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Nonlinear modulation of multidimensional lattice waves
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The equations governing weakly nonlinear modulationdNafimensional lattices are considered using a
quasidiscrete multiple-scale approach. It is found that the evolution of a short wave packet for a lattice system
with cubic and quartic interatomic potentials is governed by the generalized Davey-Stew&@B8nequa-
tions, which include mean motion induced by the oscillatory wave packet through cubic interatomic interac-
tion. The GDS equations derived here are more general than those known in the theory of water waves because
of the anisotropy inherent in lattices. The generalized Kadomtsev-Petviashvili equations describing the evolu-
tion of long-wavelength acoustic modes in two- and three-dimensional lattices are also presented. Then the
modulational instability of afN-dimensional Stokes lattice wave is discussed based dd-thimensional GDS
equations obtained. Finally, the one- and two-soliton solutions of two-dimensional GDS equations are provided
by means of Hirota’s bilinear transformation method.
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I. INTRODUCTION (KdV) equation for a long-wavelength acoustic mgd¢
In recent years, much attention has been paid to coherent
Since the pioneering work of Fermi, Pasta, and U[dh  structures in multidimensional latticésee, e.g., Ref5]). In

on the nonlinear dynamics in lattices, the understanding oparticular, we mention a generalization of the KdV equation
the dynamical localization in ordered, spatially extended disin a 2D lattice with only a cubic interatomic potential, i.e.,
crete systems has experienced considerable progress. In ptre Kadomtsev-PetviashivilKP) equation, derived for a lat-
ticular, one-dimensionallD) lattice solitons, which are lo- tice wave traveling in a given directidi®] and coupled 2D
calized nonlinear excitations due to the balance betweeNLS equations describing quadratic solitons due to the
nonlinearity and dispersion, are shown to ekt Similarto ~ second-harmonic generation in a 2D lattice of the two-
the cases in fluid physics and nonlinear optics, most of theomponent dipole§7]. However, to the best of our knowl-
analytical approaches on lattice solitons are based on weakBdge, up to now 2D and 3D generalization of the NLS equa-
nonlinear theory. The basic idea of the weakly nonlineartion with a mean motion induced by oscillatory wave packets
theory is that linearized lattice equations are assumed to prdn lattice systems(i.e., due to long-wavelength acoustic
vide a satisfactory first approximation for those finite- mode has not been developed. Meanwhile, such motion in-
amplitude disturbances which are, in some sense, sufficientliyoduces dramatic changes in the lattice dynamics.
small. Successive approximations may then be developed by In the present paper, using a quasidiscrete multiple-scale
an asymptotic expansion in ascending powers of a characteapproach 3,8—10, we derive generalized Davey-Stewartson
istic wave amplitude. The weakly nonlinear theory has beefGDS) equations in multidimensional lattices with cubic and
shown to be very successful in revealing many importanfjuartic interatomic potentials. Because of the anisotropy in-
physical processes, e.g., resonant wave-wave interactiongserent in lattice system@.e., without continuous translation
modulational instability, the formation of solitons, etc., in a and rotation symmetrig¢sin the case of two dimensions the
clear-cut way. A very useful method for the asymptotic ex-GDS equations presented here are more general than those
pansion is the method of multiple scales, which in the case ofbtained in water waved 1], which are physically isotropic.
lattices reduces the system to a set of partial differentialWe also derive a generalized KP equation governing the evo-
equations for the slowly changing envelofm amplitude  lution of a long-wavelength acoustic excitation traveling in
while the original system is a set of differential-difference any direction.
equations, and usually cannot be solved exactly. There are The organization of the paper is as follows. In Sec. I, we
two basic advantages of the multiple-scale expandigrit ~ formulate the model and deduce the equations for slowly
contains a unigue explicit small parameter, and hence is corvarying amplitudes in afD lattice. In Sec. Ill, we concen-
trollable, and(ii) it allows us to obtain solutions in an ex- trate on excitations in a 2D lattice. The dynamic equations in
plicit form. It is well known that, for a 1D lattice wave with the long-wavelength limit are presented in Sec. IV. In Sec.
a large spatial extension, the envelope of the lattice wave i¥, we discuss modulational instability of atdimensional
governed by the nonlinear Scliinger(NLS) equation for a  Stokes lattice wave on the basis of the GDS equations. Sec-
short-wavelength packet3] and the Korteweg—de Vries tion VI provides some one- and two-soliton solutions for the
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2D GDS equations based on Hirota’s bilinear transformation There are some comments to be made here. In a generic
method and demonstrates the effect of anisotropy on the solgéase, the entries of the expansi@) depend on the whole
ton formation. The outcomes are summarized in the finahierarchy of “slow” variables, i.e., one should consider the
section. set of variables{r,,t,} (»=1,2,...), where r,=¢€"(n
—v,t) andt,=e€"t, which are regarded as independent. In
II. MODEL AND ASYMPTOTIC EXPANSION the case of the effect of quadratic and cubic nonlinearity,
o . . _only the scales up to, andt, turn out to be relevant. In the
The system we consider is a monatomic scalar lattice Withyresent paper we restrict our consideration to the solutions
nearest-neighbor interatomic interactions. The equations Ghdependent of,. For this reason, we introduce only the

motion describing the system are given by “lowest-order” slow variables =r; and r=t,.
2 d Substituting Egs(2) and(3) into Eq.(1) and equating the
- _ ) La)+ —a)-2 coefficients of the same powers @fwe obtain the hierarchy
dtzu(n) j§=:l Jolu(nta)+u(n=a)—2u(n)] of equations as follows:
d 2
+j§l Js{lu(n+a)—u(n)]?~[u(n-a) '—Uuszi;g—Z 3oy (U +uC =M,
J
d
“uMI+ 2 Jyfluna)—u(n))’ v=12,.... @
+[u(n—a)—u(m13}. 1) Hereul™=u,(r,7¢(nt)=a)—u,,md(n1),
Hereu(n) is the displacement from its equilibrium position M,=0, (5a)

of the particle having the madd and located at the site
ZZlenjaj, n; being integersa; being the lattice vectors, du, J 0 =)
and d being the dimension of the latticd,,; =K, /M (a Mz=—2w(v~V>£+2 Jajaj (U’ —ug )
=2,3,4),K3;j,K3;, andKy; are harmonic, cubic, and quar- . !

tic nearest-neighbor force constants, respectively. Notice that (2 (—in2

the anisotropy of the lattice is included in the consideration +2 Jgi[ (Ui "= (uz ), (5b)
(i.e., in a generic cask, ;#K,; for i#j). We include the .
cubic potential here since most of the realistic interatomic

2
potentials(such as the potentials_of Born-Mayer-Qoqumb, M= —(V~V)2u1—2w(v~V)%+2w 97Uy
Lennard-Jones, Morse, Toda, ¢tdisplay strong cubic non- dp dpaT
linearity (i.e., J, 3#0) [8,9]. In the most direct physical ap- 3 1. PRE:
leca_tlons(namer, to atomic crystalsthe dimensiord can _,_2 358 —_(u‘zi’—u(z‘j’>+2 % a—
be either 2 or 3, although more formal lattices witlbeing i IX; i X]

bigger than 3 are available. In the present section, we deal

with the last, more general, case. . X (U +ul D+ 2up) +2 Jgj((u(zj)u(li)
In order to investigate weakly nonlinear modulation of a ]

lattice wave packet, we use the quasidiscrete multiple-scale p

method[3,8—10 to derive the env_elope equations describing _ u(z—l)u(l—l)) + u(11)aj —_(u(1’)+ up)

the development of the modulation of the packet along the IX;

line of Davey and Stewartson for water way&4]. Namely,

P R .
we set _u(l ])ajg_xj(u(l J)+U1) +; J4j[(u(l]))3
U(n)=§1 €'u,(r,7;¢(n,1)) 2 +(u§0)3, (50)
with V=a4lor, a;=|aj|, andx, is themth coordinate of the vector
r, r=2pXmém/am-
r=e(n—vt), 7=€t, ¢(nt)=g-n—ot, (3) For further consideration we have to specify the effect we

are looking for and this will determine the form of the
wheree is a formal small parameter representing the relativdowest-order {=1) solution of Eq.(4). Namely, we will be
amplitude of the excitation,q is the wave vector.q interested in the weakly nonlinear modulation of a lattice
=E?:1quj, b; being the vectors of the reciprocal lattice: wave originated by the interaction between a long-
bi-a;=4;, and w is the frequency of the respective har- wavelength acoustic mode and a high-frequency mode. Thus
monic. The constant vectaras well as the link betweea we choose
andq, i.e., the dispersion relation, are to be determined by
solvability conditions. ui=Ao(r,7)+{A(r,m)exdi¢(n,t)]+c.c}, (6)
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where the real functioA, stands for a mean motion induced 1
by the oscillatory wave packet, which has the complex en- wjj = Z[szCOE(CIj)aiaj dij—vivjl, (12
velope functiorA,, and c.c. denotes the corresponding com-
plex conjugate term. Then and the(symmetrig effective GVDT(Q;;,
ui D =[exp(+iq;)—1]Ae" MV +c.c,, 1
QijEZ[szaiajéij—vivj]. (13)

and in the first ordefsee Eqgs(4) and(5a)] we immediately
arrive at the dispersion relation of the underline linear lattice Tpe solvability condition for the third-order terms gives
rise to the closed system of equations gy andA;:

wzz[wm)r:z; Joi(1—cosq;). (7) X

J
D Yo Ag=—2> S =A% (14
. ,m OX10Xm m 0Xm
Next we take into account that
oA, 1 92 d
do 1 ) T = A= 2 —
Y= dg EJ: Jy;sin(a))a; /a;, ® o7 2 % w'max,axmAl XIAY A1+A1§ 5maxmA°’
(15
which is the group velocity of the linear wave. Then, subjectWhere
to assumption6) the second-order equation of systéd)
takes the form 2an,
o | Sm=——"Jam(1—COSU), (16)
Luy=2i w{[(Vg—V) - V](Ae'¢—Ae'?)+ yP)(AZe??
A2p-2i 2 :
—Afe ?%)} © 5= - > [2ad3m(1— €OSU)SINGm+ 3 4m(1— COSGm) 2]
m
where (17
J e call Egs. an the equations.
o We call Eqgs.(14) and (15) the ND GDS i
XP=2 = (cosqp—1)singp, (10
" IIl. GENERALIZED DAVEY-STEWARTSON EQUATIONS
is the effective quadratic nonlinearity. Let us now focus our attention on a special case of a 2D

The solvability condition for the systerf®) (in other
words the conditions of the absence of secular terms,)n
means the orthogonality of the right-hand side of B3j.to
the kernel of the operatdr, i.e., to Eq.(6). Hence the right
hand side of Eq(9) must not contain the terms proportional
to exp(ri¢) and we conclude that=vg, i.e., v introduced g, systeniwith the coordinate basid, 0) and(0, 1)] to a
in Eq. (3), is merely the group velocity of the carrier wave. new one with the coordinate basis=(\;,\,) and e,=
Next we can look for the solution, (it must be orthogonal =\ "\ "\ oo 12 2
to the first-order approximation, i.e., to the kernel of the 2R
operatorL) in a form of the expansion over the eigenfunc-

lattice [i.e., r=(X1,X5)]. For the sake of simplicity, the lat-
tice will be considered symmetrid,, ;=J, (¢=2,3,4 and
j=1,2), and orthogonakb, - a,=0, with the lattice constant
equal to unity,|aj =1. In order to diagonalize the effective
GVDT O, in a general case, we rotate the original Carte-

v; sing;

tions of the operatot. Having done this, one ensures that Nj=— = (18)
the only nonzero term of such an expansion is given by Vg sirg;+sing,
Up=1i aAfexriZi $)+c.c., andv; is the jth component of the group velocity defined in
Eqg. (8) (as is evidentg-g= ;). In this way one of the
20y directions of the new basis, namety, coincides with the
=— ) (11 direction of the group velocity of the carrier wave, i.g,
4 o(q)P~[w(20)]? =v4€;. The other direction is orthogonal to it. As a resulf,
) ) » and x, in Egs. (14) and (15 take the formx;=e€(n;
Formula (11) is valid unless the conditionw(2q) —\1wgt) andx,= e(n,—A,v,4t), and the envelope equations

=2w(q) is satisfied. As is evident, this is the condition of (14) and (15) are reduced to
the resonant second-harmonic generafib®,14. It can be

satisfied in a lattice with a complex cell, but it is not difficult 9?A, FW P P
to ensure thatw(2q) # 2w(q) for all g in a monatomic lat- apy—— Tanp— = —2(,81(9—+ﬁz(9—) |A1]2, (19
tice with the nearest-neighbor interactions. 3 an ¢ K

Passing to the third order of the multiple scale expansion,
we introduce thésymmetrig group velocity dispersion ten-

2
sor (GVDT) by the formula ¢;= dw/Jq;) Aot x|Ad"As, (20

'aAl+cA =A g,
'(97_ 1=~ ,31(95 ,32(977
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where 4,
92 92 9 X
L= 7’11(9_§2 + 7’22(9_772 + Y2585, (21)
E=r-e=N1X;+ NpXp=€e(An1+ AN, —vgt), (22 M 94
N=r-6=—NX;t A Xo=€e(—An;+Any), (23
au:i(Jz—vé), azzzJ—z, (24)
w w
235
'81:?[)\1(1_ €0sqy) +A5(1-cosay) ], FIG. 1. The first Brillouin zone for the 2D quadratic lattice. The

filled-in and empty polygons correspond to the operafofit is
Js defined by Eq.(21)] of the elliptic and hyperbolic types, respec-
ﬁzzj[xl(l—cosqg)—)\z(l—cosql)], (25)  tively. Along the intervals shown by the bold linége., in the
directions[100], [010], [110], and[110]), the system(19) and
1 (20) is reduced to the conventional DSII equation.
’)’11=Z[_US+32()\5003‘11+ \5cosq,)],

N , eq_uationsf tak_e a more gengral form be_cause the lattice is
y22=5()\zcosq1+ \7C0S03), (26) anisotropic (without the continuous rotation symmetijje
mention that although the coefficientg (i=1,2) areboth
J, positive, signs of the coefficientg; may change depending
v12=— N1\ ,(C0OSQ, —COS(y), (27 on the choice of the wave vector in the first Brillouin zone.
@ We now discuss several particular cases for the 2D GDS
equations derived above. In the following circumstances

X= E{2\]36¥[Sin(h(1—COSql)+sinq2(1—cosqz)] (i.e., in some special points and lines of the Brillouin zone,
@ see Fig. ], the 2D GDS equations reduce to the conventional
+3J,[ (1~ cosay)?+ (1~ cosdp) 21}, (28 DS equations:

(i) 9:0,=0 (theni;A,=0 andﬁf,zz ¥12=0),

434 singy(1—cosqg,) +sing,(1—cos (i) 4, =0,=q (thenh; =A;=2""=and f,= 1,=0),
a= ol sing( qzl) Q2(2 qZ)]- (29 (i) 9;=—0,=q (then \y=—\,=2""2 and B;= 1,
Ao(d) ] ~[w(29)] =0).

More precisely, sincex;1>0 and a,,>0 for anyq, at

Equations(19) and (20) represent a generalized form of y11720<0, Egs.(19) and(20) can be classified as DSII equa-

the conventional DS equations. They include the dispersion[1 : .
. . . . A ons, while for >0 they form a dynamic system that
diffraction, and nonlinearity of the system. One of their im- = identifie)/élzzeﬁther wityh DS noryDSII eq)L/lations ap-

portant features is that there exists a coupling between th S

, . earing in the theory of water wavésee, e.g.[12]).
mean field(denoted byA,) and thg envelope of the carrier 8 In tr?e case of a gure quadratic potentih?jo ]\)Ne have
wave (denoted byA,). The mean fieldi, generates a strain that the evolution equations fak; and A, are decoupled.

field in the system. 10;=0, a case for a symmetric inter- Then the GDS equations reduce to a generalized 2D NLS

atomic potential, we havA,=0, thus the mean motion and P ; o
L 0 . equation(i.e., the NLS equation plus a cross-derivative term
hence the strain field vanish. Another important feature for 3 [ d P

; . . . 9°A,1(9€dm)]. Finally, if g,=0 andd/dn=0, the 2D GDS
Egs.(19) and(20) is their property Of. ?”'SOUOPV- For dlf_fer- equations(19) and (20) recover the envelope equations de-
ent wave vectog=(q,0,), the coefficients of the equations

take different values and some of these coefficients may beggﬁtc:):]r;[lgelfa[s,lo], which gives rise to standard 1D lattice

come vanishing for some particular directionsgof

The conventional DS equations were derived first in sur-G[;gtge 3[? case, Eq$19) and(20) are replaced by thaD

. quations

face water wavegl1] and now are a well-known 2D soliton
model in soliton theory12]. Note that for water waves, the
system is isotropidi.e., it possesses a continuous rotation ) 5 )
symmetry. The envelope equations are the same for all ol A0+a, J A0+a, 9"Ao
propagating directions of the waves and hence the coeffi- Wogz "2 02 7 gp2
cients appearing in the equations are independenq @hnd
g,, and correspondingly3, and y;, vanish[11] (see also
Ref. [13]). However,for the lattice system the modulating

P P P
=-2 Bia—gﬂLﬁé%ﬁLBéa—g A% (30
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A, , A, , PA, , PA, ’ 52 wherev=~au0/a§.~ln deriving Eq.(40), we have assumed
oy TruT o TV 5 T +( Y12 that J;=€J; with J; of order unity. The parameters (I
IE an al &dm —19 L3 . .
=1,2) are direction-dependent and we find that their values
52 92 can be obtained by using E¢L8) but taking the limitq
+ 7/é3(977_a§+ 7&1@) A; —0. Thus the values of the coefficients in E40) are de-
pendent on the ways @f approaching zero. For instance,
R N B i (i) \y=1,1,=0 if g,=0, 4, —~0;
=Aq /31&_§+/320_77+/33(9_§ Aot x'|Aq|?Ag, (31 (i) \y=N,=1/\2 if q;=0,=q—0.

The reason for the different values of the coefficients cor-
responding to different directions is also due to the anisot-
ropy of the system. It is easy to see that the KP equation
obtained in Ref[6] is our particular case with quartic non-
linearity being absenti.e., J,=0). Equation(40) admits
solitary-wave solution§l12].

It is relevant to mention here that the coefficient of the

whereaj;, Bi, vj; (j=1,2,3), andy’ are constants depen-
dent onq=(q;,9,,q93) and the parameters of the system,
which are not needed here and not written down explicitly
The definitions of¢, , and{ are given by

=€(N + N\ +A\ —vqt), 32 . " . -
€= e+ AaNz T AgNs —vgl) (32) term 9°v/d75? is positive, which means that the liree.,
B n-independent solitons of Eq.(40) are stable while this
7=€(=NaNy+AqNy), (33 equation does not admit any kind of lunipe., decaying
when &2+ 7?°—0) solution.
{=e€(—=N3n;+Agng), (34) In the same way, in 3D case E@0) is generalized to
wherew and\; are defined by Eqg7) and(18). J | v 9% v L, 9% %
—|—ta—tay—tay —z|ta,—+tas——;=0,
gE|ar Trggd TEog T 9k Moz TP
IV. LONG-WAVELENGTH LIMIT (41

Note that the envelope equatiofigl) and(15) are invalid where ¢,7, and ¢ are the same as Eq32—(34). a(l

for =0 since in this case there is a divergence in their_q 5 34 5) are real constants dependenhpr(j=1,2, 3)
coefficients. From the physical point of view, this happens[giv’er’1 by Eq.(18)] with g—0. Y

because vanishingy corresponds to a long-wavelength
acoustic mode in the lattice. In this case a different
asymptotic expansion must be used to obtain divergence-free
envelope equations. For simplicity, we consider the case of a
symmetric 2D square lattice. In this situation, the asymptotic In recent years, the use of nonlinear envelépeampli-
expansion(2) must be replaced by tude equations for studying the stability of patterns and
waves in systems in and outside of equilibrium is widely
U=Ug+ €Uy + €Uyt - - -, (35 employed[15,16. The modulational stability of a plane wa-
ter wave (e.g., a uniform Stokes wayevas analyzed by
with Davey and Stewartson based on the DS equations they de-
rived[11]. In the same way, thRiD GDS equation$14) and
u,=u,én7 v=012..., (36) (15 obtained here can be used to study the modulational
stability of a uniform Stokes lattice wave Mdimensions. A
&= €e(NqNy+ \ony—Ct), (37)  Stokes lattice wave here means a linear plane lattice wave
with the wave vectonq,.
Note that the uniform vibrating solution of Eq&.4) and
(38)
(15) reads

V. MODULATIONAL INSTABILITY OF A PLANE
LATTICE WAVE WITH A MEAN MOTION

7= €2(— NNy +\1Ny),

— (39) Ap=0, A;=Ugexp—iQ7), (42)

wherec=/J, is the speed of sound and(I=1,2) are de- Which, when incorporating the carrier waysee Eq.(6)],

termined by the solvability conditions required@fe?) or- ~ corresponds to a plane lattice wave with the wave vegtor

der. A solvability condition in the fourth order of the expan- and the modified frequency(q) + {2, whereU, is a con-

sion yields thegeneralized KP equatign stant and)= yU3. Assume that a perturbation is added into
the uniform vibrating solutiori42), i.e.,

a|d

v C v j3 dv
I AN 47 7 L T2 3 3y,
T—I— 24()\1+)\2)6§3 + c (NTFA)v

9E| € Ao(Xq X, . .. ,r)=f<+ex;<i§ mem)

Jv c %

34 4,34y 2 P i
+E()\l+)\2)v Py +§a_7;220' (40 +K_exr{—|% mem), (43
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one hass,;=0. As a result, if the conditio50) is satisfied,
we have the growth rate

( 2
+;exp(—i2 mem) , (44) 2> 5QO)
o] [ maa{ v T
with k. (n)=x-(0)exf(or=ioyr] and  &.(7) " > nQiQn
=&, (0)exd(or*io)7], where Q=(Q;,Q,, ..., Q) and \ hm
o,=0(Q) are, respectively, the wave vector and frequency \ 12

of the perturbationpr=03(Q) denotes the growth rate of
the perturbation, ané..(0) ande..(0) are small constants

with the conditionx* (0)=«. (0) because of the reality of
Ao. Substituting Egs(43) and (44) into Eqs(14) and (15),
we obtain a set of linear equations &n (0) ande..(0):

—(@11Q%+ @2Q3) k1 (0) + 21U 3(B1Q1 + 82Q2)

X[e,(0)+&*(0)]=0, (45
(@11QF+ Q%) k_(0) +2iUF(81Q1+ B2Q5)
X[e_(0)+&*(0)]=0, (46)

(Q+i0—y11Q5— 72,05~ 712Q1Q2—2xUd) e . (0)

—XU3%e*(0)—i(B1Q1+ B,Q2) k. (0)=0,  (47)

(Q+i0* = y11Q7— ¥22Q5— 715Q1Q2— 2xU3)e _(0)
—XU%e*(0)+i(B1Q1+ B,Q2)k_(0)=0, (49

where o=og+io,. A solvability condition of Eqs.(45)—
(48) results in

(oR+ia.>2=(§w|mQ|Qm) ugl —x

2
2| > 6QO) L
t———— |72 @mQQn
;n QImQIQm '

(49

Note that the right side of Ed49) is real. Thus when

2
; 6QO)

2

(%wmQ'Qm) gl —x+———
Y % QImQIQm

1
- 1 omQQm ¢ >0, (50

I,m

- 0mQQm > (5)

N

I,m

J

Thus one always has a positivg; branch if the condition
(50) is satisfied. In this case, the perturbation grows expo-
nentially and hence the uniform vibrating solutiof2) is
modulationally unstable.

For the 2D GDS equationd9) and(20), the condition of
the modulational instability50) reads

(y11Q7+ 72095+ 712Q:1Q7)

X[ oz 2(/31Q1+BzQ2)2]

2 2
a11Q1+ @205

1
- E( y11Q%+ 72,Q5+ 712Q1Q2)] >0. (52

Thus due to the anisotropy of the lattiGee., 8,y1,# 0), the
criterion (52) gives much richer behavior for the stability of
the Stokes wave than that in isotropic syste(@g., water
waves. In particular, for a given Stokes lattice wave there
exist two (or maybe four, depending on the Stokes lattice
wave wave vectors for which the instability evolves with
the biggest increment. This phenomenon recalls the so-called
strengthening of inhomogeneities, known in the theory of
beam propagation in the Kerr medium9]. There is, how-
ever, an essential difference originated by the anisotropy: the
biggest exponent is characterized by the amplitude of the
value of the wave vector and also by the lattice direction.
The position of the points providing the largest increment
depends on the choice of the wave vector of the Stokes lat-
tice wave.

The outcome of this type of instability may result in the
formation of solitons[2] or the appearance of homoclinic
structures(see Sec. 3.3 of Ref12]).

VI. SOLITON SOLUTIONS

We now consider the soliton solutions of the nonlinear
evolution equations derived above. Taking 2D GDS equa-
tions (19) and (20) as an example, to obtain the soliton so-
lutions we employ Hirota’s bilinear transformation method,
an ingenious technique of finding exact multisoliton solitons
for nonlinear evolution equationgl7,18. Introducing the
dependent variable transformation
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Agm _4(31%+ﬁ2%) NF, A=GIF (53

with F (rea) and G (complex being the functions of, ¢,
and », Egs.(19) and(20) are transformed into the following
bilinear form:

(a1 Di+ aD2)FF=|G|?, (54)

(iD ,+ yuD+ y2D%+ y1,DD,)GF=0, (55

[(y11—2B3)DE+ (v2—2B5) D%+ (1.~ 4B18,)D D, IFF
+x|G|?=0, (56)

whereD ., D¢, andD
fined by[17,1§

are Hirota’s bilinear operators de-

o\ o o\ e a\°
& ¢ an  gp') \IT a7’

XG(g,’I],T)F(g’,7]/,T/)|§r:§

n

DIDDPGF=

' ==
(57)
In order to get a one-soliton solution, we assume
F=1+Lexp®+d*), G=expd) (58
with
O =(prt+ip)Eé+(drtig)) n+(sgtis)) 7+ Por+idy,
(59

whereL,pr,pP;,dr,4 ,Sr,S . Por, anddy, are real, yet to
be determined constants. Substituting E§8) into Egs.
(54)—(56), we obtain the set of algebraic equations

8L(a11Pr+ azR) —1=0, (60)

Y11(P&— PY) + Y1 PRAR— P10y + Y2/ 93— A7) — =0,

(61)
2(y11PrPI + ¥220RA1) + Y12 PRI T P1OR) +SR=0,
(62)
X+8L[(y11— 28D P+ (v22—283) 0
+(y12—=4B1B2)PrAr]=0. (63
From Eq.(60) we get
1
L= . (64)

8(a11PR+ ax0R)

Equations(61) and (62) give rise to the “dispersion rela-
tions”

$1=y11(PA— PY) + Y12 PRAR— P10 + Y2 R —T7), ©5
65

Sr=—2(Y11PrPI T Y220rA1) — Y1 PRrAI T P10R), (66)
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with pr,p;,0dr, andq, being arbitrary constants. Equations
(63) gives a condition for the one-soliton solution.
From Eg.(53) and the results given above, we have

Ao=—4(B1pr+ B2OR)[1+tanh(6—8,)], (67
Ar=[2(aypi+ ax0z) ] %sectio— sy expi¢), (69)

with 0=pré+drn+SgrT+Por, ¢=pi&+ a7t 7+,
and 8= (1/2)IN8(ay1pa+ a203)] (Por and @y, are arbi-
trary constants Thus the single-soliton solution obtained is
a line soliton, which consists of two parts, a vibrating wave
packet @;, an envelope solitonand a mean displacement
field (Ag, a kink).

The two-soliton solutions of Eqg19) and (20) can be
obtained by choosing

F=1+L,exp(®;+®%)+Lexp(d,+®5)+(Ly+il )

+Lsexp( @+ Dy + DT + DY), (69)

G=exp®,)+exp®,)+(M+iMy)exp @+ D, + DY)

+(M3+iMexp @+ P, + D), (70

with (I) (pJR+IpJI)§+(qJR+Iq]|)77+(S]R+IS]|)T+(I)
+|(I)J|(J 1 2) WherepJRv pJIv qul qu, S]Ru Sjll (I)JR,
and <I> are real constants. When Eg®$9) and (70) are

subst|tuted into the bilinear equatiof®})—(56), we obtain a
set of nonlinear algebraic equations for the real coefficients
Li(j=1,2,...,5) anaM;(j =1,2,3,4) appearing in Eq&9)
and(70). Solving these equations one can get the expressions
of L; and M, as well as the “dispersion relationsSjg |
sJRJ(pJR,p]I ,djr»0j1) (] =1,2), which have been given in
Appendix A. To guarantee Eq&9) and(70) are two-soliton
solutions, the following conditions must be imposed:

Y12= 48182, (71)
a @
11 = 22 == (72)
Y11= 2B1 Y22~ 2p;

In addition, forp,g andq,g, there is a constraint

o @11P3Rt AolR) X = (@1185+ axBl) Port 2a2B505R
(73

It is easy to show that the integrable conditions of the stan-
dard DS equation§.e., the ones amenable to being solved
by the inverse-scattering transformderived in the water
wave problem are the particular case of the conditigiiy
and (72) (see Appendix B This fact implies that the GDS
equations(19) and (20) may be integrable under the condi-
tions (71) and(72).

We note that different equalities in these conditions, how-
ever, reflect different physical properties. In particular, Eq.
(71) and the first equality in Eq72) result in an equation for
the wave vector onhyfi.e., having the formf(q,,q,)=0,
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where f(qg;,q,) does not depend on the lattice parameterspf the Education Ministry of China; the grants from the
i.e., onJ,] for which the existence of solitons is possible. Hong Kong Research Grants Coun¢RGO); the Hong
Then the second equality in E€Z2) allows one to find the Kong Baptist University Faculty Research GréfRG); the
particular values of the nonlinear coefficients. In otherFEDER and Program PRAXIS XXI, No. Praxis/P/Fis/10279/
words, the above conditions specify the set of points in thel998; and the Program “Human Potential-Research Train-
first Brilloun zone and necessary values of the nonlineaing Networks,” Contract No. HPRN-CT-2000-00158.
forces. What is important for the next consideration is that

such points in thg Brillouin zone do exis_t_. Indeed, as an APPENDIX A
example we mention that the above conditions are satisfied
for all pointsq=(q4,0) andg=(0,g,). The expressions of; and M; for two-soliton solutions

Equations(69) and (70) describe two obliquely interact- appearing in Eqs(69) and(70) are given by
ing solitons in the £,7) space. The interaction results in a
phase shiffi.e., position shift for each soliton. 1

It is possible to geiN-soliton solutions of the 2D GDS '—1:8 2 . 2 0
equations(19) and (20) using their bilinear representation, (@11Pirt a201r)
Egs. (54)—(56), under the integrable conditiongl) and
(72). We note that due to the anisotropy inherent in the lat- L= 1
tice systenti.e., B,y1,# 0), the existence of the two-soliton 2_8(a11p§R+ aolen)
solution requires the conditiopy,= 48,8, [EQ.(71)], which
is absent for isotropic systents.g., water waves

L 1 allF:++a222:+
VIl. CONCLUSION S 20yt aps T PHa[apAP |+ anAd TP
Using a quasidiscrete multiple-scale method, we have de-
i i i - a AP L+ gAY
rived the envelope equations of weakly nonlinear modula 18- 4 TR -

tions of N-dimensional lattice waves. The equations are ob- Ls=
tained for the case of interaction of a high-frequency mode
with a long-wavelength acoustic oif@lso called mean fiejd

[anl =, + S~ TPHA[apAP  +apA? 12

and can be classified as generalized Davey-Stewartson equa- 5=i ﬁ
tions. In the case at hand, due to the anisotropy of the lattice 64 Asy’
system, the GDS equations in two dimensions are reduced
either to the DS equations or to a form that does not appear 1My, 1 M,, 1 Mg,
in the theory of water waved 1]. The mean field coupled to Mi=g ™ N Mo=—-3 Mg’ 378 Mgy’
the oscillatory short wave packet results from the cubic in-
teratomic potential in the lattice. Additionally, generalized 1M,
Kadomtsev-Petviashvili equations describing the evolution |\/|4:—z M Z,

4

of a long-wavelength acoustic mode in the lattice are also
presented. We have also studied the modulation instability of
Stokes waves and provided some exact soliton solutions for Lsn=a5i(I'" )2+ a3 )2+ 2000~ 57
the two-dimensional GDS equations based on Hirota’s bilin- P AG
ear transformation method. +4AZ_AC),

The results reported here recover the known ones in one-
dimensional systems, which give rise to standard lattice soli- Lsa= (@11pir+ a205r) (@11p5r+ axtp)[ @y (I, )2
tons. On the other hand, the method can also be used to study n oo
the weakly nonlinear modulations of the wave packets in TGS ) 230 T2 —4AR AT )],
vector lattices or in lattices with a complex cell. The deriva-
tion procedure involves more cumbersome calculation, buM 1n= a3 (Pir—P3r)*+ (P —P21)2[(P1i— P21)?—2(3pik
the envelope equations obtained still take a form similar to

_ 2 2 2 232 _ 2
Eqg. (14) and(15) for high-frequency wave packets and Egs. P2r) I} + @22 (A1R~ G2r) "+ (Au — A20) [ (A
(40) and (41) for long-wavelength acoustic modes. —Q2|)2—2(301§R—Q§R)]}+2a11a22{[(p1| — )2
ACKNOWLEDGMENTS —(Pirt P3R) (A1 —G21)?— (95r+ A3R)]
The authors are grateful to Professor X. B. Hu and Pro- —4(py—P21) (91— 921) (P1RAIR— P2RU2R)
fessor S.-Y. Lou for helping with the construction of the
bilinear form of the GDS equations and for fruitful discus- —4d1rU2rP1RP2R}

sions on the soliton solutions. This work was supported in
part by the National Natural Science Foundation of China; Myg=Mq=(a11pir+ a0t afy(T 5 )2+ apl(2F )2

the Trans-Century Training Program Foundation for the Tal- o 0 Aq
ents +2ap100(Z 37 +4A% (AT )],
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Mon= a%lle(pll — P2l (P1—Pa)?— p%R"’ pgR]

+ ap01r(01 — d20)[ (A1 — d21)*— TR+ A3r]
+ ag105 (4 —d2)[A1r] = 4 +2P1rP2R(01 T 02r) ]
+(P1— P2 P1rE 4 +201RrA2rP2R]}

M= ail{(p%R_ p%R)2+(pll —P20)?[(P1— P21)?— 2(3P§R

M

—piR) 1} + ab (Al —a5R) 2+ (qy —d20) [ (Ay
—021)%=2(3d5r — ATR) ]} + 2a 1102 (P11 — P21)?
~(PTrt+ PoR) 1L (A1 —021)®— (air* a3R) 1~ 4(Py
—P21) (A1~ d21) (P1rRA1R— P2RU2R)
—401r02rRP1RP2R}

3d=Myg= (a11pop+ as3p)[ iy (T T )2+ a3 T, )2

+Zallazz(F:+2:++4AE+Ai+)],

Myp=— ail(pll —P2)P2rL (P11~ P21) %+ p%R_ pgR]
_agz(Qll_Q2|)QZR[(Q1|_Q2|)2+Q§R_Q§R]
— a1 (91— d2) [ ARl = 4 +2P1RrP2r(01 + 02r) ]
+(Pu—P2)[P2rE — 4 +201r02rP1R]}
where
F(rl(rz (Pu+01P2)* = (P1rt T2P2R)%,
Eo'lrrz (Qu+0102) 2= (A1r+ 0202r)%,
AS o,= (Pu+01p2)(P1r+ T2P2R),
A3 5, = (A1 + 0102) (d1r+ 0202r),
with o= +1(j=1,2).

The “dispersion relations™ are given by

a11P1P
S1r= —4B1B2(P1rA1 T P11d1R) + ZEE(M

—qu0ir| +262

@20uir
T P1P1r|,

+aggao) BI(PIr—P3) +4B1B2(P1rU1r— P1iG1l)
+B3(air— a1},
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1102/ P2r
Sor= —4B1B2(P2rA21 T P212r) + 23%( T

a2202102r

—02102r

+28% — P2 pZR)’

Sy = {[_ailﬂg(p%R_ p%.)—agzﬂf(qu— qgl)

11022

+ agyad BE(P5r— P3)) +4B1B2(Parlor— P21921)
+B5(a5r—a3) 1}

wherep;r, Pji , Qjr, andq; (j =1,2) are arbitrary constants.

APPENDIX B

One type of the standard DS equations which can be
solved by the inverse scattering transform(sse p. 240 in
Ref.[12] for the case of = —q*)

P ) &2
e D=2 (|,
X ay
07q 1, 7q 19 Q_ 2
T30 —2+§7—Q¢+|Q| q

with o?==+1. Taking the transformatiox— ¢, y— 7, t
—(2l6®) 7, q—(1\2)A,, and ¢— — (a?2)(9Ay/3€), the
above equations become

Ay I*Ag d

2 — 2
o 2 Aql9),
&% an? 23 (14415

A, A A
i_l+ ! -2 1:0'_2|A1|2A1_
aT 9E? 2

Alﬁ_gl

Comparing with Eqs(19) and (20), for the last two equa-
tions we have

apn=0?,  ap=-1, pi=—1, B,=0,

yu=1,  y12=0, yp=0 %

x=0"?

which satisfy the integrable conditiorigl) and(72).
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