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Stability of attractive Bose-Einstein condensates in a periodic potential
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Using a standing light wave potential, a stable quasi-one-dimensional attractive dilute-gas Bose-Einstein
condensate can be realized. In a mean-field approximation, this phenomenon is modeled by the cubic nonlinear
Schralinger equation with attractive nonlinearity and an elliptic function potential of which a standing light
wave is a special case. New families of stationary solutions are presented. Some of these solutions have neither
an analog in the linear Schiimger equation nor in the integrable nonlinear Sdimger equation. Their
stability is examined using analytic and numerical methods. Trivial-phase solutions are experimentally stable
provided they have nodes and their density is localized in the troughs of the potential. Stable time-periodic
solutions are also examined.
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I. INTRODUCTION 1
i'ﬁt:—il/fxx—|l/f|2</f+V(X)¢, 1)
Dilute-gas Bose-Einstein condensat8£Cs have been
generated by many groups using different gases that ar@here (x,t) represents the macroscopic wave function of
cooled to very low temperatures and confined in magnetic othe condensate an¥(x) is an experimentally generated
optical fields. The sign of the atomic coupling determinesmacroscopic potential. A large class of periodic potentials is
whether the interaction of the BECs is repulsive or attractivegiven by
Note that efficient tuning between attractive and repulsive
condensates can be achieved via a Feshbach resoffdnce V(x)=—Vq srf(x,k), (2
Repulsive BECs are experimentally stap®. In contrast,
attractive Lithium BECs have been shown to collapse inwhere snk,k) denotes the Jacobian elliptic sine function
three dimensiong3-5], but are predicted to be stable in [17] with elliptic modulus Gsk<1. In the limit k—1",
other setting$6,7]. Here, we study the dynamics and stabil- V(X) becomes an array of well-separated hyperbolic secant
ity of quasi-one-dimensional attractive BECs in a standingPotential barriers or wells, while in the limk—0" it be-
light wave potential superimposed on a trapping potentialcomes purely sinusoidal. We note that for most intermediate
Away from the edge of the trap, the trapping potential isvalues(e.g., k=1/2) the potential closely resembles sinu-
ignored and only the standing light wave potential is consid-soidal behavior and thus provides a good approximation to a
ered. standing wave potential. Only fde very near unity(e.g.,k
The mean-field description for the macroscopic BEC>0.999) does the potential start to appear visibly elliptic.
wave function is constructed using the Hartree-Fock approxiSince snk,k) is periodic in x with period 4K(k)
mation[8], resulting in the Gross-Pitaevskii equatih10.  =4/7?da/\1—k?sira, V(x) is periodic inx with period
The quasi-one-dimensional regime of the Gross-Pitaevsk2K (k). This period approaches infinity &s—1.
equation holds when the transverse dimensions of the con- The freedom in choosing allows great flexibility in con-
densate are on the order of its healing length and the longsidering a wide variety of physically realizable periodic po-
tudinal dimension is much longer than its transverse dimententials. Other approaches to examine Eg.with periodic
sions [7,11-13. In this regime the BEC remains phase potentials are found in the literature. In bdth8] and[19],
coherent and the governing equations are one dimensiong&lg. (1) with a trigonometric potential is studied. [18],
(1D). This is in contrast to a truly 1D mean-field theory that periodic oscillations are examined whose period is either
requires transverse dimensions on the order of or less thanuch greater or much smaller than the period of the poten-
the atomic interaction lengtfl4]. In quasi-one-dimension, tial. In [19], this same potential is examined, but the exact
the Gross-Pitaevskii equation reduces to the cubic nonlineasolutions presented here are not considered.
Schralinger equatioNLS) with a potential[7,15,16. The paper is outlined as follows. In the next section we
In this paper we construct solutions corresponding to alerive and consider various properties and limits of two
guasi-one-dimensional attractive BEC in an external perioditypes of explicit solutions of Eqgl) with (2). Section Il
potential. The governing equation is given by the nonlineadevelops the analytic framework for the linear stability prop-
Schralinger equation with a potential erties of the new solutions of Sec. Il. The stability results are
confirmed by numerical computations. For many cases, the
stability analysis yields only partial analytical results, and we
* Author to whom correspondence should be addressed. rely on numerical experiments to determine stability. Non-
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stationary solutions are discussed in Sec. IV and illustrated
with various types of time-periodic solutions. We conclude i
the paper in Sec. V with a brief summary of the primary
results of the paper and their consequences for the dynamics
of an attractive BEC.

B, B=(Vy+)k’

B=V,+k’
Il. STATIONARY SOLUTIONS
Equation(1) with V(x)=0 is an integrable equation and - Vo
many explicit solutions corresponding to various boundary k2 o0
conditions are known. A comprehensive overview of these
solutions is found if20]. If V(x)#0, NLS is not integrable. FIG. 1. The region of validity of the solutions of Typ is

In this case, only small classes of explicit solutions can mostisplayed shaded for a fixed valuelofThe edges of these regions
likely be obtained. Our choice of potentié) is motivated ~ c0rrespond to various trivial phase solutions.

by the form of the stationary solution of the NLS with

V(x)=0. An overview of these stationary solutions and their A=—(Votk?). (70)
properties is found in13]. At present, we restrict our atten-
tion to stationary solutions of Ed1), i.e., solutions whose
time dependence is restricted to

For a given potentiaV(x), this solution class has one free
parameterB that plays the role of a constant background
level or offset. The freedom in choosing the potential gives a
P ) =r(x)exg —iot+if(x)]. (3) total of three free parametergy, k, andB.

The requirements that bottf(x) andc? are positive im-
If 6,=0, then the solution is referred to as having trivial poses conditions on the domain of these parameters,
phase and we choos#{x)=0. Substituting the ansatz Eq.
(3) in Eq. (1) and dividing out the exponential factor results Vo<=—k?, B=0, (8a)
in two equations: one from the real part and one from the
imaginary part. The second equation can be integrated: ~ Of

0(x)=cJX dx

or3(x’)’

!

(4) Vo=—k2, (Vo+k?)=<B<

Vo
1+ F) . (8h)

wherec is a constant of integration. Note tha(x) is a  The region of validity of these solutions is displayed in
monotonic function ofx. Substitution of this result in the Fig. 1.
remaining equation gives For typical values ofV,,k, and B, the above equations
give rise to solutions of Eq(l) that are not periodic irx.
. c® rPorx) . r(x) is periodic with period K(k), whereas exfh6(x)) is
wr’(x)= 55 T (x)=Vo srE(x,k)r(x). periodic with periodT=#"1(27). In general these two pe-
(5) riods 2K(k) and T are not commensurable. Thus, requiring
periodic solutions results in another condition, namely,
The following subsections describe two classes of solution@K (k)/T=p/q, for two positive integerp andg. The most
of this equation. convenient way to express this phase quantization condition
is to assume the potentiéle., V, andk) is given, and to
A. Type A consider values oB for which the quantization condition is

. . . . isfied. ing= +Kk? ‘
For these solutionsr?(x) is a quadratic function of satisfied. Introducingg=B/(Vo+k®), we find

sn(x,k),

—1)(1—Kk? K(k) d
iJ/S(B )( B) L X P9

r2(x)=A srf(x,k)+B. (6) ™ —sr(x,k)2+B:a'

Substituting this ansatz in E5) and equating the coeffi- This equation is solved fog, after whichB=8(V,+k?).
cients of equal powers of sn(k) results in relations among  For numerical simulations, the number of periods of the po-
the solution parameters,c,A, andB and the equation pa- tential is set. This determines limiting the number of so-
rametersV, andk. These are lutions of Eq.(9). Solutions with the same periodicity as the
potential requirep/q=1.

1 2 BVo Note that solutions of Typé reduce to stationary solu-
©=3 1+k"—3B+ Vot k2’ (78 tions of Egs.(1) and (2) with V,=0. Furthermore, all sta-
0 tionary solutions of the integrable equation are obtained as
limits of solutions of TypeA.
2_ —1|(Vo+k2—BK?), (7b) . The trivial phase canghe solutions of TypeA have
Vo+ k? trivial phase wherc=0. Sincec? has three factors that are
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FIG. 2. The amplitude of the trivial-phase solutions of Type
versus the potential strengthy,. Vi)
linear in B [see Eq.(7a)], there are three choices &f for
which this occursB=0, B=V,+k?, andB=(Vo+k?)/k?. 0
These possibilities are three of the four boundary lines of the
region of validity in Fig. 1. Note that the remaining boundary -(v+™

. > 2 S . 0 2K(K) 4K(K)
line (Vo= —k*) corresponds ta~(x)=B, which gives rise x

to a plane wave solution. Using Jacobian elliptic function
identities[17], one finds that the three other boundary lines
give rise to simplified solution form8=0 gives

FIG. 3. Trivial-phase solutions fok=0.5. V(x) is indicated
with a solid line. For the top figurgy=—1. For the bottom figure
Vo=1.

2

1_+_k . P . . .
= [V +K2) _ wedge between the two regions of validity in Fig. 1 disap-
r1() (VoK% snixk), 2 (10 pears. This is no surprize, as in this limit, dr)—1, and

5 . the third trivial-phase solution reduces to a plane wave solu-
B=Vo+k* gives tion. The corner point of the region of validity also moves to
the origin. Some trigonometric solutions are illustrated in

N 2 1 :
0= \Wotk? cnixk), w=3-Vo—k? (@p Fo-4

B. Type B
where cnk,k) denotes the Jacobian elliptic cosine function.

Lastly, B=(Vo+k?)/k? gives For these solutions2(x) is linear in sng,k) or dn(x,k).

First we discuss the solution with sgk). The quantities

Nt K2 V. K2 associated with this solution will be denoted with a subindex
r3(x)=OT dn(x,k), w:—l——§+?, (12 1. The quantities associated with the xi) solution re-
k ceive a subindex 2.

where dng,k) denotes the third Jacobian elliptic function. (a) V,=—1, B=1 (b) V,=-1, B=0.1
Solution (10) is valid for Vo< —k?, whereas the other two TN A N
solutions(11) and (12) are valid forV,=—k?. The ampli- AN A\ AN
tude of these solutions as a function of potential streigth 1+ / \ e
is shown in Fig.2. /N [ / \ S \

Both cnx,k) and snk,k) have zero average as functions g ; ’ \
of x and lie in[ —1,1]. On the other hand, dr(k) has non- . Py \
zero average. Its range [is/1—k?,1]. Furthermore, cn{k) [T Ve
and sng,k) are periodic inx with period &K (k), whereas 0 i oc;

. . . . . . . T on T

d_n(_x,k) is periodic with peno_d K (k). Some solutions with (€) V=1, B=3 (d) V.=1, B=1.1
trivial phase are shown in Fig. 3. 0 ) 0

The trigonometric limit.In the limit k—O0, the elliptic N N
functions reduce to trigonometric functions andx)= Al B N I
—Vp sif(\)=(Vo/2) cos()—Vy/2. Then | 7 T

A e 6 ke
(0= -Vesif()+B, o=3-B. (13 ° W
In this case, the phase integral Eg) results in 1 - P - on
tarf 6(x)]= £ J1—-V,/Btanx). (14 FIG. 4. Phase and amplitude of the trigonometric solutions. For

all these figures, the solid line deno¥§x), the dashed line is(x),
Note that this formula guarantees that the resulting solutiorRnd the dotted line is(x)/(2#). Note thatd(x) becomes piecewise
is periodic with the same period as the potential, So no phasgonstant, a8 approaches the boundary of the region of validity.
guantization is required. In the trigonometric limit, the Far away from this boundary(x) is essentially linear.
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Substituting
ra(x)=a;snx,k)+by, (15)
in Eqg. (5) and equating different powers of snk) gives the
relations:
3
Vo=—5k?, (163
8
! (1+Kk?) 62y (16b)
wq 8 k y
2
2 ar 2_ 14 2_ 12
4a?
bl:F- (16(])

The class of potentials, E@2), is restricted by the first of
these relations so thaf, is in the narrow range- 3k%/8
<V=0. The solution class now depends on one free ampli

tude parametea, and the free equation parameter

The region of validity of this solution is, as before, deter-

mined by the requiremenﬁzo andr%(x)zo,

k k? 1
—= = —,
4 |a1| 4 ( 7)

The period ofr,(x) is twice the period of the potential.
Requiring periodicity inx of this first solution of TypeB

gives

+\/(16a§—k4)(k2—16a§)J'2K(k) dx p

Amk3 0o 4da,

F +snx,k)
(18)

For givenk and integer®, g, this equation is solved faa;.
The dn, k) solutions are found by substituting

r3(x)=aydn(x,k)+b,, (19

in Eqg. (5). Equating different powers of dr(k) imposes the

following constraints on the parameters:

__ 3
Vo=— gk (203
1
w2=§(1+k2)+6a§, (20b)
2
a
c§=zz(16a§—1)(16a§+k2—1), (200
b,=—4a3. (20d)
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The class of potential§?) is restricted as for the previous
solution by the first of these relations. The solution class
again depends on one free amplitude paramajeand the
free equation parametér

The region of validity of this solution is once more deter-
mined by the requirements=0 andr3(x)=0,

O=a,< . (21

The period ofr,(x) is equal to the period of the potential.
Requiring periodicity inx of this second solution of TypB
gives

+\/(16a§—1)(16a§+k2—1)fK(k) dx p
B 0o 4a,—

dn(x,k) g
(22

w

For givenk and integersp, g, this equation is solved to
determinea,.

In contrast to solutions of TypA, solutions of TypeB do
not have a nontrivial trigonometric limit. In fact, for solu-
tions of TypeB, this limit is identical to the limit in which
the potential strength/,= — 3k?/8 approaches zero. Thus it
is clear that the solutions of Tyg®have no analogue in the
integrable nonlinear Schdinger equation. However, other
interesting limits do exist.

The trivial phase caseTrivial phase corresponds to
=0. This occurs precisely at the boundaries of the regions of
validity. For the first solution of Typ®, there are four pos-
sibilities: a;=k?/4, a;=kl/4, a;= —k?/4 or a;=—k/4. By
replacingx by x+2K(k), one sees that the last two possi-
bilities are completely equivalent to the first two, so only the
first two, need to be considered. Fay=k?/4,

2 2

) k 1 k
rl(x)zz[lJrsr(x,k)), w1=g =71 (23

Equatinga; =k/4 gives

11
-+ ok (29

1
r§=z[1+ksr(x,k)]a @17 278

For the second solution, there are two possibiliteess O or
a,=\/1—k?/4. The first one of these results in a zero solu-
tion. The second one gives an interesting trivial-phase solu-
tions. Letk’ =1—KkZ. Then, fora,=1— KZl4=K'/4,

LK 1 k2
rz(x)=z[dn(x,k)—k’], w2=z+T. (25)

These solutions are shown in Fig. 5.

lll. STABILITY

We have found a large number of solutions to the govern-
ing Egs.(1) and(2). In this section, we consider the stability
of the different solutions. Both analytical and numerical re-
sults are presented for the solutions with trivial phase. In
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----------------------------------------- | £0=\0, (29
0.5 e o
_.___(l)_ [ g)_ _______________ ——
,/(’3)’ \\\\\\ - - where£=JL and\ is complex. If all\ are imaginary, then
M’M linear stability is established. In contrast, if there is at least
% = 2K'(k) 4K(K) one eigenvalue with a positive real part, then instability re-
— —— ; sults. Using the phase invariange—¢e'”y of Eq. (1), Noet-
os k=5 0T @ her's theorenf21] gives
2 7
e NS el 0
I - B S
\‘\~ ’/’/’ \\ o // £( ) :O, (30)
0 ~ r(x)
0 2K(K) 4K(K)
/ '(2) which implies thatl. _r(x)=0. Thus\ =0 is in the spectrum
0.5 M of L_ . For general solutions of the for(8), determining the
spectrum of the associated linearized eigenvalue problem
. @ g (27) is beyond the scope of current methods. However, some
00 == 2K(K) 4K (K) cases of trivial-phase solution£0) are amenable to
x analysis.

The Hermitian operators.. are periodic Schdinger op-
erators and thus the spectra of these operators is real and
potential is indicated with a solid line. The other curves éke c)(\)ns:ts[é)f] lLands)\ Ofd Conttmtl;]OUS speé:trltms cqntalneld n
Ir1(x)| with a,= k214, (2) 1,(x) with a,= k4, and(3) |r,(x)| with  LA=-*) [21]. Herex.. denote the ground state eigenvalues
a,=k'/4. of L., respectively. They are given by

FIG. 5. Solutions of Typd with trivial phase. The figures cor-
respond to, from top to bottonk=0.5, k=0.9, andk=0.999. The

contrast, only numerical results are discussed for the N =infg-1(lL:|d), (31)
nontrivial-phase cases.

The linear stability of the solutiof3) is investigated. To
do so, the exact solutions are perturbed by

where| ¢||2={¢| ¢). From the relatiorL , =L _—2r(x)? it

follows thath . <\ _. Also A_<0 sincer=0 is an eigen-

value ofL_ .

P(X ) =[r(x)+ ep(x,t)Jexdi{O(x)— wt}], (26 If A\_=0, thenL _ is non-negative and self-adjoint, so we

can define the non-negative square radf?, via the spectral

wheree<1 is a small parameter. Collecting termsQife) theorem [21], and hence the Hermitian operata

gives the linearized equation. Its real and imaginary parts are-| 2 | 12 can pe constructed. The eigenvalue problem for

U=(U1,Up)'=(Rd ¢],Im[¢])": L in Eg. (29) is then equivalent to

Ut=JLU=J(L+S LS)U 27) (H+2%e=0, (32
with U,;=L"2p. Denote the left-most point of the spectrum
of H by uo. If £o=0 then\?<0 and the eigenvalues df

5 are imaginary and linear stability results. Sindd
L. _1(55_ 0_4) S3r(x)2+V(X)—w, (289 =LYL.LY?andL?is positive,uo=0 if and only ifL . is
r non-negative. In contrast, ji,<0 then\?>0 and£ has at
least one pair of real eigenvalues with opposite sign. This
1 c? shows the existence of a growing mode leading to instability
L=-5 G| —r(0*+V(x)—w, (28D  of the solution.
r This nonperturbative method distinguishes between two
cases:
=% 1 (280 (i) If r(x)>0 then Eq.(30) implies r(x) is the ground
r(x) *r(x)’ state ofL _ so that\ _ =0 [21] while A, <0. Thus the solu-
tion (3) is unstable.
and (i) If r(x) has a zero, it is no longer the ground stgi#]
( 0 1) andA _<0. Thush_ and\ , are both negative and the situ-

where

ation is indefinite. The nonperturbative methods are insuffi-
cient to determine linear stability or instability.

. . . . N While the solutions in Eqs(12) and (24) satisfy the in-

is a skew-symmetric matrix. The operatoiis Hermitian as  stapility criterion, the stability of the remaining solutions is
arel, andL_ while Sis anti-Hermitian. Considering solu- yndetermined by this method. We therefore rely on direct
tions of the formU(x,t) = U(x)exp(t) gives the eigenvalue computations of the nonlinear governing E¢b. and (2) to
problem determine stability.

=11 0
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_1477

P 0
0 X 1477

FIG. 6. Unstable evolution of a Typ& dn(x,k) solution given
by Eq.(12) over 40 time units wittk=0.7 andV,= —0.3.

Note that the instability of a solution does not exclude its
observation in experiments. If the time scale over which the
onset of instability occurs far exceeds the duration of the
experiments with attractive condensates, then the formally
unstable solution is as relevant for the experiment as is the
stable solution. For current experiments, the nondimension-
alized time lapse is on the order of 4.22,23. For all the
unstable runs shown below, the onset of instability occurs
well pastt=0.2.

For all computational simulations, 12 spatial periods are _1; N
used. However, to better illustrate the dynamics, typically ) 0 X 1477
four spatial periods are plotted. Moreover, all computations ’
are performed with white noise included in the initial data.

S = N W

FIG. 8. Dynamics of TypeA cn(x,k) solutions given by Eq.
o _ (11) over 40 time units wittkk=0.7 and withV,= — 0.3 (top, stabl¢
A. Trivial phase: Type A andV,= 0.3 (bottom, unstable

1. dn(x,k)

In the case of the dm(k) solution(12), r(x)>0 and the 2. en(xk) and sn(x,k)
instability criterionA applies. The unstable evolution is de-  For the cng,k) solution (11), the indeterminate stability
picted in Figs. 6 and 7. WitN,= — 0.3 andk=0.7 the onset  criterion B results. However, the stability analysis for the
of instability occurs at~20. Figure 7 depicts an overhead linear Schrdinger equation suggests that two distinct cases
view of the dynamics with the onset of instability fé@r  must be considered. F&f,>0, the density is localized on
=0.7 and for values of the potential strengtd, the peaks of the potential, and the solution is unstable as
=-0.3,0,0.3. For increasing values of the amplitude, illustrated in the bottom of Fig. 8. The onset of instability
— JV,+KZ/k, the onset of instability occurs earlier. For the occurs neat~30. In contrast, for-k*<V,<0, the density
middle figure of Fig. 7V,=0 and we are solving the inte- is localized in the troughs of the potential, which suggests
grable nonlinear Schdinger equation. The instability of this that the solution might be stable. Indeed, as the top of Fig. 8
solution is not surprizing since drak) resembles a plane illustrates, the cn{,k) solution is stable in this regime.
wave that is known to be modulationally unstaf®®]. For For the snk,k) solution (10), the indeterminate stability
increasing values of the amplitude the nonlinearity in Eq. ~ Criterion B results once again. The stability analysis for the

(1) becomes more dominant, resulting in an earlier onset ofinear Schrdinger equation suggests that this case is un-
the modulational instability. stable since the density is localized on the peaks of the po-

tential (see Fig. 3. This is confirmed by numerical simula-

40 40 ‘ C 0 40 \ tions.

t t L l t "( %

20 20 ! [ 20 : B. Trivial phase: Type B
‘ ' ' . 1. sn(x,k)

o1 i 0 |

477 0 1477 -1477 0 1477 -1 For the TypeB sn(x,k) solution (23) with a,;=k?/4, the
X X indeterminate stability criterioB applies. For this solution,
FIG. 7. Top view of the unstable evolution of Typedn(x,k)  the period of the density is twice the period of the potential
solutions given by Eq(12) over 40 time units wittk=0.7 and with SO that the density is not localized in the troughs of the
Vo= —0.3 (left), V;=0.0 (centej, andV,=0.3 (right). potential. Stability analysis for the linear ScHioger equa-
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FIG. 10. Stable evolution of the Tyg&dn(x,k) solution given
by Eq.(25) over 40 time units wittk=0.5.

P(x,t)=Aexp —i wt)k;w sechix—&(t)]. (33

This equation is motivated by the fact that a trivial-phase
cn(x,k—1) solution can be written aszf:_msecf(x
—4jK(k)) up to exponentially small terms describing the
interaction between neighboring peaks. Note that the ampli-
tude A and frequencyw in Eg. (33) are fixed across the
condensate.

Using the variational Lagrangian reduction approgfi,

. . . effective equations for the motion of a single lump of con-

_F'?' % Unstable evolution of Typ8 sr.](x'k) _SOIUt'OnS with densate are derived. The dynamics of the center of a lump of
a,;=k*/4 given by Eq(23) over 300 time units fok=0.5 (top) and : . .
over 20 time units fok—0.999. condensatgk(t) are then given by the Newtonian equation
of motion, &= —dW(&— £0)/ €, where & is the center
position of thekth potential well, with potential

tion suggests that this case is unstable as with the Bype
sn(x,k) solution. Figure 9 illustrates this behavior and shows _
the onset of instability to occur far~200 fork=0.5 andt W()=—Vor{a—Br*+0(L%)], (34)
~15 for k=0.999.

The TypeB sn(x,k) solution (23) with a;=k/4 is node-

: 2) Iy where v is the average width of the condensdg], «
less. Thug (x)>0 and the instability criterior results.

=4/15 andB=2/63. For a small displacement the conden-
sate undergoes near-harmonic oscillations with frequency

2. dn(x,k) /—2aV0;

For the TypeB dn(x,k) solution (25), the indeterminate After the self-interaction, the next largest contributions
stability criterion B results again. However, the stability are the nearest-neighbor interactions that arise from expo-
analysis for the linear Schdinger equation again suggests nentially small tail overlaps. These interactions result in the
that the solution might be stable since the density is localizefollowing lattice differential equatiofLDE) for the kth po-
in the troughs of the potential. The dynamics of this solutionsition &(t),
for k=0.5 is illustrated in Fig. 10.

E=—4A3 (e Mb—e A LW (§— 7). (39)

IV. NONSTATIONARY SOLUTIONS: SPATIALLY
EXTENDED BREATHERS Here A¢ =& 1— & Is the separation between centers of
consecutive condensates. The same LDE can be derived

Equation(1) has many solutions describing condensategrom soliton perturbation theor{26,27] or a variational ap-
that oscillate in time. In this section, we construct such spacgroach[28] and corresponds to a Toda lattic29] with ad-
and time periodic solutions in the large well separation limitgitional on-site potentials due .
(k—1). We consider only time-periodic solutions for which  \ye |ook for oscillatory solutions of Eq35) by consider-
the condensate in each potential well oscillates with the sam@g 5 Fourier expansion faf, [30],
frequency. More time-periodic solutions will be considered

elsewherd 24]. o
_ Our s_,olutlons are obtained through a series of approxima- &)= 2 a (j)cogjOt). (36)
tions. First, we assume the ansatz i=0

056615-7
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FIG. 11. Stable vibrational mode of the condensate correspond- o
ing to the fixed point?, over 100 time units with/o=—0.1. The
initial conditions are a perturbation of the cnoidal wave solution
(11) with k=0.979 104 844 4 giving an initial lump-to-lump sepa-
ration of A§,=6.

FIG. 12. Stable two-period vibrational mode of the condensate
corresponding to a period-two orbit over 100 time units With=
—0.1. The initial conditions are a perturbation of the cnoidal wave

. . . solution (11) with k=0.979 104 844 4 giving an initial lump-to-
We insert this ansatz into E¢35) and Taylor expand the |,y separation of £,=6.

exponentials, keeping terms to second order. Equating coef-
ficients of cosf()t), we obtain a recurrence relation between In a similar fashion, period three and higher behavior can
the amplitudesy=a,(j=1): also be analyzed with the given ansatz E2B). In addition
to allowing the lump positions to vary in time, we can also
ak+1=3,3Woa§+(2+4aWo—52)ak— a,, (37 capture amplitude time variations. For simplicity, we illus-
trate the case where only the amplitudes vary in time. The
; 0] _ : o construction of the appropriate LDE follows from previous
v:vl;)er:Xp( At:g(k))yzs,&gganle\/ikL(%/K/(3k2)A3) e\)l<v;2 AIE?I?)). o methods. The fixed-point solution is illustrated in Fig. 13
The recurrence relation (I)E(BY)Omay be written as a two- \t/yhere fum dp_s of C?P%eniate oscillate '(T tlr:'ne W[f_?].the Isa}[_me
. . _ o ime-periodic amplitude, frequency, and phase. This solution
Slzzns;onréal 23@1] (Xier1, Y1) =FO4Yi) by defining type is referred to as an extended breather. Spatially local-
e ized breathers also exist and will be considered elsewhere

— [24]
Xir1=3BWoXp + (2+4aWo— Q%)X — Yy, (383

V. SUMMARY AND CONCLUSIONS

Yk+1= Xk - (38b) _ . . .
We considered the attractive nonlinear Sclinger equa-

Fixed points of this map are calculated by solving, (/o) tion with an elliptic function potential as a model for a
=F(Xg,Yo). This results in three fixed pointB;=(xg,Y,) s

(i=1,2,3): P;=(0,0), P,=(x*,y*), and P3=(—x*, g,
—y*), where ] ‘ ' :

L 02— 4aW, o
XT=yr==x T3aW, (39

T

provided the root is real. From E¢B6), fixed pointsP, and

P5 correspond to vibrational modes in which each lump of ; P\
condensate oscillates in time with the same amplitude, fre- 0+ ¥ V) e\ 50
quency (), and phase. This dynamic is shown in Fig. 11, 5 ’
which is obtained from numerical simulation of E(L).
Period-two orbits of this map are calculated by solving
(X0.Yo)=F(F(Xo.,Yo)) and are of the form{(x,y),(—X, -24
—y)} [31]. This period-two orbit corresponds to two alter-
nating amplitudesx and —x) of oscillation for consecutive FIG. 13. Stable evolution of a breathing mode of the condensate
condensates. Since the period-two orbit is symmetric withpyer 50 time units withVy=—0.1. The initial conditions are a
respect to the origin, consecutive condensates oscillate witherturbation of the cnoidal wave solutiof1l) with k

the same magnitude but opposite phase. The dynamics f6¥0.979104 844 4 giving an initial lump-to-lump separation of
this case is shown in Fig. 12. A§=6.

12
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trapped, quasi-one-dimensional Bose-Einstein condensatthe smallest amount of phase ramping causes such solutions
Two new families of periodic solutions of this equation wereto lose their stability, albeit on time scale that may be longer
found and their stability was investigated both analyticallythan the lifetime of the BEC.
and numerically. Additionally, stable time-periodic solutions  This result implies self-focusing of any attractive station-
have been analyzed. ary condensate. However, the effects of self-focusing can be
Using perturbations with trivial phasanalysis or pertur-  pegligible on the lifetime of the BEC if there is no phase
bations with random phas@umericg, we find that station-  ramping, the density is localized in the wells of the potential,
ary trivial-phase solutions are stable provided they haveynd adjacent density peaks are separated by nodes. There-
nodes and their density is localized in the troughs of thefore, we have demonstrated within the mean-field model the

potential. Nodeless solutions are unstable with respect to thigxistence of at least one experimentally stable stationary
same class of perturbations. This is reminiscent of the moduktate of an attractive BEC in a standing light wave.

lational instability of the plane wave solution of the attractive
integrable nonlinear Schdinger equation.

Using random-phase perturbations, we find all nontrivial- ACKNOWLEDGMENTS
phase solutions to be unstable. However, the time scale for
the onset of instability for nontrivial-phase solutions varies We benefited greatly from discussions with William Re-
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