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Heterogeneous versus discrete mapping problem
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We propose a method for mapping a spatially discrete problem, stemming from the spatial discretization of
a parabolic or hyperbolic partial differential equation of gradient type, to a heterogeneous one with certain
comparable dynamical features pertaining, in particular, to coherent structures. We focus the analysis on a
(1+1)-dimensionalp* model and confirm the theoretical predictions numerically. We also discuss possible
generalizations of the method and the ensuing qualitative analogies between heterogeneous and discrete sys-
tems and their dynamics.
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[. INTRODUCTION be mapped into a heterogeneous continuum problem with
comparable coherent structure dynamic features. In a sense,
In the past two decades, the effects of discreteness in tH8iS mapping is not very surprising: one of the main features
waves of parabolic and hyperbolic nonlinear partial differen-Of discrete systems which is, at least partially, responsible for
tial equationgPDE’S) have been shown to be important in a e Néw phenomena observed therein, is the breaking of
variety of physical settings. From the behavior of calciumtransmt'on"’II Invariance. .Th's ?"SO oceurs in heterogeneous
waves in living celld1] to the discontinuous propagation of systems. The way In Wh'.Ch th|§ statement Is translate_d Into
action potentials in the hedi2] or chains of neurongs] and mathematical terms and in which it affects the behavior of
from chains of chemical reactofd] or arrays of Josephson the coherent structures will become evident later in this ex-
junctions [5,6] to optical waveguide$7], dislocations[8], position. In spetle\lly d_|screte systems, the discrete integer
and the DNA double strar@], the relevant models of physi- translational shift invariance that results from the breakup of

cal reality are inherently discrete. This realization has led tdransiational invariance prompts one to think that it could be

the acknowledgment of discreteness as a factor that can quif@atChed by a heterogeneous medium with a natural period of

dramatically modify the continuum picture and enrich its variation due to heterogeneity equal to the intersite distance

phenomenology with effects such as resonant energy transfi'€ lattice spacing Even though our method will be applied

to extended waveii0], braking[11], and eventual failure of to systems of gradient type and hence will not be completely
propagatior12] of coherent structures. general, we will present below an extended discussion of the

An alternative factor that can change the homogeneoug‘Ore general aspects of the analogy between heterogeneous
continuum picture is the presence of heterogeneities in gn(\de|screte systems. | foll In Sec. II ive th
genuinely continuous mediufil3]. Heterogeneity is also € ;ljresent c;urhresutj ?S ?.OWS' n eﬁ: ’WS gl;/eé €
relevant in a variety of physical settings ranging from thed€neral setup of the models of interest to this study. In Sec.

behavior of chemical reactions on composite catalyst surlll: We will present a methodology of how to “construct,

faces[14,15 to the diffusion of flame front§13] or the given a discrete system of gradient type, a corresponding
migration of populations in population dynamics]. heterogeneous system; the corr_espon_dence, pased on respec-
Our aim in this work is to show that these two types oftive coherent structure dynamics, will be discussed. The

variation of the continuum behavior can be related to eacf€thodology will be illustrated in the specific example of a
other. ¢* (1+1)-dimensional field theory and will subsequently

The existence and motion of coherent structures constiP€ Numerically tested. Section IV presents an extended dis-
tutes the backbone of spatiotemporal pattern formation an§USSion of the analogies between heterogeneous and discrete

dynamics in all three typethomogeneous continuum, dis- systems that goes beyond our particular method. In Sec. _V,
crete, heterogeneous continuunf systems. We intend to we analyze the relevance and usefulness of a transformation

demonstrate that a discrete problem derived from the “natu'Ehat gnaps% ahdls_creite s;tl)lstem tc; a heter_ogeneous. Onlf fc_>r a
ral” semidiscretization of a parabolic reaction-diffusion NUMPer of physical problems of recent interest. Finally, in

(RD) or hyperbolic nonlinear wave PDE of gradient type can>¢C- VI, we summarize our findings and conclude.
Il. GENERAL SETUP
*Author to whom correspondence should be addressed. FAX: The mathematical models of interest to this study will be
505-665-2659. Email address: pgk@cnls.lanl.gov of the form
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constant shape frontfV(u)dx=p is just a number or, at
{ug upd=— Su (1) most, a function oh and hence the problem can be trans-
lated into
with a potential energy functional[ u],
) f dxa(x;h)s(x)=E(h)=V4—p. (7)

uX
V[u]=f dx( F(u)+ >

. (2
E(h) is now explicitly known, and so is(x)=u2/2 upon

Equation(1) with one temporal derivative corresponds to asubst|tut|on of the choseAnsatz and the inverse problem

) : ) . needs to be solved to determiaéx;h).
scalar.equatlon. of the RD type, Wh'le.W'th two It represents We should highlight at the outset that there are two levels
a nonllnear KIem-Gord_on wave equation. We will use equa- . approximation in this approach.
tions of this form for illustration purposes, but we should (1) The first approximation lies in the choice of tie-
note that th_e methodology can natu_rally be generalized t%atz Since we concentrate on the nature and dynamics of
any parabolic or hyperboli¢also possibly vectgrsystem of

gradient type The gradient nature of the system, expresseé: ohgrent structures, we will use as oftslnsatz'.[he gmform
through the form of potential energy given by E@), is continuum problem coherent structure solution, in order to

quite crucial to the considerations that follow. Note that suchIIIUStrate the method. More sophisticatadsazecan also be

a structure will generically be present for Hamiltonian sys-used[lz]' A more refined methodology would entail finding

tems as well as for scalar RD equations, but not necessarifgpe exact discrete solution, and substituting it in the expres-
s0, for instance, for systems of dissipative PDE’s. ion for the discrete energy; and also appropriately correcting

The equation of motion fofl), using(2), reads f[he _cpherent structure and its as_ymptotic tails before insert-
' ' ing it in the continuum left-hand sidé&HS) of Eq. (6). How-
ever, since the leading order effects can be captured by a
homogeneous continuum problem coherent structure, in this
approach we will, for illustration purposes, implement only
the simplest possibl&nsatz It should be noted once again
that it will be implicitly assumed in the exposition that we
4) are interested in the coherent structure dynamics of the mod-
els under study.
(2) The second “approximation” lies in the fact that the
behavior of the constructed system shoodd be expected to
e in detail the same as the one of the continuum. Instead,
ne should expect only the corresponding coherent structures

{up, U ="1(u)+uyy 3

with f(u)=—F’(u). The corresponding heterogeneous
problem of Eq.(3) is

{ug, Ut = f(u,b(x))+[a(x)uyly

with at least one of(x),b(x) explicitly dependent on the
spatial variablex.
The discrete counterpart problem has a potential energ

functional to be close, as sets, in a meaningful norm, and the nature and
Y time scales of their dynamics to be close to each other. One
(un+1 un) T ” “ ” H
Vy= Z —————— +F(u,) (5)  thus expects only “coarse,” or “average,” properties of the
n 2h? two systems under study to match.

As is well known[17], discreteness introduces a potential

for a lattice of spacingp, i.e., u,=u(x=nh). energy barrier in which the coherent structure can be consid-
ered as a particle at the mean field level. The aim of this
Ill. TRANSFORMATION OF A DISCRETE INTO A exercise is, then, to suitably piclk(x;h) so that the
HETEROGENEOUS SYSTEM (quas)harmonic modulation of exponentially small width as

imposed by the “just-right” heterogeneity is the same as the

~ Suppose that we have a discrete system with lattice spagme imposed by discreteness. To solve this problem, we Fou-
ing h and we calculate its potential energy. This potential  rier decompose(x;h),

energy determines, among other things, the existence and
motion of coherent structures for the model. If we wish to imarx

approximate the discrete system’s dynamic behavior and, in a(x;h)=> am(h)ex% h )
particular, the average shape and dynamics of its coherent

structures with a heterogeneous system of, say, variable difs p<titute theAnsatzfor u(x), and solve the ensuing equa-
fusivity a(x;h), we can require that the two systems have the;,s for the Fourier componens, (h).

same energy- To illustrate the methodology, we pick as a specific ex-
ample of a (& 1)-dimensional field theoretic model

—Vy(h). 6) problem; the discrete and_the heterogeneous versions are
compared to each other with the help of the homogeneous
continuum problem as a reference point. The equation of

This, however, givemi(x), can be treated as an inverse prob-motion reads

lem for a(x;h). In particular, if we use a\nsatzsolution—

which below will be a coherent structurg&x) such as a {Ug, Uy = Uy +2(u—ud). (9)

®

U2
j dx( a(x;h)?X+V(u)
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The continuum potential energy is f
dxa(x;

uj
de

whereF (u) = (u?—1)?/2, while the discrete potential energy

J’ [tanHx+ h) —tanh(x)]?
dx

2 2h?

osH‘( X)

+F(u)) (10

) ( [tani(x+ h) — tank(x) ]2
2h?

is o
21SX
( ¥ +F(tanf(x))) Z s( ) .
Un+1—Up -
V4= ——F— +F(u,) |, 11
q ;( p~ <u) (11) 16
and the heterogeneous potential energy we try to match witwe now expand
it is given by < i rmx
a(x;h)y=ap+ 2 am(h)exr< , (17
ui m=—o,me N* h
V“et:f dx a(x,h)?+F(u) ' (12) keeping, in this case, only the cosine terms, having in mind

to match the Poisson formula coefficients. However, as will
As per our remarks above, for small we will use in both  be clear below, this is not necessary. Performing the integrals
perturbed problems the continuum fromknsatz x)  of the left- and the right-hand sides, we can equate the zeroth

=tanh). Setting Eq.(12) equal to Eq(10), we obtain order terms(the ones independent of,s) to obtain
3[hcoth h)—1]
J dxa(x;h)—+J F(tanH(x))dx T (18
2 cosh(x)

Notice that the correct limit is retrieved from the heteroge-

neous model foh—0. Equating the remaining terms, we

_ 2
{tantf(n+1)h]—tant(nh)} +F(tan|"(nh)))' have

2h?

:h;(

(13 i (m?m)(h?+ 72m?/4)
~ 8 3 2 2
Notice theh factor in front of the sum, placed there for m=1 " 3h’sinh(m*m/ah)costt(m°m/h)

convenience. We now use the Poisson summation formula °°
(see, e.g.[17,19) E

(27%s)(h?+ 7%s?)
1 | 3h3sinh( 7?s/2h)costf(?s/2h)

47%s s
h3 ex h .

)

> f(nh)hzfx dxf(x)

27rsx)

1+2> cos(
=] h

(19

(14
o Equation(19) is a key result for our methodology. It illus-
to convert the sums into integrals. We thus have trates how the Fourier components of the heterogeneity have
to be chosen in order for it to match the average effects of
discreteness.
+f F(tanh(x))dx Some remarks are in order here.
(1) One could equilibrate the series of the LHS and the
RHS of Eq.(19) term by term as is done when one has—
+F(tanr(x))) orthogonal—Fourier components, i.e., ttre=i with the s
=i terms of the series. We notice that in this case this is not
] necessary; one can just use a single term of the LHS series to

f dxa(x;h)

- [ ax

1+2

2 cost(x)

[tanh(x+ h)—tank(x)]?

2h?
co{ ZWSX) (15) compensate for the effects of the sum of terms in the RHS
h exactly, because the matching is performed at the average
level. In particular, for simplicity, we use only the=1
Hence, after some simplification, term, choosing

3h3sinh 7?/4h)costt( 72/4h)
(72)(h?+ 7214)

>

(20

al:

(27%s)(h?+ 72s?) 41?s '{ 7723)
exp — .
3h3sinh( 72s/2h)cost( 72 s/2h) h3
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(2) As the careful reader will have noted, in the expansiorfield in saddle-node bifurcations that will result in the ap-
for the heterogeneity we have used wave numiketrsk’/2  pearance of burst waves. For such problems one would ex-
wherek’ are the corresponding wave numbers “of discrete-pect the traveling of the coherent structures to match be-
ness” as imposed by the Poisson formula. In general, at thewveen discrete and heterogeneous problems. However, in our
level of matching we perform, the above choice is not neccase, the presence of static solutions renders them stable for
essary; however, a choice k& k’ will be needed since for the dynamics for the Hamiltonian as well as for the
k=k' the inverse of the first fraction in the RHS of EGO) dissipative—as the maximum principle dictat¢43]—
goes to O faster than the second term in the series summatisystems. Hence, in our numerical computations, we observe
ash—0. Hence, the limit becomes ill defined. For the choicethe relaxation to the prescribed steady states of a perturbed
made here, an interval ofr2of the heterogeneous medium original front like solution; the results for the dissipative sys-
simply corresponds to a lattice spacing distance for the distem are shown here.
crete medium. In Fig. 1, we initialize the discrete as well as the corre-

(3) It is also worth noting that, modulo the above men-sponding heterogeneous system for various values of
tioned difference, the terms in the series of the LHS are thé—specifically here the case bf=1 is shown—with a per-
same as the first terms of the series of the RHS in(Eg).  turbed front withxo=49.75. As we expect the discrete sys-
Retracing this coincidence back to E43), we can observe tem relaxes to the equilibrium position x§=49.5, while the
that it is due to the Bogomol'nyi boun@ee, e.g.[19]). The  heterogeneous system relaxes to the “black” site with
latter necessitates, in models similar to the one studied here 49. Notice that the picture reports the position of the
that the static solution saturates the lower bound of the corfront’'s center following the method used j21]. The time
tinuum potential energy, rendering the coupling, i.e., the onevolution of the relaxation to equilibrium follows a clearly
coming from the first term in the integral of E5), and the  exponential decay in each case, according to
substrate, i.e., stemming from the second term in the integral
of Eq. (6), potential energies equal. dxo  dVes(Xo) h ”

We now proceed to examine numerically the results of dt dx, @(N)Xo. @D
our approach. If we used a tridlnsatzof the form tanhg
—X,) to map the potential energy landscape as a function ofhis “effective particle evolution” equation can be extracted
the variablex,, we could easilyf18,20 generalize the result by using theAnsatzwith xy(t) for the potential energy and
of Eg. (19) to see that a cos{&x,/h) term would be present, consideringxy as a collective coordinate. The corresponding
giving rise to a(roughly, since the higher order terms are relaxation ratew(h) can be theoretically predicted by ex-
exponentially weaker with respect $a=1) harmonic poten- panding cos(Zsxy/h) or cos@rxy/h) close to the equilibrium
tial which for the discrete problem has minima &  position. It can thus be derived from E(L9) that h°w
=nh/2,neN, and maxima ak,=nh. This picture for the (where w is the associated rate of degawill behave as
heterogeneous problem would be translated to a harmoniexp(—7%/h), with exponentially small corrections. In fact,
~cos(mxy/h) potential with minima at xo=(2n+1)h  from the semilogarithmic plot di®w as a function oh ! in
(“black” sites) and maxima aky,=2nh (“white” sites). In  Fig. 2, we deduce that the solid curve corresponding to the
[18,20, a constant external field was used to washboard thdiscrete medium is within 4.01% of the theoretical prediction
harmonic potential. As a result of the tilting, the maxima and(— =) for the slope, while the dashed line of the heteroge-
minima can collide and disappear for a finite value of theneous medium is within 2% of the same prediction. Notice
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FIG. 2. The behavior of théappropriately
rescaledl rate w of the approacHaccording to
exp(— wt)] to equilibrium is shown in a semiloga-
rithmic plot as a function of~. The solid line is
the best fit to the data for the discrete system
(circles while the dashed line is that for the cor-
. responding heterogeneous systé&rosses See
text also.
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that the only slightly higher deviation of the discrete problemin what follows, for simplicity, we will rescal® 4 in Eq. (23)

is more than well justified as all terms wig®2 in Eq.(19) by a factor ofh as we are always allowed t¥—the sub-
have, in essence, been neglected in such a prediction. Theript indicating semicontinuum for reasons that will be ob-
very good agreement of this “average” picture with the the-vious below—in the above equation reads

oretical result indicates the validity of the description set

forth for the effective correspondence of discrete and appro- [u(x+h)—u(x)]?
priately “crafted” heterogeneous systems. Vsc:f X 17 +F(x)
2
IV. TOWARD A GENERAL TRANSFORMATION OF 2 Uxx  UxUxxx
DISCRETE TO HETEROGENEOUS SYSTEMS ~VLuJ+h f dX(T+ 3 ) 49

In the previous section we saw that a particular discrete
system could be mapped into a heterogeneous one with cordd Yields the continuum potential energy functional up to
parable coherent structure and coherent structure relaxatidd(h?); notice that the functional derivative of th@(h?)
features. The mapping was based on matching the potentit@'m yields theO(h?) correction &h?uy,,,/12) in the Tay-
energies of the particular discrete system and of the corrdor expansion of the second order differente(x+h)
sponding heterogeneous one. We will now show that, for-+U(x—h)—2u(x)1/h®~ U+ h?Uy/12+O0(h?).
mally, the potential energy odiny discrete problem of the For the second part of the RHS of E@3), we will use
type mentioned in Sec. Il can be mapped into the potentiaihe semicontinuum approximation
energy of a heterogeneous continuum system.

The basic tool for the exposition will be once again the 5 (= [ [u(x+h)—u(x)]? 2msX
Poisson summation formuld4), a useful special case result 22 f 2 +F(x) COS( h )
of which is Sl 2h

0 )

2 explian)=2m 2_ S(a—2mm). (22

n=—o

~22
=1

—

u2 ) Zwsx)
?+F(x) CO{ ol (25

since as we will show the continuum part of EQ5) is
If we now useV, from Eq.(5) and write it according to Eq. O(C(h)exp(—s7?h)) and hence the rest will b&®(h?)
(14), we obtain smaller and can consequently be ignored, as we are inter-
ested in the leading order, power-law as well as exponential,
effects. We should note that the above estimate of exponen-

o o _ 2
Vd:V_S°+ 2 > f [uxth) —u®)] +F(x) tial smallness holds true for the dynamics of coherent struc-
h hé&h )« 2h? tures, which are implicitly of interest in this work, as has
been highlighted also in the previous section.
2mSX Combining the results of Eq§24) and(25), we have that
X co . (23 : ; .
h the potential energy of the discrete system is

056624-5



P. G. KEVREKIDIS AND I. G. KEVREKIDIS PHYSICAL REVIEW E64 056624

uz
7+F(X)

u  uwu tegrals of the forny exp(az)f(z)dz whenf is reasonably well
dx+ hzf dX( - X3XXX) behaved on the real axis as is expected to be the case for the
problems of interest here. Due to the residue theorem, ge-
(26) . : I
nerically such integrands will give rise to transcendental cor-
_ s rections in observable quantities such as, e.g., the coherent
Whe2r$ the corrections af@(h”) for the power-law terms and  strycture speed. As a particular form of heterogeneity im-
O(h “exp(—_s#/h)) [wherea is of the order ofC(h)] for  hosed essentially by the Poisson formula and illustrated
the exponentially small term&(x) =1+2Zscos(2rsxh) is  through Eq.(26), discreteness gives rise to an almost har-
the variable diffusivity of the corresponding heterogeneousy,qnic potential energy barrier of exponentially small width,

provt\)llem._” t th t about “ i Iwhich explains the exponentially small separation of the ex-
€ w ”now pr?sen . e”argumen. about exponentialy o ma of such a barrier observed in discrete systems
smallness” of the “effective” contributions of the variable [11,23,18

diffusivity. Returning to the second term of the RHS of Eq. . - 2 :
(23), we observe that the integrals within this expression (4) In t;e cgnttl)nuurln “mr']t' tlhé?(hf) rt]erms natt:rallyt:jlsk;
contain rapidly oscillating integrands. Using the method ofabpear as—0u, l,Jt also the _|m|t of t e Integrals W't the
residues for integrals of the fori{z)exp(az) [22], we can ra_p|dly oscillating integrands is well defmed_ according to the
see that they are equal to [ReriRes ., f(2)exp(ad)] Riemann-Lebesgue lemma: when- = and if [f(z)dz ex-
with a=21rs/h. Typically, for the patternspofinterestin such ists, the limit of the definite integraJ [ f(z)exp(x2)]dz is
| A . : lways equal to zero.

| h as kinks in th - a .
gjﬂ;?féxm (?rsth én (; r': o:j eel US(IQ)e :?;)rr]?]?g Zﬂg?:ro?gr (5) It should also be noted that, even though we have tried
pulses of th’e nonlinear Schiimger equ’ation u(x) to keep the calculations as general as possible, it has been

=1/coshg), the first pole of the coherent structure liesxat MPlicit and important in some points, such as the exponen-
=im/2. Generically,f(z) will have exponential tails and tial smallness estimates, that we are interested in the dynam-

analytic behavior on the real axis but will have polesxat ics of patterns or coherent structures in discrete and/or het-
=iy,y e R*, on the imaginary axis. Suppose, for simplicity, €"09eneous environments.
that the pole is ak=i=/2. Then, (6) Finally, a more general remark: The formal proof of
the equivalence of the discrete potential energy with an ap-
2 propriately chosen heterogeneous one predisposes us to ac-
V=Vt C(h)exp( - 77_3) (27)  ceptthe similarity of the relaxational or conservative dynam-
h ics driven by such a potential energy functional.
Furthermore, the methodology of Sec. IIl and its successful
with C(h)~Rg 2miRes_ . ,f(2)]. numerical tests add to that belief. However, a note of caution
We have thus shown that the potentia| energy of any d|s|.S in order. The method of Sec. Il is apprOXimate. Were we
crete system of the form of Egl) can be approximated up to formally transform the dynamics, i.e., the time evolution
to controllable higher order terms by that of an appropriatelyof the discrete system, into that ones of a heterogeneous
chosen heterogeneous system where both the coupling asantinuum system, a process similar to that carried out for
the reaction terms are modulated by a special form of hetVy should also be performed for the LHS of Ed). This
erogeneity which on the average mirrors the exponentiallyvould result in the presence ofx(x) in the LHS, i.e.D(x)
small effects of discreteness, and a quartic derivative whiclivould also multiply the temporal derivatives of the LHS.
mirrors its power-law effects. The higher order power-lawThis means that the discrete system can be thought of as a

Vg~ J’:D(x) T+

effects can be captured by the Taylor series continuum system where, by construction, in all of the terms
of both LHS and RHS infinite weight has been placed on the
? op2i-2 g2iy lattice sitesx=nh, as opposed to 0 weight on the rest of the
— . (28)  line. This interpretation follows directly from the functional
=1 (2))! dx¥

form of D(x) and Eq.(22). Hence, this is not a conventional
heterogeneous system. However, the analogy of the potential
Some remarks are now in order. energies had as its scope to reveal the nature of the dominant
(1) Since the effects of the variable part of the “diffusion POWer law as well as exponentially small terms in the func-
coefficient” D(x) are, on the “average” in the sense given tional; it also aimed to justifya posteriorj t_he success of
above,O(exp(—72gh)), it is worth noting that we will not methods such' as th_e_ one used in the previous sectlo'n and to
need more than the first few terms in the seriesOigK). illustrate the similarities between heterogeneity and discrete-
(2) Exponentially small effects are generically observable®SS:
in discrete systems, mirroring the exponentially small split-
ting of the heteroclinic or homoclinic orbits introduced by
discretenesg23]. V. RELEVANCE AND USEFULNESS OF A DISCRETE
(3) Also, generically at the functional level, i.e., on the TO HETEROGENEOUS TRANSFORMATION
average, exponentially small phenomena will be present for In the previous sections, we have attempted to construct a
any heterogeneous problem because of the nature of the inransformation from a discrete to a heterogeneous system
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that has the same “average” coherent structure dynamicsexperiments, such as the optical lattices in BEC's where one
We have also attempted to give the general analogies be&an modify the properties of the lasers forming the lattice, or
tween discrete and heterogeneous systems. One may nato- chemical reactions where one can construct different
rally, however, enquire about the usefulness of such a transnasks with different percentages of each catalyst or with
formation in relevant physical applications. various different catalysts, the properties of the heterogeneity

It is clear that the gain in using such a mapping is not aare, in a sense, “tunable.” The realization that periodic het-
numerical one. In particular, to resolve a continuum but heterogeneity of a tunable form can be mapped into discreteness
erogeneous system, a finer computational grid is requiredan be very useful in studying the dynamics of various dis-
that takes into account the details of the periodic functiongrete systems through our “inverse” transformation. In par-
a(x;h),b(x;h) at a scale finer thah. In a discrete system, ticular, considering an intrinsically discrete system stemming
the periodicity is “encoded” in the integer shift translational from the physical application of interest, by performing the
invariance and hence no length scales finer thaeed to be  above transformation and using some of the freedom that it
resolved. allows—see, e.g., the discussion below EtP)—one can

On the other hand, however, there can be a significanfyap the discrete system into a heterogeneous one relevant to
gain in tackling the dynamics of a heterogeneous systergne of the above experiments; then it will be possible to use
rather than that of a discrete one by means of analyticghe ayajlable continuum heterogeneous experimental data to
calculations. In particular, the mathematical techniques thaljerstand the features of the discrete system or to motivate
are much more well developed for heterogeneous rather thaﬁbw experiments that, by tuning the heterogeneity appropri-

discrete systems include among others homogenizatiog : .
. - tely, could provide results and conclusions relevant to the
[24,13 which converts the heterogeneous system into a ho;, y P

: : " " e discrete system.

mogeneous one with appropriately “averaged” coefficients,
and hence whose dynamics are much simpler to study;
asymptotic expansiond12,25 and multiscale analysis
[12,13 which can be used to determine the effective speed
of coherent structures in heterogeneous media and hence pre-In this work, we have used the Poisson formula to explic-
dict, by comparing it to zero, approximately when propagadtly construct heterogeneouand thus not translationally in-
tion will fail in heterogeneous and hence also in discretevariany continuum systems that possess comparable leading
media; use of the degree theory approach 26| and the order coherent structure dynamical effects to those in dis-
continuation method of27] in proving the existence and crete systems. This is a program that can be generally carried
constructing coherent structure solutions of the heterogesut for systems of gradient type and that aims to capture, on
neous periodic medif27,28 (see alsd13]); use of general the average, the behavior of the patterns of the discrete sys-
operator theoretic notiorf29] to address the asymptotic sta- tem. This program can equally well be carried out for modi-
bility of fronts or pulses in periodic medid.3]. fied (heterogeneoudiffusivity or modified (heterogeneous

Notice that many of the above references and hence thgubstrate nonlinearity.
corresponding techniques have been developed quite re- The ensuing inverse problem was solved by means of
cently and thus it would be of considerable interest to use th&ourier decomposition and appropriate selection of the Fou-
mapping proposed here to “translate” our understanding ofier components. The method was shown to work very well
the heterogeneous systems’ dynamics into an understandirgnd in full agreement with the theoretical predictions for the
of discrete systems proper. This program can be carried owspecific example of &* field theory. Following that, a more
for the many applications of discrete systems mentioned igeneral discussion was presented at the level of potential
the Introduction and can potentially impact our understandenergies showing that the discrete system potential energy
ing of areas as important and diverse as heart dynamicsan always be converted to a continuum one on a heteroge-
chemical reactions, optical fibers, dislocations, or neuronaheous substrate. The relevant power-law as well as exponen-
activity. tially small contributions to the functional were also re-

Another direction in which this mapping may be useful is vealed. The potential of application of such a transformation
the experimental one. Very recently, it has been appreciateidd understanding the dynamics of systems recently studied
that many systems amenable to experiments and as divertieeoretically as well as experimentally has also been high-
as optical lattices in Bose-Einstein condensatB&C's) lighted.
[30], quadratic nonlinear photonic crystal81], calcium In all of the program presented here, the focus has been
waves in theT tubules of cardiac cell§12], or chemical on the “average” properties of the patterns or nonlinear
reactions in heterogeneous catalytic surfd&2$ are hetero- waves present in the PDE’s. On the other hand, one may
geneous systems that through the appropriate transformatidmagine situationgsee, e.g.[6] for an examplgwhere dis-
can be mapped into discrete systems. In particular, suctreteness and/or heterogeneity may have very delicate effects
mappings of heterogeneous to discrete systems, i.e., the ifsuch as the resonances observef6ij). In such cases one
verse of the transformation performed here, involve either amay expect that a detailed dynamic picture of the attractors
amplitude expansion of the fiel@1] or a tight-binding ap- will be more necessary and that this “quick” effective de-
proximation [30], both of which result in differential- scription may miss some of the relevant phenomenology.
difference equations for the discrete amplitude coefficients oSuch a careful study of the limits of this and possibly more
the expansion. It should be noted that, at least in some of theefined methodologie¢such as ones based on the use of

VI. CONCLUSIONS AND FUTURE CHALLENGES
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more “informed” selection ofAnsaze [12]) would clearly ACKNOWLEDGMENTS

be desirable. In this spirit, we mention the recent work of

Fiedler and Vishik on the quantitative homogenization of Research at Los Alamos National Laboratory is under the
global attractors in near-gradient reaction-diffusion systemsauspices of the U.S. DOE under Contract No. W-7405-ENG-
[33]. Such efforts are in progress and will be reported in36. The support of NSF and AFOSR is gratefully acknowl-
future studies. edged.

[1] S.P. Dawson, J. Keizer, and J.E. Pearson, Proc. Natl. Acad19] See, e.g., J.M. Speight and R.S. Ward, Nonlinearityt75
Sci. U.S.A.96, 6060(1999. (1994.

[2] J.P. Keener, J. Theor. Bial48 49 (1991). [20] P.G. Kevrekidis, I.G. Kevrekidis, and A.R. Bishop, Phys. Lett.

[3] D.W. McLaughlin, R. Shapley, M. Shelley, and D.J. Wielaard, A 279 361 (200).

Proc. Natl. Acad. Sci. U.S.A97, 8087 (2000; J. Rinzel, D.  [21] R. Boesch, C.R. Willis, and M. El-Batanouny, Phys. Rev. B

Terman, X.-J. Wang, and B. Ermentrout, Scierd®9, 1351 40, 2284(1989.
(1998. [22] R.V. Churchill and J.W. BrownComplex Variables and Ap-
[4] J.P. Laplante and T. Erneux, J. Phys. Ch86).4931(1992. plications (McGraw-Hill, New York, 1998.

[S] A.V. Ustinov, T. Doderer, IV. Vernik, N.F. Pedersen, R.P 1531 p g Kevrekidis, C.K.R.T. Jones, and T. Kapitula, Phys. Lett.
Huebener and V.A. Oboznov, Physica@B, 41 (1994). A 269, 120 (2000

[6] H.S.J. van der Zant, T.P. Orlando, S. Watanabe, and S.H. Strcr24] A. Bensoussan, J.L. Lions, and G. Papanicolasympototic

[7] gatéijtzh)g' :?g.vl_vewkit;?é(.lggz and P. Kummar. J. Opt Analysis for Periodic Structured/ol. 5 of Studies in Applied
y C Lo O ' > < OpL MathematicgNorth-Holland, Amsterdam, 1978

Soc. Am. B11, 2112(1994. 25] T.J. Lewi d J.P. K SIA Ind. Appl. Math. J
[8] J.P. Hirth and J. LotheTheory of DislocationgWiley, New [25] T.J. Lewis and J.P. Keener, KBoc. Ind. Appl. Math. J.

York, 1982. Appl. Math. 61, 293 (2000.
[9] M. Peyrard and A.R. Bishop, Phys. Rev. L&2, 2755(1989. [26] H. Berestycki, B. Nicolaenko, and B. Scheurer, SIASoc.
[10] P.G. Kevrekidis and M.l. Weinstein, Physica D42, 113 Ind. Appl. Math) J. Math. Anal.16, 1207(1983.
(2000. [27] J.X. Xin, Arch. Ration. Mech. Anall121, 205 (1992.
[11] M. Peyrard and M.D. Kruskal, Physica Df, 88 (1984. [28] J.X. Xin, J. Stat. Phys73, 893 (1993; Arch. Ration. Mech.
[12] J.P. Keener, Physica D86, 1 (2000; SIAM (Soc. Ind. Appl. Anal. 128 75 (1994.
Math) J. Appl. Math.61, 317 (2000). [29] T. Kato, Perturbation Theory for Linear OperatorSpringer-
[13] J. Xin, SIAM Rev.42, 161 (2000. Verlag, New York, 1965
[14] S.Y. Shvartsman, E. Schuetz, R. Imbihl, and I.G. Kevrekidis,[30] A. Trombettoni and A. Smerzi, Phys. Rev. Le8&6, 2353
Phys. Rev. Lett83, 2857(2000. (2002).
[15] A.K. Bangia, M. Baer, M.D. Graham, I.G. Kevrekidis, H.-H. [31] A. Sukhorukov, Yu.S. Kivshar, O. Bang, and C.M. Soukoulis,
Rotermund, and G. Ertl, Chem. Eng. SBi, 1757(1996. Phys. Rev. B63, 016615(2001)).
[16] N. Shigesada, K. Kawasaki, and E. Teramoto, Theor. Populaf32] S. Shvartsman, E. Schuetz, R. Imbihl, and I.G. Kevrekidis,
tion Biol. 30, 143(1986. Catal. Today(to be publisheg O. Runborg, C. Theodoropou-
[17] T. Munakata and Y. Ishimori, PhysidB & C 98B, 68 (1979; los, and I.G. Kevrekidigunpublished
J. Phys. Soc. Jpral, 3367(1982. [33] B. Fiedler and M. 1. Vishik, Fachbereich Mathematik und In-
[18] K. Kladko, I. Mitkov, and A.R. Bishop, Phys. Rev. Le@4, formatik, FU Berlin, Reports No. A-11-2000 and No. A-18-
4505 (2000. 2000, 2000(unpublished

056624-8



