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Wave propagation in media having negative permittivity and permeability
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Wave propagation in a double negative~DNG! medium, i.e., a medium having negative permittivity and
negative permeability, is studied both analytically and numerically. The choices of the square root that leads to
the index of refraction and the wave impedance in a DNG medium are determined by imposing analyticity in
the complex frequency domain, and the corresponding wave properties associated with each choice are pre-
sented. These monochromatic concepts are then tested critically via a one-dimensional finite difference time
domain~FDTD! simulation of the propagation of a causal, pulsed plane wave in a matched, lossy Drude model
DNG medium. The causal responses of different spectral regimes of the medium with positive or negative
refractive indices are studied by varying the carrier frequency of narrowband pulse excitations. The smooth
transition of the phenomena associated with a DNG medium from its early-time nondispersive behavior to its
late-time monochromatic response is explored with wideband pulse excitations. These FDTD results show
conclusively that the square root choice leading to a negative index of refraction and positive wave impedance
is the correct one, and that this choice is consistent with the overall causality of the response. An analytical,
exact frequency domain solution to the scattering of a wave from a DNG slab is also given and is used to
characterize several physical effects. This solution is independent of the choice of the square roots for the index
of refraction and the wave impedance, and thus avoids any controversy that may arise in connection with the
signs of these constituents. The DNG slab solution is used to critically examine the perfect lens concept
suggested recently by Pendry. It is shown that the perfect lens effect exists only under the special case of a
DNG medium withe(v)5m(v)521 that is both lossless and nondispersive. Otherwise, the closed form
solutions for the field structure reveal that the DNG slab converts an incident spherical wave into a localized
beam field whose parameters depend on the values ofe andm. This beam field is characterized with a paraxial
approximation of the exact DNG slab solution. These monochromatic concepts are again explored numerically
via a causal two-dimensional FDTD simulation of the scattering of a pulsed cylindrical wave by a matched,
lossy Drude model DNG slab. These FDTD results demonstrate conclusively that the monochromatic electro-
magnetic power flow through the DNG slab is channeled into beams rather then being focused and, hence, the
Pendry perfect lens effect is not realizable with any realistic metamaterial.

DOI: 10.1103/PhysRevE.64.056625 PACS number~s!: 41.20.Jb, 42.25.Bs, 42.79.Bh
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I. INTRODUCTION

Several recent papers have exposed the usefulnes
metamaterials that produce negative indices of refrac
@1–7#. Metamaterials are artificially constructed materia
having electromagnetic properties not generally found in
ture. Examples include photonic band gap structures@2,8#
and double negative~DNG! media@1,3–7#, i.e., metamateri-
als having negative permittivity and negative permeabil
Pendry @3# has proposed the intriguing possibility that
DNG medium could lead to a negative index of refracti
and might overcome known problems with common len
to achieve a ‘‘perfect’’ lens that would focus the entire spe
trum, both the propagating as well as the evanescent spe
Pendry’s analysis followed much of the original work
Veselago@1#. In this paper we use both analytical and n
merical techniques to understand more completely the m
ematics and wave physics associated with DNG med
propagation and scattering problems and apply the resul
explore further this ‘‘perfect’’ lens concept.

In particular, we elucidate the choice of the square r
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that leads to the negative angles associated with Snell’s
and the focusing effects Pendry associated with the D
medium. Pendry’s analysis depends on a certain definitio
the ‘‘forward’’ wave direction, as implied by a specifi
choice of the square root for the wave number and the w
impedance. Moreover, inconsistent choices for the propa
ing and evanescent spectra were made. We apply two w
known analytic continuation arguments to the choice of
square root. The ramifications of these choices are clari
in homogeneous DNG media and with the scattering o
plane wave from a DNG medium interface. Comparisons
achieved by defining correctly the sense of polarization;
field energies and satisfaction of Poynting’s theorem; and
reflection and transmission coefficients for both square r
choices. This analysis also allows us, unlike Pendry, to
fine the square root consistently for the propagating and
evanescent spectra.

One-dimensional finite difference time domain~FDTD!
simulations of the same DNG wave problems are given. T
DNG medium is realized with lossy Drude models for bo
the electric permittivity and magnetic permeability. Th
©2001 The American Physical Society25-1
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FDTD approach not only supports the steady state phen
ena associated with the frequency domain analysis, but
demonstrates the causal transient behaviors. It is shown
clusively that the square root choice leading to a nega
index of refraction and positive wave impedance is the c
rect one. The possibility of a negative index of refracti
material that does not violate causality is also proved a
lytically and confirmed with these FDTD numerical expe
ments. The negative index result agrees with the recent w
by Smith et al. @4–6#. However, there are some differenc
in the interpretation of the physics that we will elucida
These include the concepts of causality, the power flow
sociated with the wave, and the polarization of the wave

An analytical, exact frequency domain solution to t
scattering of a wave from a DNG slab is given and is used
characterize several physical effects. In particular, it is u
to critically examine the perfect lens concept suggested
Pendry. By studying in the frequency domain within a rigo
ous context a spectral analysis of the Green’s function for
scattering of a plane wave from a DNG medium slab,
demonstrate conclusively that the solution is independen
the analytic continuation choices of the square root. Con
quently, even though Pendry’s analysis of the focusing of
evanescent spectrum@Eqs. ~13!–~21! of @3## is wrong be-
cause of the inconsistent choice of the square root, the
result that both the propagating and evanescent spectra
focused is correct. In fact, the derived closed form expr
sion predicts two perfect foci: one at a point within the sl
and one at a point beyond the slab. This agrees with
intuitive ray picture given in@3#; but, as we will demonstrate
care must be exercised in interpreting the meaning of
rays in the DNG slab. However, the exact solution a
proves that this occurs for only one particular lossless, n
dispersive case for which the index of refraction is21, i.e.,
for a matched medium withe(v)/e05m(v)/m0521 so
that n(v)521. We find analytically that the perfect len
effect does not exist in general, particularly if the DNG m
dium has a large negative index or becomes lossy or dis
sive. Rather, the waves in these more general DNG m
are found to coalesce into, localized beam fields that cha
the power flow.

Using two-dimensional FDTD simulations of the scatte
ing of a line-source-generated cylindrical wave from a DN
slab realized with a double Drude medium, it is confirm
that the Pendry perfect lens effect does not occur in gene
Moreover, we do find that, as predicted by the analytic so
tion, the DNG medium strongly channels the fields propag
ing in it in a paraxial sense along the propagation axis. T
DNG slab acts like a converter from a pulsed cylindric
wave to a pulsed beam. This is demonstrated with sim
tions of the field intensity and the Poynting flux. As point
out in @4#, a realistic DNG material must in fact be dispe
sive. Consequently, the analytical and FDTD results dem
strate not only that Pendry’s perfect lens effect is inacc
sible with any metamaterial specially designed to realize
DNG medium, but also that such a metamaterial could
used to achieve the localized beam fields for a variety
applications.
05662
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II. PLANE WAVES IN A HOMOGENEOUS DOUBLE
NEGATIVE MEDIUM

A. Time harmonic plane waves

Consider anx-polarized plane wave propagating along t
z axis:

E5@E0 ,0,0#eikz2 ivt, ~1a!

H5@0,H0 ,0#eikz2 ivt, ~1b!

the wave numberk, the wave speedv, and the wave imped-
anceZ being given by the expressions

k5vAem5k0n, n5Aēm̄, ~2!

v5
v

k
5

1

Aem
5

c

Aēm̄
5

c

n
, ~3!

Z5
E0

H0
5

k

ve
5

1

ve
5Am

e
5zZ0 , z5Am̄/ ē, ~4!

where the speed of lightc51/Ae0m0, the free space wave
number k05v/c, the free space wave impedanceZ0

5Am0 /e0, the normalized permittivityē5e/e0, and the nor-
malized permeabilitym̄5m/m0. The average Poynting’s
vector at the angular frequencyv corresponding to Eq.~1! is

Sv5 1
2 Re~E3H* !5 ẑ

uE0u2

2
ReS 1

Z*
D e22(Im k)z. ~5!

The definitions of the wave speed and wave impedance c
sist of square roots whose proper signs need to be defi
This subject will be dealt with in Secs.~II B !–~II D !. We
note, though, from the expressions forZ that the sign of the
square root inZ is uniquely defined byk. Furthermore, de-
fining the wave vectork5 k̂k by introducing the direction of
propagationk̂ ~where herek̂5 ẑ), then regardless of the defi
nitions of these square roots we have for the DNG medi

E0'H0'Rek and Sv•Rek,0. ~6!

To avoid confusion with the terminology associated w
chiral ~left- or right-handed! materials, we will call a plane
wave that hasSv•Rek"0 simply a LH or a RH plane wave
respectively. The LH plane wave terminology was intr
duced in@1# for the case, for example, in which the wav
propagates in thek̂ direction but hasE, H, and Rek forming
a left-handed coordinate system so thatSv•Rek,0 as op-
posed to a right-handed system for which this project
would be positive.

The definition of the square roots in Eqs.~2!–~4! affects
the field structure described by Eq.~1! and the power flow
5-2
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WAVE PROPAGATION IN MEDIA HAVING NEGATIVE . . . PHYSICAL REVIEW E 64 056625
described by Eq.~5!. Again, note that the sign of the squa
root for z depends on the sign chosen forn, i.e., they are not
independent.

Henceforth we shall consider two alternative definitio
of the square roots that are based upon analytic continua
considerations. It is found that physically based express
for the electromagnetic waves can be obtained that are i
pendent of either of the analytic continuation definitions. T
question of what is the proper definition of a square roo
then replaced with the question of what is the ‘‘outgoing
wave direction. This question becomes critical in proble
involving transitions through interfaces since, in order to d
fine the reflection and transmission coefficients, one need
define the ‘‘incoming’’ and the ‘‘outgoing’’ solutions with
respect to the interface.

B. Definitions of the square roots

In a DNG medium, the relative constitutive paramete
satisfy

ē5u ēueife, feP~p/2,p#, ~7a!

m̄5um̄ueifm, fmP~p/2,p#. ~7b!

Expressing

n5unueifn, z5uzueifz, ~8!

one choice for the square roots in Eqs.~2!–~4! is

fn5 1
2 ~fm1fe!P~p/2,p#, ~9a!

fz5 1
2 ~fm2fe!P~2p/4,p/4!, ~9b!

while the alternative choice is

fn5 1
2 ~fm1fe!2pP~2p/2,0#, ~10a!

fz5 1
2 ~fm2fe!1pP~3p/4,5p/4!. ~10b!

For small loss we may obtain explicit expressions forn and
z. Expressingē5 ē r1 i ē i and m̄5m̄ r1 i m̄ i , we find that, if

0<ē i!u ē r u and 0<m̄ i!um̄ r u, ~11!

then

n.7Au ē rm̄ r uF12 i
1

2S ē i

u ē r u
1

m̄ i

um̄ r u
D G , ~12a!

z.6Aum̄ r / ē r uF12 i
1

2S m̄ i

um̄ r u
2

ē i

u ē r u
D G , ~12b!

and in the lossless limit
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n57Au ē rm̄ r u, z56Aum̄ r / ē r u. ~13!

The upper and lower signs in Eqs. 12! and~13! correspond to
the definitions in Eqs.~9! and ~10!, respectively. Explicitly,
note that with Eq.~9! Rez.0, Ren,0, and Imn.0 and
with Eq. ~10! Rez,0, Ren.0, and Imn,0. Thus, note
that with Eq.~10!, the wave is LH with respect to both th
wave vectork and and the direction of propagationẑ, but
with Eq. ~9!, the wave is LH with respect to the wave vect
and RH with respect toẑ. This issue will arise when we
discuss the power and energy results asssociated with Po
ing’s theorem.

C. The wave directions

The effects of the definitions of the square roots are b
characterized by their effects on the direction of causal
the wave directions associated with reflection and transm
sion from an interface, and the electromagnetic power fl
associated with both concepts. Such a discussion introd
a general characterization of plane wave properties and re
on Poynting’s theorem, which gives a relation between
time variation of the field energy in a region of space and
power flux through the surface surrounding that region.

We summarize the plane wave properties by conside
the direction of the Poynting vectorSv in Eq. ~5! versus the
direction v̂ of Rek, i.e., the direction of increase of the re
part of the phase.

Applying the root in Eq.~10! to the solution in Eqs.~1!–
~4! we see thatv̂51 ẑ while Sv of Eq. ~5! points in the
2 ẑ direction, which is also the direction of exponential d
cay of the wave due to the loss term ink. Applying instead
the root in Eq.~9!, we see thatv̂52 ẑ while Sv of Eq. ~5!

points in the1 ẑ direction, which is also the direction o
exponential decay of the wave. In both cases the solutio
LH with respect to (E0 ,H0 ,v̂) and henceSv•v̂,0.

D. Causal medium

Since the choice of the square root defines the ca
properties of the wave solution, one has to explore the a
lytic properties of the dispersion relationk(v) over the en-
tire frequency domain as implied by the requirement that
medium will be causal. Causality in a linear dispersive m
dium implies that ife(v) andm(v) are transformed to the
time domain via the inverse Fourier transformation

F~ t !5
1

2pE2`

`

dv f ~v!e2 ivt ~14!

then their time domain counterpartse(t) and m(t) are
strictly causal in the sense thate(t)50 andm(t)50 for t
,0 ~for simplicity we do not introduce special symbols fo
time domain constituents, and we use the time variabt
explicitly whenever confusion may occur!. Since in addition
the time domain solutions are real, it follows that the fr
quency domain constitutive parameters should satisfy
5-3
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RICHARD W. ZIOLKOWSKI AND EHUD HEYMAN PHYSICAL REVIEW E 64 056625
e~2v!5e* ~v!, m~2v!5m* ~v! for real v,
~15a!

e~v! andm~v! are analytic functions for Imv>0,
~15b!

uv@e~v!2e0#u→0 and uv@m~v!2m0#u→0

as uvu→` for Im v>0. ~15c!

Thus all the singularities~poles and branch points and th
associated branch cuts! of e(v) andm(v) must lie in Imv
,0. Furthermore, the functionn(v) and, thereby,Z(v) in
Eqs. ~3! and ~4! should be analytic in Imv>0 ~i.e., the
branch cut introduced by the square root there should b
Im v,0).

As an example, consider the lossy Drude medium, s
gested in@3# in connection with the DNG slab

e~v!5e0S 12
vpe

2

v~v1 iGe!
D , ~16a!

m~v!5m0S 12
vpm

2

v~v1 iGm!
D . ~16b!

We provide a slight variation of this for discussion purpos

e~v!5e0S 12
vpe

2

~v1 iGe1!~v1 iGe2!
D , ~17a!

m~v!5m0S 12
vpm

2

~v1 iGm1!~v1 iGm2!
D , ~17b!

where all theG coefficients are positive to ensure analytic
in Im v>0 and represent losses that may be taken to
small. These models are actually Lorentz medium mod
e.g.,

eL~v!5e0S 11
vpe

2

2v22 iGev1v0e
2 D , ~18!

whereGe5Ge11Ge2 andv0e
2 5Ge1Ge2. One readily verifies

that ReeL,0 for v roughly smaller thanvpe , with Im eL
.0 (ImeL.0 is relatively small for realv if the G coeffi-
cients are small!. A similar relation applies form and its
imaginary part.

As discussed above,Ae and Am should be analytic in
Im v>0. Thus, choosing the positive root forv@vpe ,vpm

@i.e., Ae→Ae0 andAm→Am0 as implied by Eq.~15c!# and
then continuing the square root analytically along the r
axis ~more generally, in Imv>0) to the regions v
,vpe ,vpm , where e and m are approximately negativ
~with small positive imaginary part!, one finds there tha
05662
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Ae(v)'1 iAue(v)u andAm(v)'1 iAum(v)u. This implies
that square roots forv and Z in this range are describe
properly by Eq.~9!.

E. Energy and power

As noted in@7# and by many others, the correct form o
Poynting’s theorem in a dispersive medium is@9#

2E
S5]V

S•n̂SdS5E
V
@e0E•] tE1E•] tP

1m0H•] tH1m0H•] tM#dV, ~19!

where the volumeV is bounded by the surfaceS5]V, which
has the unit outward-pointing normaln̂S . The form of
Poynting’s theorem in a homogenous, nondispersive med
is

2E
S5]V

S•n̂SdS5] tE
V
F1

2
euEu21

1

2
muHu2GdV5] tUem.

~20!

Discrepancies between Eqs.~19! and ~20! are immediately
apparent. In a homogeneous, nondispersive DNG medi
the quantityUem in Eq. ~20! is negative. Thus, if an electro
magnetic field enters a DNG region, the right-hand s
~RHS! of Eq. ~20! is then negative. In contrast, the RHS
Eq. ~19! is expected to be positive if the polarization an
magnetization fields are in the same direction as the elec
and magnetic fields, as they would be in the case of
Drude medium. As pointed out in@4#, the DNG medium has
to be dispersive so one should use Eq.~19! in any consider-
ations of the power flow for that case.

In addition, because the two square root choices lead
different results for the left-hand side~LHS! of either Eq.
~19! or Eq. ~20!, the power flow into the medium become
another identifier of the correct choice of the square root
particular, let the volumeV be a large semi-infinite space i
thex-y directions. Let the entrance face to this region be
planez50 and let the exit face bez5` so that for a finite
time the pulse has no interactions with the exit face. Sin
n̂S52 ẑ is the outward-pointing normal on the entrance fa
Eq. ~9! gives a LH plane wave with respect tok that is
propagating in thek̂51 ẑ direction and gives a positive
power flow ~negative flux! into the volumeV. On the other
hand, Eq.~10! gives a LH plane wave that will have negativ
power flow into the volumeV through the surfaceS because
its flux is positive.

F. Interface and slab problems

From the discussions in previous sections it follows th
the behavior of the wave scattered from a DNG interface
slab can serve as an another indicator of the correct choic
the square root. We therefore pay special attention to th
examples, both analytically and numerically.
5-4
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WAVE PROPAGATION IN MEDIA HAVING NEGATIVE . . . PHYSICAL REVIEW E 64 056625
The reflection and transmission coefficients for a wa
impinging normally from the free space side on a DNG
terface are given by

r 015
Z2Z0

Z1Z0
, t01511r 015

2Z

Z1Z0
. ~21!

Consider, for example, a ‘‘matched medium’’ whereē5m̄.
For the choice ofk in Eq. ~9!, we obtainZ5Z0 and r 0150.
We also obtain for this case thatSv of the transmitting wave
in the DNG medium propagates away from the interface,
the phase of this wave decreases away from the interfac
that the wave on the DNG side seems to be propaga
toward the interface. For the choice in Eq.~10!, on the other
hand, the phase of the transmitted wave increases~propa-
gates! away from the interface butSv propagates toward th
interface. Furthermore, in this case we haveZ52Z0; hence,
r 01 and t01 blow up.

The fact thatr 01 and t01 blow up does not rule out the
choice of the square root in Eq.~10! since this special cas
can be treated in a proper limit sense. For the DNG slab,
series of multiple internal interactions can be summed up
closed form even in this pathological limit and the final r
sult provides a regular expression for the field which is giv
in Eqs.~43! and~46! below. It should be pointed out that th
final result is, in fact, independent of the choice of the squ
root in either Eq.~9! or Eq.~10!. Thus in order to address th
issue of the ‘‘correct’’ or ‘‘physical’’ choice for the squar
root it is suggested to study first the problem of an interfa
with a matched DNG under transient excitation. Con
quently, one-dimensional~1D! time domain simulations o
both the one-dimensional interface and slab cases are co
ered in this regard next.

III. 1D FDTD SIMULATIONS OF THE DNG INTERFACE
AND SLAB PROBLEMS

With the square root choices and their consequence
hand, we simulated the interaction of a plane wave with
DNG slab in 1D and the interaction of a line source fie
with a DNG slab in 2D using a finite difference time doma
simulator@10,11#. The DNG slab was modeled by the los
Drude medium~16!. These material models are incorporat
into a standard FDTD simulator with the corresponding a
iliary differential equations for the polarization and magn
tization currents. As noted previously, the Drude DNG m
dium modeled with the FDTD simulator is temporal
dispersive. However, there is no loss in generality in
results for the choice of the square root. Moreover, this a
iliary material approach allows one to isolate the medi
physics from the field physics for postprocessing purpos
Note that there is no possibility of inserting a constant ne
tive permittivity or permeability into a leapfrog staggere
grid FDTD simulator and having it run stably.

We considered a low loss, matched DNG medium w
vpe5vpm5vp and Ge5Gm5G so thatē5m̄511x. Plots
of Re(11x) and Im(11x) for G51.03108 rad/s when
05662
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vp51.031011rad/s, vp52.66531011rad/s, vp55.031011

rad/s, andvp51.031012 rad/s are given, respectively, i
Figs. 1~a! and 1~b!. The angular frequency has been norm
ized to the target frequencyv052p f 0, where f 0530 GHz.
This target frequency valuef 0 was chosen arbitrarily. All of
the results can be achieved in a similar fashion at any se
microwave, millimeter, or optical frequencies with the a
propriate frequency values in the Drude models. As show
Fig. 1~a!, the case withvp51.031011 rad/s does not pro-
duce a DNG medium at the target frequency, while the ca
with vp52.66531011 rad/s, vp55.031011 rad/s, andvp
51.031012 rad/s do. In particular, the values of Re(11x)
at the target frequency are approximately21.0, 26.0, and
227.0. As shown in Fig. 1~b!, the losses in all cases ar
small in comparison to the real parts.

FIG. 1. ~a! Real part of the relative Drudee,m model for the
angular plasma frequencyvp51.031011 rad/s, vp52.665
31011 rad/s, vp55.031011 rad/s, vp51.031012 rad/s whereG
51.03108 rad/s. ~b! Imaginary part of the relative Drudee,m
model for the angular plasma frequencyvp51.031011 rad/s, vp

52.66531011 rad/s, vp55.031011 rad/s, vp51.031012 rad/s
whereG51.03108 rad/s.
5-5



D

es
gr
th
n
n

rs
er
c
I

-

ld

and-

RICHARD W. ZIOLKOWSKI AND EHUD HEYMAN PHYSICAL REVIEW E 64 056625
A. 1D FDTD simulations

The 1D time domain equations solved with the FDT
simulator for the matched DNG medium were

] tEx5
1

e0
~2]zHy2Jx!,

] tJx1GJx5e0vp
2Ex ,

] tHy5
1

m0
~2]zEx2Ky!,

] tKy1GKy5m0vp
2Hy , ~22!

whereKy has been normalized bym0 to make the magnetic
current equation dual to the electric current definition. Th
equations are discretized with the standard staggered
leapfrog in time approach. The electric field is taken at
cell edge for integer time steps; the magnetic field is take
the cell center for half-integer time steps. The electric a
magnetic currents were located together at the cell cente
order to achieve the matched medium conditions num
cally. This required averaging of the electric field and ele
tric current values in the discrete equations.
Ex

n( i )5Ex( iDz,nDt), Jx
n11/2( i 11/2)5Jx„( i 11/2)Dz,(n

11/2)Dt…, Hy
n11/2( i 11/2)5Hy„( i 11/2)Dz,(n11/2)Dt…,

andKy
n( i 11/2)5Ky„( i 11/2)Dz,nDt…, the discretized equa

tions in the FDTD simulator are
ue
e

e
th
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Hy
n11/2~ i 11/2!5Hy

n21/2~ i 11/2!2
Dt

m0Dz
@Ex

n~ i 11!2Ex
n~ i !

1Ky
n~ i 11/2!Dz#,

Ky
n11~ i 11/2!5

120.5GDt

110.5GDt
Ky

n~ i 11/2!

1
m0vp

2Dt

110.5GDt
Hy

n11/2~ i 11/2!,

Ex
n11~ i !5Ex

n~ i !2
Dt

e0Dz H @Hy
n11/2~ i 11/2!2Hy

n11/2~ i 21/2!#

1
1

2
@Jx

n11/2~ i 11/2!1Jx
n11/2~ i 21/2!#DzJ ,

Jx
n13/2~ i 11/2!5

120.5GDt

110.5GDt
Jx

n11/2~ i 11/2!

1
1

2

e0vp
2Dt

110.5GDt
@Ex

n11~ i !1Ex
n11~ i 11!#.

~23!

The initial field is launched from a total-field/scattered-fie
~TF-SF! plane within the mesh@10#. Two types of unit am-
plitude pulse were used. One was a single cycle, broad b
width pulse
f ~ t !5H A7.0~7.0/6.0!33S t2Tp/2

Tp/2 D3F12S t2Tp/2

Tp/2 D 2G3

for 0<t<Tp

0 for t.Tp ,

~24!
t
t
ff

cle,

a
r a
.
the
en
re

of
whereTp is the length of time the pulse has a nonzero val
This single cycle pulse has a broad bandwidth, and the p
of its frequency spectrum occurs atf 051/Tp . The other in-
put signal is the multiple cyclem-n-m pulse:

f ~ t !55
gon~ t !sin~v0t ! for 0<t,mTp

sin~v0t ! for mTp<t<~m1n!Tp

go f f~ t !sin~v0t ! for ~m1n!Tp,t<~m1n1m!Tp

0 for t.~m1n1m!Tp ,
~25!

whereTp52p/v051/f 0 is the period of one cycle and th
three-derivative smooth window functions are given by
expressions

gon~ t !510.0xon
3 215.0xon

4 16.0xon
5 , ~26!

go f f~ t !51.02@10.0xo f f
3 215.0xo f f

4 16.0xo f f
5 #,
.
ak

e

where xon51.02(mTp2t)/mTp and xo f f5@ t2(m
1n)Tp#/mTp . The m-n-m pulse is a sinusoidal signal tha
has a smooth windowed turn-on form cycles, a constan
amplitude forn cycles, and then a smooth windowed turn-o
for m cycles; hence, it has an adjustable bandwidth~through
the total number of cyclesm1n1m) centered at the fre-
quencyf 0. For the cases considered below, either a 20-cy
5-10-5 pulse or a cw signal~5-1000-5 pulse! was used to
probe the DNG slab.

The 1D FDTD grid was terminated at both ends with
one-way wave operator absorbing boundary condition. Fo
Courant numbercDt/Dz51.0, this is an exact truncation
The Courant number must be less than or equal to 1 for
FDTD simulator to be stable for free space problems. Wh
the Drude model is included, the Courant condition is mo
complicated but is well known. A recent review@12# dis-
cusses the various discretization schemes for a variety
dispersive media.
5-6
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Unless otherwise noted, the 1D FDTD problem space
the simulation results discussed below was taken to be 5
cells long whereDz53.031025 m5l0/300 where the tar-
get frequencyf 05c/l0530.0 GHz. The corresponding tim
step wasDt50.95Dz/c59.5310214 s595 fs. The total
field/scattered field plane was set atz5 iDz where i 5600;
the front face of the DNG slab atz5 iDz wherei 51200; and
the back face of the DNG slab atz5 iDz where eitheri
51800 or i 52400. Thus, the DNG slab was 600 or 12
cells thick. The slab was defined by the DNG cases show
Figs. 1.

B. DNG medium results

First, the matched nature of the FDTD equations~23! was
tested with a simple interface problem. The single cy
pulse was launched toward a 600-cell slab that had nega
permittivity only, negative permeability only, and both neg
tive permittivity and permeability. TheEx field was mea-
sured ati 5610, 10 cells in front of the TF-SF plane. Th
results are shown in Fig. 2. The incident pulse appears on
left, the reflected pulses on the right. The measured ele
field has the correct, opposite polarities for the single ne
tive parameter cases. The reflected pulse in the DNG c
was 1.531024 smaller than the incident field, essentially
the expected ‘‘matched’’ level for the discretization used

Next, the propagation characteristics of the pulses in
DNG were investigated. Several quantities were measure
the 600-cell DNG slab case. The termExHy was measured in
time at three pointsi 51205, 1500, 1795. The energy qua
tity *ExHyDt was measured just in front of the TF-SF pla
at i 5610 and just after the slab ati 51810. The results for
ExHy for the 20-cycle incident pulse are shown in Fig.
those for the energy quantity*ExHyDt are shown in Fig. 4.
The energy calculation for a 1200-cell DNG slab is also p
vided in Fig. 4 as is the free space result. From Fig. 3
found thatExHy was positive. The wave in the DNG sla
was definitely LH with respect tok, but RH with respect to

FIG. 2. The time histories of the electric fieldEx measured in
front of the total field/scattered field plane for a negative permit
ity medium, a negative permeability medium, and a DNG mediu
05662
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the direction of propagationẑ. Although there is some peak
ing in Fig. 3, the termExHy decreases in the DNG slab. Th
was tested further with the cw incident pulse. The stea
state values for the termExHy were successively less at eac
of the three observation points. This is confirmed in Fig.
The DNG medium is lossy and does absorb some of
energy. There is no gain in the signals. The peaks in Fig
are due to the ‘‘turn-on’’ and ‘‘turn-off’’ portions of the
incident pulse. These broad bandwidth components have
ferent propagation characteristics from the main part of
pulse as confirmed by the cw runs.

Figure 4 also demonstrates that the DNG medium slo
down the propagation speed of the pulse considerably.

-
.

FIG. 3. The time history of the Poynting vector termExHy was
measured at three points in the DNG medium.

FIG. 4. The energy received at a fixed observation point beh
the DNG slab is plotted as a function of the simulation time. Valu
for thin and thick slabs are compared to reference values. The D
medium can dramatically slow down a wave propagating throug
5-7
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steady state wave front propagates at the group velocit
the target frequencyf 0. In particular, the general formula fo
the group velocity is

vg~v!5@]vk#215c@]v„vn~v!…#21 ~27a!

5F c

nGF11
v

2 S ]vxe

ē
1

]vxm

m̄
D G21

,

~27b!

where in the last expression the susceptibility termsē51
1xe and m̄511xm have been used. Note also that t
phase velocityvp5c/n(v). For the Drude DNG~17!, we
have

vg~v!5F c

nGF11
vpe

2 ~v1 iGe/2!

v~v1 iGe!
2ē

1
vpm

2 ~v1 iGm/2!

v~v1 iGm!2m̄
G21

~28a!

'F c

nGF11
vpe

2

v2ē
1

vpm
2

v2m̄
G21

, ~28b!

where the last approximation applies if the loss term is sm
i.e., v@Ge,m . For our target frequencyf 0, sinceē,m̄<21
for v,vp , we havevpe

2 /v2>2; hence, one verifies tha
vg(v).0 ~i.e., it is in the1z direction! and thatuvg(v)u
!uc/nu ~i.e., it is very slow!. In fact, for the low loss,
matched DNG medium withē5m̄, one has approximately
that

vg~v!'cF11
vp

2

v2G21

. ~29!

For the 2.66531011 rad/s, 5.031011 rad/s, and 1.0
31012 rad/s DNG media, the wave group speed~29! is, re-
spectively, 0.3334c, 0.124c, and 0.0343c. A precise measure
of the speed from the simulation results is quite difficu
Here, it is desired to avoid the earliest time points since
envelope of the excitation pulse contains a variety of h
frequency components whereas late times require dea
with issues of the medium’s relaxation rate. Selecting
point on the curves in Fig. 4 at which 50% of the energy h
been collected at the observation point, one finds that
difference in the number of time steps between the refere
and the short DNG slab is 4412Dt, and for the long DNG
slab is 8901Dt. The expected values were (600/0.1
2600)Dt/0.9554462Dt and (1200/0.12421200)Dt/0.95
58924Dt. The difference between the analytical and the n
merical times is;0.26%; hence, the agreement is very goo

No change in the direction of causality was observed
the 1D FDTD simulation results; only propagation in t
forward direction was observed in the slabs for time prior
the waves interacting with the back side of the DNG sl
Moreover, since the slab was matched to free space, no
flections from this back side of the DNG slab were observ
The wave simply slowed down in the DNG slab and fina
made its way out of it.
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To further confirm the signs of Poynting’s vector and t
energy, several more quantities were calculated. In part
lar, by calculatingP5*JDt and m0M5*KDt, the RHS of
Eq. ~20! was calculated for the DNG slab as

Uem5~1/2!E
0

600Dz

@~e0E1P!•E1m0~H1M!•H#dz.

~30!

As expected, the energyUem was found to be negative ove
the extent of the pulse duration. The corresponding result
the RHS of Eq.~19! for the 600Dz DNG slab under consid-
eration becomes

2@ExHy#z51200Dz
z51800Dz5E

0

600Dz

@e0E•] tE1E•] tP1m0H•] tH

1m0H•] tM#dz. ~31!

The calculated results are shown in Fig. 5 for the 20-cy
pulse excitation of the vp55.031011 rad/s, G
51.03108 rad/s slab. The power in the medium as calc
lated by the LHS of Eq.~31! will be labeledPLHS ; it is the
negative of the difference in the flux through the DNG sla
The results for this quantity are given in Fig. 5~a!. Notice
that PLHS is positive across the entrance face, but nega
across the exit face. This can occur only ifExHy is a positive
quantity. The ability to distinguish the powers across the t
faces occurs because the wave speed in the DNG slab
slow. On the other hand, let the power in the medium
calculated by the RHS of Eq.~31! be labeledPRHS. Let the
maximum instantaneous value ofPLHS be Pmax

LHS . The nor-
malized square difference between these two power calc
tions,

F PRHS2PLHS

Pmax
LHS G 2

, ~32!

is shown in Fig. 5~b!. Despite the spatial integration~aver-
aging! and the time derivatives associated withPRHS, its
predicted values agree quite precisely with the instantane
power flow difference calculations. Moreover, both expre
sions yield positive power values in the DNG slab. This fu
ther confirms the fact that the wave in the DNG medium
LH with respect tok̂ but RH with respect to the direction o
propagationẑ. Positive energy flows into the DNG medium
to cause the term2] tUem to increase; i.e., if we let the DNG
medium’s permittivity and permeability exhibit small losse
then we have the result that the power flow is increasing
the wave enters the medium while the energy density
comes more negative. This has been previously confirm
numerically for related media in@7#.

C. Index of refraction

Finally, the relationship between the causal propagat
and the negative index of refraction predictions for the DN
medium was considered. The negative index was also ca
5-8
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lated explicitly. The cw was driven into a DNG medium wi
vp52.66531011 rad/s andG51.03108 rad/s so thatnr5
21.00 and ni51.0631023 at the target frequencyf 0
530 Ghz. The electric fields at the center of the slab and
cells beyond it, i.e.,Ex(z5130Dz,t) and Ex(z5140Dz,t),
were sampled. The very early-time responses of these m
surements are shown in Fig. 6~a!. It is clear that the respons
of the field at the first pointz15130Dz occurs before the one
at the second pointz25140Dz. This demonstrates that cau
sality in the direction of wave propagation is indeed p
served in the DNG medium. The later-time results at
same points are shown in Fig. 6~b!. The negative index of
refraction nature of the DNG medium is clearly seen. T
response atz25140Dz leads the one atz15130Dz. The
negative index of refraction expresses itself after only a f
cycles.

To calculate the index of referaction, Fourier transfor
of the two electric field time histories were taken. The tim

FIG. 5. ~a! The negative flux of the instantaneous Poynting v
tor through the DNG slab withvp55.031011 rad/s and G
51.03108 rad/s is plotted against the number of FDTD time ste
for the 20-cycle pulse excitation.~b! Normalized square differenc
between the negative flux of the instantaneous Poynting ve
through the slab and the integrated local power density in the s
slab.
05662
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histories contained 20 000 FDTD time steps and were t
zero-padded out to 32 768 time points. The discrete Fou
transforms were calculated and are labeled asẼx(z,v). We
then considered the quantity

nFDTD5
1

ik0~z22z1!
lnF Ẽx~z2 ,v!

Ẽx~z1 ,v!
G . ~33!

The values RenFDTD521.00 and ImnFDTD51.0731023

were obtained forf 5 f 0. The agreement is very good an
further confirms the presence of the negative index of refr
tion for the DNG medium.

Note, however, that in contrast to the description in@4#,
the wave in the medium travels away from the source i
direction opposite to the direction determined by the ne
tive index. Causality, i.e., the wave propagating away fro

-

s

or
e

FIG. 6. FDTD predicted electric field time histories at tw
points: point 1 withz5130Dz, 50 cells into the DNG medium, and
point 2 with z5140Dz. The DNG medium is specified byvp

52.66531011 rad/s and G51.03108 rad/s to give nr( f 0)
.21.00. ~a! Early-time results;~b! late-time results.
5-9
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RICHARD W. ZIOLKOWSKI AND EHUD HEYMAN PHYSICAL REVIEW E 64 056625
the source, does remain intact despite the presence of
appears to be a wave propagating in the DNG medium
ward the source.

The 1D FDTD numerical results essentially confirm th
the correct choice for the square root is indeed Eq.~9!. The
wave physics in a DNG medium is thus described by all
the expressions associated with that choice.

IV. FOCUSING PROPERTIES OF A DOUBLE NEGATIVE
SLAB

We consider the focusing of point sources through a D
slab of widthd located betweenz50 andz5d. It is suffi-
cient to explore the focusing properties for the TM and
Green’s functions, defined by the equations~@13#, Sec. 2.3 or
5.2!

@¹21k2~z!#G~r,r8!52d~r2r8! ~34!

subject to the continuity conditions

GTM ande21]zG
TM are continuous atzi , ~35a!

GTE andm21]zG
TE are continuous atzi , ~35b!

wherezi are the points of any discontinuity in the medium
These functions may be used to describe the field of

other source configuration. For example, the field due t
longitudinal dipole source

J~r!5 ẑI 0d~r2r8! ~36!

located atr85(0,0,z0), z0,0, is given by@@13#, Sec. 5.2,
Eqs.~1! and ~4c!#

E~r!5I 0

1

2 ive~z!
“3“3 ẑGTM, ~37a!

H~r!5I 0“3 ẑGTM. ~37b!

Henceforth we shall consider onlyGTM and remove the su
perscriptTM. It can be synthesized by plane wave super
sition
05662
hat
-

t

f

y
a

-

G~r,r8!5
1

~2p!2E dkxdkye
i (kxx1kyy)g~z,z8;kt!, ~38!

wherekt5Akx
21ky

2 and

F d2

dz2
1k22kt

2Gg~z,z8;kt!52d~z2z8! ~39!

subject to the same boundary conditions as in Eq.~35b!.
The spectral wave numbers and wave impedances in

space and in the slab are

k05Ak0
22kt

2, Z05
k0

ve0
, ~40a!

k5Ak0
2n22kt

2, Z5
k

ve
. ~40b!

The reflection and transmission coefficients of the interfa
from the double negative medium into air are

r 5
Z02Z

Z01Z
, t511r 5

2Z0

Z01Z
. ~41!

TheABCD matrix analysis in@14#, Sec. 3.7, and in particu
lar Eq. ~3.56! there for R and T, gives the reflection and
transmission coefficients from the slab:

R~kt!5
2 i 1

2 sinc~Z/Z02Z0 /Z!

cosc2 i 1
2 sinc~Z/Z01Z0 /Z!

, ~42a!

T~kt!5
1

cosc2 i 1
2 sinc~Z/Z01Z0 /Z!

, ~42b!

wherec5kd. Note thatr and t are subject to the definition
of the square roots, becauseZ is. On the other hand, bothR
and T are independent of these definitions because they
even functions ofk.

The solution forg is now given by
s

g55
eik0uz2z0u

22ik0
2R

eik0(uz0u2z)

22ik0
, z,0, ~43a!

eik0uz0u

22ik0
T

Z0

tZ
$eik(z2d)2re2 ik(z2d)%5

eik0uz0u

22ik0
TH cosk~z2d!1 i

Z0

Z
sink~z2d!J , 0,z,d, ~43b!

1

22ik0
eik0(z2d1uz0u)T, z.d. ~43c!

BecauseR andT are symmetrical ink and inZ, as is the field term in the slab region, the solution~41!–~43! is independent
of either analytic continuation choice of the sign in the square root for the DNG slab; i.e.,k andZ appear with opposite sign
for either choice. This formulation is therefore a convenient starting point to explore the effects of the DNG slab.
5-10
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A. Solution in a matched DNG slab

Specifically, if one takes a slab matched to free space
that

ē5m̄, ~44!

then, denoting the standard definition~i.e., with positive
real part! of the square root in Eq.~40b! as k̃, we find that
k→7k̃ andZ→6Z0 where the upper and lower signs co
in
la

-

ls

ed

-
n

th
ig

05662
so

respond to the definition of the square root in Eq.~9! and in
Eq. ~10!, respectively. Thus,regardlessof the choice of the
square root, Eq.~42! becomes

R50, T5@cosk̃d1 i sink̃d#215e2 i k̃d. ~45!

Note explicitly that for the choice~9! one hasZ51Z0 so
that r 50 and t51, while for the choice~10! one hasZ5
2Z0 so thatr 5` andt5`. Consequently, for either choic
of the square root, Eq.~43! yields
g55
eik0uz2z0u

22ik0
, z,0, ~46a!

eik0uz0u

22ik0
e2 i k̃de2 i k̃(z2d)5

1

22ik0
e1 i (k0uz0u2k̃z), 0,z,d, ~46b!

1

22ik0
ei [k0(z1uz0u2d)2k̃d] , z.d. ~46c!
ive
be

the
op-
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-
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Thus, one does find that the slab solution is completely
dependent of the choice of the square root. Inside the s
the phase progression is negative as implied by Eq.~46b!.

Now consider, as did Pendry in@3#, the lossless, disper
sionless case for whichē5m̄521 so thatk̃5k0. Equations
~46b! and ~46c! become

g5H 1

22ik0
e1 ik0(uz0u2z), 0,z,d, ~47a!

1

22ik0
ei [k0(z1uz0u22d), z.d. ~47b!

Then one observes that the arguments of the exponentia
Eqs.~47a! and ~47b! vanish at the points

zf 15uz0u, zf 252d2uz0u. ~48!

Thus, if uz0u,d, then the field in the slab and the transmitt
field beyond the slab have perfect foci atzf 1 andzf 2, respec-
tively. The final field description within this DNG slab con
sists of a single wave species whose phase propagatio
rection is backward with focus at pointz5uz0u. As a result,
the field forz.d focuses again atz52d2uz0u. This obser-
vation applies for both the propagating spectrum and
evanescent spectrum. The ray picture is thus as seen in F
-
b,

in

di-

e
. 1

of @3#. The presence of the foci results from the negat
index of refraction which causes the transmitted angle to
negative, i.e., in this case

u trans5sin21Fsinu inc

n G52u inc , ~49!

so that the incident and transmitted rays are located on
same side of the normal to the interface rather than on
posite sides. Yet the arrow directions on these rays are o
for interpretation. One may associate the arrows with
energy direction~as in Pendry’s paper! but one may alterna-
tively choose to associate them with the phase progress
giving the opposite direction. The analysis above, howev
does not assume a specific choice of the square root and
of the ‘‘ray directions.’’ Note also that Pendry’s choices f
the square roots in@3# for the propagating and evanesce
spectra were not consistent. Different choices were made
these two spectra. Our derivation is complete and is indep
dent of the square root definitions.

Next, consider the more general case in Eq.~44! where
ē5m̄Þ21. Here the phases in Eq.~46! do not vanish iden-
tically at a given point and the focusing effect is lost. How
ever, we shall explore the possible focusing of the para
spectrum components~small kt /k0) for which

k0'k02
kt

2

2k0
, k̃'k0ñ2

kt
2

2k0ñ
, ~50!
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where, following the definition ofk̃ as explained before Eq.~45!, ñ denotes the standard~positive real part! square root ofn
~i.e., ñ is positive in the lossless DNG medium and has a negative imaginary part for the lossy case!. Expressions~46b! and
~46c! become, respectively,

g'H 1

22ik0
e1 ik0(uz0u2ñz)e2 i (kt

2/2k0)(uz0u2z/ñ), 0,z,d, ~51a!

g'
1

22ik0
e1 ik0[z1uz0u2d(11ñ)]e2 i (kt

2/2k0)[z1uz0u2d(111/ñ)] , z.d. ~51b!
ve
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Thus, the paraxial components may focus at

zf 15ñuz0u, zf 25d~111/ñ!2uz0u, ~52!

provided, of course, thatzf 1,d andzf 2.d. Note that these
‘‘paraxial foci’’ become the ‘‘perfect foci’’ of Eq.~48! when
ñ→1. Also note that for a DNG slab with a large negati
index of refraction, these paraxial focus locations would
very difficult to distinguish from any interface effects; i.e.,
ñ→`, a paraxial focus atzf 15d/2 can be achieved only i
uz0u5d/(2ñ)→0 and hencezf 2→d.

Finally, let us return to the focusing issue from the p
spective of the DNG Drude medium. In that case, one h

k5Ak0
222

vp
2

c2 F v

v1 iG
2

1

2

vp
2

~v1 iG!2G . ~53!

Again, the phases in Eq.~46! do not vanish identically at a
given point, and the focusing effect is indeed lost. Howev
in this case the dispersive nature of the medium contribu
significantly to the loss of any focusing.

B. Solution in a lossy DNG slab

Recalling next that@4# shows that a lossless, dispersio
less DNG medium such asn(v)521 is not physically re-
alizable, we consider the lossy DNG Drude slab. Express
~52! for the foci are still valid but they become complex a
hence there are no real foci and the lens effect is comple
lost. However, since the foci are located at complex poin
one might expect that the resulting fields will take on bea
like forms, i.e., a point source located at a complex posit
produces a Gaussian beam field locally@15#.

We therefore consider a so-called complex source be
which is generated by a source at

r85~0,0,a6 ib !, b.0. ~54!

The field due to this source is a globally exact beam solu
of the wave equation that is confined essentially near thz
axis. Here, however, we consider only the paraxial regi
near this axis where the solution due to the source~54! being
located in uniform free space is given by
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G5
eikur2r8u

ur2r8u
.@6~z2a!2 ib#21 expH ikF ~6@z2a#2 ib !

1
1

2

x21y2

6@z2a#2 ibG J . ~55!

This expression is readily recognized as a Gaussian b
field that propagates along the6z axis, with a waist

Wa5Ab/k at z5a ~56!

and collimation length 2b. Furthermore, referring to the
spectral representation in Eq.~38!, the paraxial expression
for the spectrum of the fields in Eq.~55! is given by

g.
1

22ik0
e1 i [k02(kt

2/2k0)][ 6(z2a)2 ib] . ~57!

Thus the beam parameters in the lossy DNG medium and
particular, the waist width may readily be obtained by co
paring Eq.~51! with Eq. ~57!. To this end Eq.~51! is rewrit-
ten here as

g5
1

22ik0
e1 ik0ñ(2z1uz0u/ñ)

3expH 2 i
kt

2

2k0ñ
@2~z2uz0uñr !2 i uz0uñi #J , 0,z,d,

~58a!

g5
1

22ik0
e1 ik0[z1uz0u2d(11ñ)]

3expH 2 i
kt

2

2k0
Fz1uz0u2dS 11

ñr

uñu2D 2 id
ñi

uñu2
G J ,

z.d, ~58b!

where we have used explicitlyñ5ñr2 i ñ i , recalling the
definition of ñ in Eq. ~50! with ñr.0 andñi.0. Comparing
the quadratic terms in Eqs.~58a! and ~57!, one concludes
that this expression represents a beam that propagates
the negativez axis in a medium withñ and has its waist a
a5uz0uñr and its collimation lengthb51uz0uñi.0. Expres-
sion ~58b! represents a beam that propagates in free sp
5-12
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along the positivez axis and has its waist ata5d(1
1ñr /uñu2)2uz0u and its collimation lengthb51dñi /uñu2

.0.

C. 2D FDTD simulations

The 2D FDTD simulator solved the equivalent TM set f
Ey , Hx , and Hz . These equations were again discretiz
with a standard leapfrog in time, staggered grid approa
Square FDTD cells were used. The magnetic fields w
taken at the cell edges; the electric field was taken at the
centers. The magnetic and electric currents were taken a
cell centers. Thus, in contrast to the 1D case, the approp
averaging occurred here in the magnetic field and cur
equations.

The x-z FDTD simulation space was 820 cells in thex̂
and 620 cells in theẑ direction for the lossless DNG Drud
case and 820 cells3 320 cells for the lossy DNG Drude
cases reported below. The cell sides wereDx5Dz
50.01 cm long, corresponding tol0/100. The time step
was set to be Dt50.95Dz/(A2c)5223.917310215

s50.224ps. The FDTD grid was terminated with a 10-ce
layer, two-time-derivative Lorentz material~2TDLM! ABC

FIG. 7. The electric field intensity over the FDTD simulatio
space att53900Dt for the losslessvp52.65531011 rad/s andG
50.0 DNG slab. The DNG slab is outlined and the source is loca
at the intersection of the horizontal and vertical lines.

FIG. 8. The electric field intensity over the FDTD simulatio
space at t53900Dt for the vp55.031011 rad/s and G
51.03108 rad/s DNG slab. The DNG slab is outlined and t
source and the paraxial foci locations are located at the interse
of the horizontal and vertical lines.
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@16–18#. The index labels wereK andJ, respectively, for the

x̂ and ẑ directions. The line source was located atK5410,
J560 in all cases. The DNG medium parameters were ag
those shown in Fig. 1, except for the lossless case in wh
the vp52.66531011 rad/s case was used withG50.0. In
the intensity figures below gray-scale contours represent
ferent levels. The darker~lighter! regions correspond to
higher~lower! intensity levels. In the Poynting vector figure
below, the darker~lighter! regions correspond to highe
~lower! magnitude values. In both types of figure, some
the contours in regions of expected low values are unav
ably black in order to achieve the targeting lines and the s
outline. Note that the line source takes a time derivative
whatever excitation signal is specified. The single cycle,
cycle, and cw pulses were used to investigate the w
propagation effects in the DNG slab. The amplitude of t
excitation was normalized by 1/35031026 to compensate
for the change in the incident pulse amplitude caused by
time derivative. The line source was driven with the cw pu
for all of the cases reported below.

In an attempt to view the perfect lens foci, a lossless DN
Drude slab withvp52.66531011 rad/s andG50.0 was
considered. The DNG slab was located in the cell regionK
5@12,808# and J5@110,210#. The slab was thusd
5100Dz thick in the direction of propagation and th
source-to-slab distance wasuz0u550Dz,d. Thus, the condi-
tions specified by the analytical solutions for the foci~48!
inside and outside the DNG slab geometry were met. N
that the line source was placed at 50 cells from the fron

d

on

FIG. 9. The electric field intensity over the FDTD simulatio
space at t53700Dt for the vp51.031011 rad/s and G
51.03108 rad/s DNG slab. The DNG slab is outlined and th
source is located at the intersection of the vertical and horizo
lines.

FIG. 10. The electric field intensity over the FDTD simulatio
space at t53700Dt for the vp55.031011 rad/s and G
51.03108 rad/s DNG slab. The DNG slab is outlined and th
source is located at the intersection of the vertical and horizo
lines.
5-13
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this DNG slab with the hope that the focus in the slab wo
occur at the center of the slab, 50 cells beyond the fron
the slab, and that the focus outside the slab would occur a
cells beyond the back of the slab along thez axis. The elec-
tric field intensity Ey

2 in the FDTD simulation space att
53900Dt is given in Fig. 7. The FDTD problem space w
increased in size in this case with the hope of seeing
wave dynamics better, particularly any misplaced foci. Wh
something like large amplitude fields occur in the neighb
hood of the expected foci as shown in Fig. 7, these locati
vary dramatically over time, sometimes even completely d
appearing. No steady state foci were found. This behavio
symptomatic of the highly dispersive nature of this DN
medium as discussed in Sec.~IV A !. Thus, despite numerou
attempts with the lossless cases, Pendry’s lens effect wa
found for this ē r5m̄ r521 case. In fact, almost identica
results were obtained for the slightly lossyvp52.665
31011 rad/s andG51.03108 rad/s DNG slab. The defo
cusing is inherent in any realistic DNG medium.

In an attempt to view the paraxial foci, the lossy DN
Drude slab with vp55.031011 rad/s and G51.0
3108 rad/s was considered. The DNG slab was located
the cell regionK5@12,808# andJ5@70,190#. The slab was
thusd5120Dz thick in the direction of propagation and th
source-to-slab distance wasuz0u510Dz,d. Thus, the condi-
tions specified by the analytical solutions for the parax
foci ~52! are zf 15ñuz0u'60Dz and zf 25d(111/ñ)2uz0u
5130Dz from the front of the DNG slab. The first paraxia
focus should therefore appear near the center of the D
slab, and the second should appear 10 cells beyond its
face. The numerical intensity of the electric fieldEy

2 in the
FDTD simulation space att53900Dt is plotted in Fig. 8.
The locations of the source and the paraxial foci are no
One does observe a paraxial focus near the center of
DNG slab. As noted in Sec.~IV A !, the paraxial focus be
yond the rear face is very difficult to distinguish from th
behavior of the field as the wave exits the slab. Nonethel
there is an enhanced field level where it is expected
beyond the rear face.

Finally, it was desired to determine the structure of t
fields for cases when no paraxial foci should appear in
DNG slab. The slabs that were simulated were all locate
the cell regionK5@12,808# and J5@80,180#. The slabs
were thusd5100Dz thick in the direction of propagation

FIG. 11. The electric field intensity over the FDTD simulatio
space at t53950Dt for the vp51.031012 rad/s and G
51.03108 rad/s DNG slab. The DNG slab is outlined and t
source is located at the intersection of the vertical and horizo
lines.
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and the source-to-slab distance wasuz0u520Dz,d. Slabs
with vp51.031011 rad/s, 5.031011 rad/s, and 1.0
31012 rad/s andG51.03108 rad/s were considered. For a
of these cases, the conditions for foci or paraxial foci spe
fied by the analytical solutions for the DNG slab geome
were not met. The numerical intensity of the electric fieldEy

2

in the FDTD simulation space is plotted in Figs. 9–11 f
these three DNG slabs at the timest53700Dt, t53700Dt,
and t53950Dt, respectively. For all of these cases, the
observation times represent enough time for many cycle
propagate through the slab and enter back into free sp
beyond the slab. Recall that Fig. 9 represents the case w
the slab has positive permittivity and permeability at the t
get frequencyf 0. In contrast, Figs. 10 and 11 represent t
results for DNG slabs at the target frequencyf 0. As pre-
dicted, one finds that there are no focal points in any of th
cases. This is particularly obvious in both the regions 0<z
<d and z.d. These results confirm that a large negati
index of refraction, dispersive DNG slab completely lac
the presence of any foci. It was found that the fields were
with respect tok, but were RH with respect to the propag
tion axis1 ẑ, and they were not growing in the1 ẑ direction
as steady state conditions were obtained. While there ar
focal points, Figs. 10 and 11 do show a distinctive beaml
channeling of the waves near the normal as the permitti
and permeability become more negative. As the waves re
ter free space from the DNG slab, they begin to diverge
though they orginate from an extended line source at the
face of the slab. This channeling of the wave energy wit
the DNG slab is further described by viewing th

al

FIG. 12. The term2EyHx is plotted over the FDTD simulation
space at t53750Dt for the vp55.031011 rad/s and G
51.03108 rad/s DNG slab. The DNG slab is outlined and th
source is located at the intersection of the vertical and horizo
lines.

FIG. 13. The term2EyHx is plotted over the FDTD simulation
space at t53750Dt for the vp51.031012 rad/s and G
51.03108 rad/s DNG slab. The DNG slab is outlined and th
source is located at the intersection of the vertical and horizo
lines.
5-14
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Poynting vector component2EyHx which is plotted
throughout the simulation space att53750Dt for the vp
55.031011 rad/s case in Fig. 12 and for thevp
51.031012 rad/s case in Fig. 13. One can see that the po
flow is positive in the DNG slab and is being concentra
along the1 ẑ axis. Note that in Figs. 12 and 13 the wav
along thez axis are traveling at speedsvg!c. The waves
away from the axis travel faster than those on this a
which further explains the channeling of the wave ene
along the propagation axis. This behavior is readily seen
the time slice shown in Fig. 12.

V. CONCLUSIONS

We have investigated the propagation of electromagn
waves in DNG media from both analytical and numeric
points of view. Analytical continuation based choices of t
square roots associated with the index of refraction and
wave impedance were introduced. The wave physics ass
ated with each of these choices was clarified. Results for
1D plane wave scattering from a DNG interface and a DN
slab and the 2D line source cylindrical wave excitation of
DNG slab were presented. The DNG slab solution w
shown to be independent of the choice of the square ro
a-

lt

-
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Numerical FDTD simulations of these 1D and 2D cases w
provided.

It was demonstrated that the choice of the square root
produces a negative index of refraction and positive wa
impedance is the correct choice. The presence of the neg
index of refraction was shown to be not in disagreement w
causality, and its presence was verified with the FDTD sim
lations. The analytical solution for a matched DNG sl
demonstrated that the Pendry ‘‘perfect lens’’ effect can
realized only in the presence of a nondispersive, loss
DNG medium havingē5m̄521; i.e.,n(v)521. The lens
effect was shown not to exist for any realistic dispersiv
lossy DNG medium. The FDTD simulations further co
firmed this conclusion. No focal points either within the sl
or in its exterior were found in any of the FDTD simulation
These simulations did, however, show a channeling
paraxial focusing of the wave energy due to the presenc
a DNG slab, particularly when the index of refraction h
large negative values. This possibility was correctly p
dicted by the analytical solution. The DNG slab convert
the cylindrical wave into a beamlike field as it propagat
through the DNG slab. This channeling effect may ha
many practical considerations and is being investiga
further.
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