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Propagation of wave packets in randomly stratified media
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The propagation of a narrow-band signal radiated by a point source in a randomly layered absorbing medium
is studied asymptotically in the weak-scattering limit. It is shown that in a disordered stratified medium that is
homogeneous on average, a pulse is channelled along the layers in a narrow strip in the vicinity of the source.
The space-time distribution of the pulse energy is calculated. Far from the source, the shape of wave packets
is universal and independent of the frequency spectrum of the radiated signal. Strong localization effects
manifest themselves also as a low-decaying tail of the pulse and a strong time delay in the direction of
stratification. The frequency-momentum correlation function in a one-dimensional random medium is calcu-
lated.
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[. INTRODUCTION ated by a point source in a randomly stratified weakly scat-
tering medium with dissipation. As an intermediate result,
The propagation of quantum wave packets and pulses dhe correlation function of the propagat@(Sreen functions

electromagnetic radiation in disordered media is a classicavith different frequencies and transversal wave numbers is
problem with a long-standing history. The continued interesgalculated. Localization of the constituent plane harmonics is
of physicists in this problem is stimulated both by the quesg§hown to result in channelling of the pulse within the fluc-
to better understand such fundamental problems of disorddpation waveguide and in a significant modification of the
as correlations in momentum-energy space, localization ofPectral content of the signal far away from the source. The
time-dependent fields, Wigner time delay, etc., and also byhape(envelopg of the pulse in the far zone is calculated. It
the growing number of applications that pulsed signals findS Shown to be universal and independent on the spectrum of
in modern electronics, telecommunications, optics, and gedhe radiated packet. This is due to both the filtration of the
physics. Considerable theoretical and experimental investPlarmonics by their localization radii transverse to the layers
gations have been expended to study the propagation &nd to the difference in phase velocities of those harmonics
pulses in randomly inhomogeneous media in diffusive reJn this direction. The same reasons cause a strong time delay
gime (see, for example, Ref1] and references thergin Of the pulse when the receiver is shifted towards the direction
Much less studied is the space-time evolution of wave pack?f strauﬁcauon from the_ horizontal plar_1e in V\{hICh the source
ets in disordered one-dimensional and layered systems whei® located. This effect is a clear manifestation of the delay
the interference of multiple scattered fields is of crucial im-time concept introduced earligh] on the basis of scattering

portance. phases of quantum particles moving in disordered media.
It was shown in Refs[2,3] that in a homogeneous on
average, randomly layered medium where the refractive in- Il. FORMULATION OF THE PROBLEM

dex (potentia) is a random function of one coordinate only
waves (quantum particlesare localized in the direction of We consider the wave equation for the scalar nonmono-
stratification and propagate along layers forming the sochromatic fieldG(R,R|t) radiated by a source located at a
called fluctuational waveguide. The statistics of wave fieldgpoint R, in an infinite medium that is randomly stratified
radiated by a monochromatic pointlike source in a randomlalong thez axis,

layered medium was studied [13,4]. For its analysis, the
resonance expansion method was applied to calculate corre-

. ) . . . e 190 J
lation functions of plane harmonics with different “trans- A——=—|e(2) = +4m0o| |G(R,Ryt)
verse energies,” i.e., squared projections of the wave vector c2 ot ot
on the axis of stratification. In the case of a nonstationar i
y =47 5(R—Rp)A(t)e “ot, 1)

signal, the problem becomes much more complicated be-
cause it involves correlation analysis of waves with different
both frequencies and transverse wave numbers. Here, A is Laplacian,s(z) =g+ d(z) is the (random di-
In the present paper, we investigate analytically the spaceslectric permeability with the mean valug, o is the con-
time distribution of the average intensity of pulse field radi-ductivity of the medium,A(t) is the envelope of a wave
packet(pulse@ with the carrier frequencyny. In what fol-
lows, we consider a narrow-band wave packet, which means
*Email address: freiliv@mail.biu.ac.il thatA(t) is a smooth function as compared to the oscillating
TEmail address: yutarasov@ire.kharkov.ua exponential in the right-hand sideh.s) of Eq. (1).
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Since permeability in Eq. (1) depends on one coordinate 0 w2
only, the problem of finding the mean intensity) = (| G|?) AQ®=K3— K3+ 280—2+i2y(w)(—) : (8)
at a given poinR is reduced, after Fourier transformation in c ¢
the {x,y} plane, to calculation of the one-dimensional cor-

relator of harmonics propagating along the axis of stratifica- Correlation functions of the typ€3), (4) with w,=w,
tion, (i.e., with Q=0) that appear in the theory of stationary pro-

cesses in one-dimensiondlD) disordered systems may be
w calculated using diagrammatic metho@,7], functional
j J diy dry k1K2Jo(K10)Jo(K20) method of Ref[8], or the resonance expansion methgg].
0 In the next section, the latter approach is shown to be quite

1
(2m)*

(I(R,Rg[t))=

. universal and well applicabl@fter some modificationalso
X J j dwdQ e Mo(w+0—wg) to nonstationary stochastic problems, in particular, for calcu-
- lation of the correlation functiod) with Q #0.
X @* (0= w)K(Z,29| k1, K2;0,0). 2
I1l. RESONANT SCATTERING APPROXIMATION
Here, angular brackets denote statistical averaging over the FOR FIELD CORRELATORS
ensemble of random function8e(z), Jyo(X) is the Bessel
function, ¢=|R|—Ry)| is the in-plane distance from the
source R is the radius-vector component parallel to the lay-
ers,¢(w) is the spectral function of the radiated pulse. Func
tion K(...) in Eq.(2) is the two-point correlation function

In this section, the method used in Rdf3,4] for calcu-
lating statistical moments of the field radiated by a mono-
chromatic pointlike source is generalized to the case of pulse
“signals. The method allows for rigorous calculation of the
correlator(4) provided a single scattering may be regarded as
K(z,2g| k1, K25 01,02) =(G(2,20| k1,01)G* (2,20| k2, 7)) weak.

(3) A. The resonance expansion method

that we present in a form more convenient for su_bsequent To calculate the intensity using E€®), we have to know
calculation by changing the integration variables, viz., the Green functions in Eq4) for all values ofg? in the
interval —<g?<+o. However, as it was shown in Ref.
[4], in the case of weak scattering, the contribution of spatial
X G*(2,20|0%, »)). (4) modes withg?<0 (the so-called evanescent moplés sig-
nificant only in a thickness diz—z| ~ «.,* near the source
Here, w=w,, Q=w,—w,, 2=«k2—«r3, k2=so(w/c)2.  positionz,. In the rest of space, the intensity is largely de-

K(z,20| k1,K7;0,0)=(G(2,20|0°+ Ag%, 0+ Q)

The “energy” differenceAq? is given by termined by the propagatingxtended modes for which the

Green function obeys E6) with g>>0. The key point of

(w+0Q)2— @2 the following calculations is the so-called resonance expan-
AQ?= K5~ Ki+eg——F—— sion of this Green function:
c
w+t0\2 w2 G(2,20|0%, @) = G1(2,20) €9 %)+ Gy(2,25) 142~ 20
Hivlo+ Q)| ——| + y(tﬂ)(g) , (5 +Gy(2,25) 89720 + G, (7,7,) €712+ 70,
€)

Y(w)=4molw. In Eq. (4), §(z2,20|/q% w) is the Fourier
transform over in-plane coordinal®— R and time of the  \where G,(z,2,)=G;(z,20|q? w) are smooth factors in com-
Green functionG from Eq. (1). This function obeys the parison with the “fast” exponentials. The assumption of
equation smoothness of the “amplitudesy;(z,z,) is based on the
requirement for weak scatterindWS) of the pulse-
d? o w\? 5 constituting plane harmonics, which means that the extinc-
gz +i0+3e(2)| o] |9(2,200% w)=47(2- 7). tion lengthsL of the harmonics, see Eqél4) below, are

(6) large compared to their wavelengths and to the correlation

radiusr. of de(z) as well.

Formula (5) for energy differenceAq? is valid, strictly Formula(9) represents the exact Green function as a sum
speaking, in the case of weakly dissipative medium, i.e.Of relatively small packets of spatial harmonics centered at
when four basic ones, viz. eXpig(ztz)]. Such a form of the

solution of Eq.(6) implies that onlyresonantharmonics in
|v(w)|<1. (7)  the power spectrum of the permeability fluctuatiéa(z)

contribute significantly to the scattering of a wave with the
Under the assumptions of weak dissipation and spectral nawave-numberg, namely, the harmonics with the momenta
rowness of the pulse the expressi@hmay be readily trans- close to zero, which are responsible for the forward scatter-
formed to the form ing, and close ta-2q (backward scattering
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Using the Green function in the forif®), one may per-
form spatial averaging of Eq6) over an interval 2, such
thatq™!, re<2l<L. As the result, for the matrix

@_(Ql gs)
\Gs G

of the smooth amplitudes from E), the equation follows

(10

" 2
G(z,29)= F&(z—zo).
(11

- d 2 ek At
62— w2~ 3" (2)-3T¢(2)

Here, o5 anda are 2x 2 matrices

|

1
0

0
-1

0 0
10

O3=

’ a=

|

superscript (1) stands for Hermitian and the asterisk for

complex conjugation, respectively. Random functig¢tpo-
tentials”) 7(z) and {(z) are constructed of narrow packets
of spatial harmonics obe(z) as follows:

llw 2 rz+1dz’ )
77(2)—% < L_ 758(2 )
—1{w\? rz+idz' a2’ )
g’(z):%(z quje 2l oe(zZ'). (12)

On the assumption of weak scattering, functieyfg) and
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Notice that the relationship between small lengths and

r. is of no crucial importance. It only specifies the Fourier
components of the correlation functigd5), and thus, the
possible distinction between the “forward” and ‘“back-
ward” extinction lengthg(14).

For the resonance approximati¢aequivalent to WS re-
quirement to be most efficient, it is advantageous to repre-
sent both of the Green functions entering the correl@tpm
the form of the expansiof®) with the same fast exponen-
tials, i.e., with the same wave-numbegr Although the am-
plitude functiongg; in Eqg. (9) cannot be found explicitly, this
representation proves to be quite helpful for the calculation
of the correlator(4). Indeed, if we present both of Green
functions from Eq/(4) in the form of expansioii9) with the
same fast exponentials, only “diagonal elements” of the

product@@* remain nonzero after the averagifgee next
subsection

Note that functiongj, in Eq. (9) may be recognized as
slowly varying amplitudes if along with the WS condition
(16) the inequality holds

|Ag?|<q?. (17)
Physically, this inequality is natural for the definition of
weak scattering since the quantityy has the meaning of
energy in Eq.(6). As it will be clear from the subsequent
calculation, the inequalityl7) is coincident with the condi-
tions (16) supplemented by the requirements of weak dissi-
pation, y(wg)<<1, and narrowness of the pulse frequency

{(z) can be thought of as Gaussian random processes irr¢gand.

spective of the statistics afs(z) [9]. Correlation of these
functions was studied in detail in R€fL0] where the evi-

Green function of Eq(6) is the solution of a two-point
boundary-value problem with conditions given zat> oo,

dence was given that only two binary correlators of the poHowever, to systematically perform the averaging over ran-

tentials(12), viz. (n(z) n(z')) and({(z){*(z')), are differ-
ent from zero, and may be replaced by weighédfdnctions,

(n(2)n(z))=L;8(z—2"),

(@ (2)=Ly '8(z—2)). (13
In Eq. (13), length parameterk; |, are given by
_[c\*(29)? _( C)“ (29)?
Lf(q!w)_(w> W(O)l Lb(qvw)_ ® W(Zq),
(14)

W(p) is the Fourier transform of the binary correlation func-
tion of the permeability fluctuations,

W(z—2z')=(5e(z)5(Z")). (15
It is shown in Ref.[11] that Eq.(14) are nothing but the
extinction lengths related to the forwaffl and backwardb)
scattering of the harmonics with the wave-numgemnd fre-

dom potentials without resort to finite-order perturbation ap-
proximations(that fail to take into account correctly the in-
terference of multiply scattered waves in one-dimensional
random systemsit is much more convenient to deal with
random functions obeying Cauchy problems that are causal
functionals of the random potentia{&2). Fortunately, the
elements of the Green matrid0) may be factorized into
products of the auxiliary one-coordinate functions, each
meeting the initial-value problem conditioned at either plus
or minus infinity. The factorization scheme is outlined in
Appendix A. Evolutional character of the equations for those
functions allows us to obtain finite-difference E¢281) (see
Refs.[12,13) for auxiliary correlators with the help of which
the correlation functiori4) may be appropriately calculated.

B. Asymptotics of the correlation function Eq. (4)

To obtain analytic expressions for the correlation function
(4), we assume the medium to be statistically uniform on
average inz direction, and then pass from the coordinate

quencyw. In terms of these lengths, the WS conditions used€Presentation of Eq4) to its Fourier transform over the

when deriving Eq(11) are expressed through the inequali-
ties

q Lre<Llyp. (16)

variablez— z,

K(s)= f:dze‘is(Z‘ZO)K(z,zo). (18)
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After substitution of the matrix elements of Green matrix CAg? (0+0)°— w?
(10) in the form (A7) into Eg. (4), and then into Eq(18) B=—i—~L,, a=————F+,
. - q w(w+Q)
(where all noncoordinate arguments of functidhare omit-
ted for a whilg, one has to expand the factoh$(z,) and 2
A*(z,) of those elements in series of the produEtsI'® Lf,bz(erQ) Lip- (22)

and I'.T* . Possibility of such expansion is ensured by

retro-attenuation 0 in Eq. (6). In the course of statistical Equations(21) have to be supplemented with the require-
averaging, each of the terms of the double series producegent that function®R, and P,,(s) tend to zero as— . As

for the functionK(s) is decomposed into a product of func- regards their behavior at=0, from definition(20a), it fol-
tionals of different causal types, viz. “plus” and “minus” |ows thatR,=1, whereas forP(s) integrability over the
type. Since the potentialdl2) are effectivelys correlated,  variablesis sufficient. Equations of this type have been stud-
the supports of the random functions entering the functionalg in Refs.[6—8] and[12,13 in the context of the conduc-
of different types do not overlap. Therefore, statistical avertjvity of 1D disordered systems.

aging of those functionals may be performed independently. The terms proportional ta? allow, in principle, for arbi-

It may be shown that the correlators of the typerary nonstationarity of the wave to be taken into account.
((r3)"(T%)™ with n#m in the double series foK(s) are  yet narrowness of the pulse frequency band assumed in this
exactly equal to zero. Indeed, from E@¢43) it follows that  paper is consistent with the inequalify|<1 allowing for
the functional series for the functions. (z) consist solely of  Eqs. (21) to be solved perturbatively in this parameter. In
the terms with equal numbers of the functional factpend  Appendix B, it is demonstrated that if the inequality holds
{*, whereas the quantitieg. contain extra factors* for  |g|<1, the summands o in Egs.(21) contribute negligi-
¥+ andZ* for y_. Inasmuch as under WS conditiof)  bly to the sum(19), in accordance with the conditiof16).
functional variables(12) may be regarded as Gaussian-As a consequence, in the limit $B8|—0, we arrive at the
distributed random fields, the above-indicated COFre|at0r$0||owing expression for correlation functio@),
have nonzero values only iif=m.

The foregoing procedure has been described in detail in i(2m)? (=
Refs.[12,13. Omitting here tedious calculations, we present  K(Z,Zg; k1,k2;0,0)~ Zf
the final result of the averaging. The functi&i{s) is repre- 9LpAq

, du W(u)v*(u)

sented as a series, ww)lz—z
y ~ v(w)lz=12 @3
2 * ‘Cb
9= ZZ] S, (Ry+Ros D[Po(S) + Po(—9)]
q) & " ULt n ’ Here, the notations are used
(19
w2 Sinh 7 u/2) 1+ pu?
whereR, andP,(s) are the auxiliary correlation functions of W(p)= 5 o YW= (24)
cost(mul2)
the form
In the limiting case/B|>1, the terms proportional te?
R= ([T (T ()], (20 g casdfl brob

in Egs. (22) result in small, though noa priori negligible,
corrections to the basic approximation for the correlation
function (4),

+

Py(£s)== < [Fﬁ(z)Fi(z)]”] wdz’ exdis(z—2z")]
z K(z,29;k1,k2; 0,Q))

Ay * (o1 AN % (51
7 (2w (Z) +yi(Z)) yi(Z) 27\? 2 Lp\|z—z
X — ., (20p) ~ _”) [1_“_(1+_b)| d
T (2)m(2) q 2 L] Ly
that obey the following finite-difference equations Xexr{ 14 E) 12— 2| (25
2] Ly, |

BR,—N(Ry+1+R,_1—2R,) + a?(1+ 2L,/ L;)NR,=0,
(213 It will be shown in the next section that the average intensity
of a narrow-band signal is mainly determined by the behav-
—(N+1)°[Ppy1(8) = Pu(8) ]+ N Py(s) — Py_1(S)] ior of the correlator(4) at x;~ k,, that corresponds (3|
<1 and, consequently, to the asymptotic express&a.

2
o
+ ( isCy+ B Pn(S)+BNnP,(S)+ —|2n?+2n+1
2 2 IV. CALCULATION OF THE PULSE SHAPE

Ly 2 To calculate the average intensitfR,R|t)) we evalu-
* ﬁ_f(l+2n) Pn(8)=Lo(Rn+ Ra+1), (21b ate the integrals ove andw in Eq. (2) with the correlator
K(z,2g| k1,k2;,Q) given by formula(23) and function

where the following notations are used: ¢(w+Q—wg) presented in the form
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o (ot Q- gt To integrate in Eq(30) overq, , we use the integral repre-
p(0+Q—wg)= J_mdt A(t")etetmeo. (26)  sentation of the Bessel functions and implement the saddle-
point method. Both of they integrals in Eq.(30) have the

same saddle point
0 2
= : (32)
c(t—t’)

so that simple calculation then yields

From asymptotic expressid@23), it follows that in the lower
half plane of the compleX}, there is a pole with Inf),=

—4miale,, (Aq=0), which allows us to calculate the inte- qi=k2/1-
gral over() as a residue in this point. It is obvious that a
nonzero result is obtained for those valuestbfthat are
limited by the condition

ke (U dt A2
t'<t*(g,w)=t—7(q,,0). (27) (I(R.Ro;1) 20, —e(t—1")2 dskp(ds)

Here,c=c/ /e, notationr(q, ) stands for the time interval % 00
necessary for the plane harmonie® pass from the plane of &xp Y gg ( )

the source %) to the plane of the receiver), | |
zZ— 27y

) 5 B
2 XL du W(p)v (,u)exr{ v(p) L0 |
i (28) 33

This result for the space-time distribution of the average in-
The next step is to calculate the integral owein Eq.(2).  tensity of a point-source-radiated narrow-band signal is

Due to the presence of the narrow functiph(w—wo), all  rather general and is valid for arbitrary envelopg). It is
physical quantities in the integrand, in particulafw) and  simplified substantially when the distangeis large enough
km(w), may be taken at the carrier frequeney. Since in  for the pulse duration to be less than the time of the pulse
the present paper we are mainly interested in localizatioRyrrival at the observation point in homogenedus:(z)
effects dissipation in the medium is SUppOSGd to be smalk 0] medium. In this case, the upper limit in the |ntegra|
enough, and the dissipation rate of the carrier harmonics igvert’ in Eq. (30) may be extended to the infinity, all func-
much Iarger than the Correspondlng extinction |en§§ﬂHB tions in the |ntegrand of Eq33) may be taken at’' = 0, and

from Eq. (33) we obtain

7(Q,0)==

—C ~
woy(og B0l “ (1R Ry~ SXFyoct/co
2(w)?Lyy [1- (/S22

Subject to the conditio(R9), the integral ovemw recovers the

function A*(t'), whereupon the average intensity is reduced % fwd,u W( ) v2(w)
to 0
de? dq ><exp| v(p)|z—2zo| ] (34
l 2 -
(I(R, Ro1t)>~8 f f Talo(da) 0(9\/sz q?) L [1—(e/ct)?]
> Here, L,=Ly(km,wg) is the largest value of the
X Jo(@VKp—02) backscattering-induced extinction length(localization
o ) ® length corresponding to the most “energeticali.e., g,
xf G2: 20 dt’|A(t")|2 eXF{ - 78—0(t—t’) = k) harmonics, and
— 0 O
-ty , =f7wdt’|A(t’)|2-
Hi— (91— a2)
0
| | Although the intensity of a monochromatic field is known
* Z—Z to be a strongly fluctuating, not a self-averaged quantity in
2 . L]
x fo dp W(p)v (,u)ex;{ v(m) Ly(g2) | 1D disordered systems, the integration of the correle28y
over parameters and q (the last integration corresponds
(30 physically to the summation of plane harmonics with differ-
ent angles of propagatipiserves as an additional averaging
From here on we address the case when the receiver f§ctor that suppresses fluctuations of the intensity of the
located far from the source, so that wave packet, and therefore makes the results obtained by
ansemble averaging, Eq§33) and (34), more physically
Kmo>1. (31 meaningful.
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FIG. 1. Instantaneougat timet) spatial distributions of the in- FIG. 2. Time dependences of the intensity at a given in-plane
tensity in the fluctuation waveguide at differefw |z— zo| /4L, . distanceg and different{=|z—zo|/4L,.
V. DISCUSSIONS OF THE RESULTS Another peculiarity of the pulse propagation in a ran-

Equations(33) and (34) present the space-time depen- domly layered medium is a sort of “_aniso_tropy” of the time
dence of the average intensity of a narrow-band pulse sign&€l@y of the wave packet: the arrival time increases with
radiated by a point source in a randomly layered weaklyncreasingz—zo| faster than it does whea grows. Indeed,
dissipative medium. Here, we dwell on the main physicaltn® arliest signal arrival time at a poif¢,z} is of order
characteristics of the result that are manifestations of the/e?+ (z—zp)?/c. At this moment, ifo>L,, the spatial dis-
strong Anderson localization in 1D disordered media. tribution of pulse in the fluctuation waveguidéz{ z|

First, it is evident from Eqs(33) and (34) that the pulse <L, given by Eq.(34) contains the exponentially small
field is exponentially localized iz direction within a 4.,  term
thick layer whose central plare= z, is the plane where the
source is located. In other words, the point-source pulse ra- ex;:{ — () 0
diation is channelled, much as the monochromatic radiation KL 2=z
is, within the fluctuation waveguide that is created owing to
the interference of multiply back-scattered plane harmonicd he moment,, when the signal at the poifip,z} reaches its
even though the regular refraction does not exist in the sysaot exponentially small maximum may be roughly estimated
tem. by equating the localization exponent in E§4) to unity.

The next interesting feature is that the narrow-band pulsdhis procedure yields
acquires universal shape at large distances in the fluctuation
waveguide. Indeed, under the assumption that in-plane dis- 0

c

tance to the observation point is such thatcT, the average tm™
intensity is described by formulé84) and depends on the

envelope of the incident pulsé(t), only through the nor- with some numerical coefficierE~1. Although the esti-
malization constanT. In Fig. 1, a set of curves is presented mate (36) cannot claim for satisfactory accuracy, it gives a
depicting the intensity distribution as a function of the in- reasonable idea of the pulse delay in a stratified medium. To
plane distance at a given timet for different distances in  accurately calculate the dependence of the arrival time of the
the direction perpendicular to layer§=|z—2zo|/ALy,. In pulse maximum as a function of the transverse displacement

Fig. 2, the time dependence of the pulse intensity is shown g¢ — zj| one should use E¢34). The results of thignumeri-
a certain distance and three different. As it is seen from  cal) calculation is shown in Fig. 3.

the graphs, during the propagation in the fluctuation wave-

2
<1. (35)

-1/2

(36)

z—120\2
Lm

o]

guide, the signal acquires a rather slowly decaying tail, and VI. CONCLUDING REMARKS
at large distances from the maximum of the pulse, the inten- '
sity decreases in time proportionally to2. The weak sen- To summarize, in this paper, the problem of the space-

sitivity of the wave packet to its initial shape is due to thetime distribution of the average intensity of a narrow-band
fact that in randomly layered medi@n distinction to free pulse that is radiated by a point source in a 3D randomly
space a point source radiates only those eigenmodes that alayered medium has been solved by means of the generalized
localized in a narrowof the size of the localization length resonance expansion method. The pulse field is shown to be
stripe near the sourd@,4]. The (randon) set of these modes localized in the direction of stratification and channelled par-
is a fingerprint of each realization of random potential and isallel to the layers within the fluctuation waveguide whose
independent on the way of excitation. symmetry plane goes through the source location. The wave-
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tm Under WS conditiong16) the “amplitudes” wi(z) and
yﬁ(z) in Eqg. (A2) are smooth functions in comparison with
L5F . the nearby standing fast exponentials. By averaging the

equations fory.(z) over the interval of the lengthlAnter-
mediate between “small” and “large” lengths of E¢16),
we arrive at a following set of dynamic equations:

1.0 ¢ - )
- ' =2 (2)+i[ 7(2) ~ Ag?2q] 72 (2) + £ (2) 2 (2) =0,
0.0 0.5 1.0 - - -
4 (A3a)
FIG. 3. Arrival time of the pulse maximunt,,, (in units o) + yﬁl(z)—i[77(Z)—Aq2/2q]y§(z)+§’i(z) wﬁ(z)zo.
Vs {=|z—zy|/4L,. - - - - (A3b)

guide originates exclusively from the interference of randomrhe functionz(z) in Eq. (A3) coincides with the analogous

fields multiply scattered by weak fluctuations, with no regu-function from Eq.(12), with » being replaced bw+ Q. The
lar refraction present in the medium. The typical width of thefunctions¢. (z) are given by

waveguide is of the order of the localization length of the

harmonics with the largest allowable momentum along the -1
axis of stratification. Random lamination of the medium ft(z)zﬁ
leads to a substantial distortion of the pulse shape. Specifi-

cally, far away from the source, the narrow-band pulse ofsommerfeld’s radiation conditions at— -+ are reformu-

any original spectral content, being locked within the fluc-|ated as the “initial” conditions for the smooth amplitudes,
tuation waveguide, spreads into a signal with the envelope

given by the universal functiofB84) depicted in Figs. 1 and lim 73(2)=1, lim ¥4 (z)=0. (A5)
2. In contrast to homogeneous media, the dependance of the zoxw zoxw

arrival time of the pulse maximum on coordinates is strongly o o i
anisotropic: it increases drastically as the observation poirif? @ Similar way the second Green function in E4).is to be
moves in thez direction away from source. This delay is not "éPresented, keeping in mind that in this casg;=0 and
due to the increase of the path length of the signal, as it i2=0 ) ] o o

for example, in media with regular refraction, but is caused Wronskian)Vin Eq. (A1) within the WS limit reduces to
%yogi]ces(rg;)ljuple random scattering of the saddle-point har W=2ig[ 7 (2)7 (2) + 42 (272 (2)]. (A6)

w+Q\? (z+1dz
f —e 2% 5e(2'). (A4)
C 7—1 2l

By inserting then Eqs(A2) and (A6) into Eq. (Al) and
ACKNOWLEDGMENT comparing the result with Eq9), we obtain for the matrix

This work was supported in part by ONR Grant No. €lements of Eq(10)

N000140010672. Gy A2, 20| 0+ QG2+ AGD)
APPENDIX A: CALCULATION OF THE GREEN MATRIX 2. 7i 779,(2) yé(z)
EQ. (10 == —A%z0)| 0. ———— 0=T"2(z0)—5—|,
q 75 (Zp) 3 (20)
To find the 1D Green function of Ed6), we express it
via solutions of the appropriate Cauchy problems, (A78)
G(2,20)=W ¢ (2§ _(20) 0(z— 20) G3.42,20| 0+ Q,0°+A0%)
+ . (20)p_(2)0(zo—2)]. Al 27 7 (2) 2(2)
1 (20)-(2)0(2o—2)] (A1) :_FAA(ZO) 0. T2 18 )+ 6. VA .
Here, the functionsy..(z) are the linear-independent solu- 7+(20) 7=(20)
tions of homogeneous Eq6) with boundary conditions (A7b)

given at either “plus” or “minus” infinity, depending on _
the “sign” index, W is the Wronskian of those functions, Here, 6. =6[ = (z—2,)] and the rest of notations are
0(z) is the Heaviside unit-step function.

_ A A -
In the case of realy, it is reasonable to represent the AN =[1+T3(2T2(2)] Y, (A8a)

functions .. (z) as superpositions of modulated harmonic A A A

waves propagating in opposite directions of thexis, ' (2)=vy2(2)/7(2). (A8D)

¥, (2)=72(2)exp(+iqz) —i Y2 (z)exp(Fiqz). (A2)  The upper sign indices in EgA7) correspond t@; and g,
B - - whereas the lower signs & andg,, respectively. The func-
The upper indexA indicates that the corresponding functions tions Fi(z) and Tri(z) obey the Riccati-type coupled equa-
are related to the first Green function in Eg). tions resulting directly from EqA3),
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dri(z) Ag? A Here,y (¢) is the function related to the generating function
- d_z =2i|n(2)— 2q I'(2)-{(2) Ys(&)==;_,Z"P,(s) by the equality
+{(2[M2 )T, (A9a) £ ¢
ys(§)= EYS 1- 3 (B4)
d l A 2 I‘A
. a =(2)
e A =1 77(2)_ Yy A +§t(z) A . H H H
dz m2(2) 2q 72 (2) w5 (2) From Eq.(21b), it follows thaty¢(£) obeys the differential

(A9b) equation

The initial conditions for Eqs(A9) follow from Eq. (A5).
Transition from Eqgs.(A3) to (A9) is motivated by the
following. In the stationary and nondissipative limiting case

(Ag?=0 andy=0) the functionsl'..(z) represent the am-
plitude reflection coefficients for the harmonigncident on
the 1D disordered half-spaces, {-), respectively. In the
presence of arbitrary weak dissipation, these functions be-
come modulo less than unity allowing for the facts?(z)

given by Eq.(A8a) to be expanded into a series in powers of

the product™$ T'® . Averaging then termwise the double se-

ries into which the product of the Green functions in ).  \where
is expanded we arrive eventually at the expressia.

d d d (d )
T fdgf Paeflag 1

[ Aq? 1(a)?,
+i|s— q>£bys(§) ( ) QpYs(§)

2\p

o 2
=Ly 2+(26— B)EEI(— &) + 5 P,e(f)}, (B5)

Lo\ [~ (26— B)(¢' -
APPENDIX B: ANALYSIS OF THE Pa(é)= 1+2—b)eﬁj d¢'e ¢ ( g, AE—p)
FORWARD-SCATTERING CONTRIBUTION Ly B &+(E-pB)
Equation(21a may be solved rigorously at=0 (see, X[&' = (& —B)2E+P)], (B6)

e.g., Ref.[6]), therefore it is not difficult to obtain an

asymptotic expression fd&®, at|«|<1. With the accuracy of 44 the differential operatdbﬁ has the form
the first order ina?, one may find that

n 2 d
R o eqpe] o et ] |
Ly Bt d d E 2
X1 1+ a? 1+2? 1+t—€(3+2t) ] (B1) +° §d§§ de| (Sdgf
f

When|B|<1, the domain corresponding te-|8| 1 is sig- d d d 5 d \?

nificant in the integralB1). Therefore, the contribution of +4p fd_gf_ fd—§§1d—§§ 87 1- 2d—§§

the terms proportional ta? is of the ordefa/g|?. It follows +

from Egs.(5) and(22) that (B7)
al T B2 The brackety ..., ...}, in Eq. (B7) denote an anticom-
E T wly (B2) mutator. It is evident from EqB3) that the solution of Eq.

(B5) is of importance in the domai&é<1. In that region, the
In the r.h.s. of Eq(B2), there is nothing but a small WS estimation is valid

parameter that governs all the approximations made in the

course of solution. Therefore, the terms proportionaktan ~ Ly

Eg. (B1) lead to the corrections that are less than the calcu- [Q4ll~[Pg(é)|~1+ 7

lation accuracy, and must be omitted in EG1). f
To analyze Eq(21b), we present the correlation function

(19), using Eq.(B1) at «=0, in the integral form, Thus, we conclude that the terms proportionalég and
Ps(§), that contain the forward-scattering parametgr,
K d €9 I contribute negligibly, in accordance with WS parameter
(8)= ( ) f €826 Py +y-<(&)]. (B2), to the solution of Eq(B5), just in the same way as the

(B3) termsxa? in Eq. (B1).
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