the relevanhe hound states of a given potential. However, there should
Schralinger equations. These solutions are then used to aRiiways be a reasonable balance between the analytical and

ply a nonperturbative approach proposed by Gorf@®,  nymerical efforts when aiming at developing a really effi-
which enables us to calculate the energy eigenvalues angent solution method.

eigenfunctions for the original potential. The overall success
of the method mainly depends on the quality of the prepara-
tory analytical work. Indeed, the numerical method of find-
ing the slowly varying expansion coefficients in Eg9) is This work has been supported by Grant Nos. 4032 and
easily realizable and effective, if the reference potential is @508 from the Estonian Science Foundation. The author is
sufficiently good approximation to the original one. grateful to Dr. Vladimir Sovkov from St. Petersburg State

Involving Morse-type potentials as the constituents of ref-University for useful suggestions regarding the conceptual
erence potentials is not at all incidental for our conceptbasis of the elaborated method.
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