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Stability of attractive Bose-Einstein condensates in a periodic potential
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Using a standing light wave potential, a stable quasi-one-dimensional attractive dilute-gas Bose-Einstein
condensate can be realized. In a mean-field approximation, this phenomenon is modeled by the cubic nonlinear
Schrödinger equation with attractive nonlinearity and an elliptic function potential of which a standing light
wave is a special case. New families of stationary solutions are presented. Some of these solutions have neither
an analog in the linear Schro¨dinger equation nor in the integrable nonlinear Schro¨dinger equation. Their
stability is examined using analytic and numerical methods. Trivial-phase solutions are experimentally stable
provided they have nodes and their density is localized in the troughs of the potential. Stable time-periodic
solutions are also examined.
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I. INTRODUCTION

Dilute-gas Bose-Einstein condensates~BECs! have been
generated by many groups using different gases that
cooled to very low temperatures and confined in magneti
optical fields. The sign of the atomic coupling determin
whether the interaction of the BECs is repulsive or attracti
Note that efficient tuning between attractive and repuls
condensates can be achieved via a Feshbach resonanc@1#.
Repulsive BECs are experimentally stable@2#. In contrast,
attractive Lithium BECs have been shown to collapse
three dimensions@3–5#, but are predicted to be stable
other settings@6,7#. Here, we study the dynamics and stab
ity of quasi-one-dimensional attractive BECs in a stand
light wave potential superimposed on a trapping potent
Away from the edge of the trap, the trapping potential
ignored and only the standing light wave potential is cons
ered.

The mean-field description for the macroscopic BE
wave function is constructed using the Hartree-Fock appr
mation@8#, resulting in the Gross-Pitaevskii equation@9,10#.
The quasi-one-dimensional regime of the Gross-Pitaev
equation holds when the transverse dimensions of the
densate are on the order of its healing length and the lo
tudinal dimension is much longer than its transverse dim
sions @7,11–13#. In this regime the BEC remains phas
coherent and the governing equations are one dimensi
~1D!. This is in contrast to a truly 1D mean-field theory th
requires transverse dimensions on the order of or less
the atomic interaction length@14#. In quasi-one-dimension
the Gross-Pitaevskii equation reduces to the cubic nonlin
Schrödinger equation~NLS! with a potential@7,15,16#.

In this paper we construct solutions corresponding t
quasi-one-dimensional attractive BEC in an external perio
potential. The governing equation is given by the nonlin
Schrödinger equation with a potential
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2
cxx2ucu2c1V~x!c, ~1!

wherec(x,t) represents the macroscopic wave function
the condensate andV(x) is an experimentally generate
macroscopic potential. A large class of periodic potentials
given by

V~x!52V0 sn2~x,k!, ~2!

where sn(x,k) denotes the Jacobian elliptic sine functio
@17# with elliptic modulus 0<k<1. In the limit k→12,
V(x) becomes an array of well-separated hyperbolic sec
potential barriers or wells, while in the limitk→01 it be-
comes purely sinusoidal. We note that for most intermed
values ~e.g., k51/2) the potential closely resembles sin
soidal behavior and thus provides a good approximation
standing wave potential. Only fork very near unity~e.g.,k
.0.999) does the potential start to appear visibly ellipt
Since sn(x,k) is periodic in x with period 4K(k)
54*0

p/2da/A12k2sin2a, V(x) is periodic inx with period
2K(k). This period approaches infinity ask→1.

The freedom in choosingk allows great flexibility in con-
sidering a wide variety of physically realizable periodic p
tentials. Other approaches to examine Eq.~1! with periodic
potentials are found in the literature. In both@18# and @19#,
Eq. ~1! with a trigonometric potential is studied. In@18#,
periodic oscillations are examined whose period is eit
much greater or much smaller than the period of the pot
tial. In @19#, this same potential is examined, but the ex
solutions presented here are not considered.

The paper is outlined as follows. In the next section
derive and consider various properties and limits of t
types of explicit solutions of Eqs.~1! with ~2!. Section III
develops the analytic framework for the linear stability pro
erties of the new solutions of Sec. II. The stability results
confirmed by numerical computations. For many cases,
stability analysis yields only partial analytical results, and
rely on numerical experiments to determine stability. No
©2001 The American Physical Society15-1



te
de
ry
m

d
ar
s

o

h
ei
-

ia
.

lts
th

on

-

-

e
nd
s a

in

-
g
ly,

tion

o-

e

-

as

e

s
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stationary solutions are discussed in Sec. IV and illustra
with various types of time-periodic solutions. We conclu
the paper in Sec. V with a brief summary of the prima
results of the paper and their consequences for the dyna
of an attractive BEC.

II. STATIONARY SOLUTIONS

Equation~1! with V(x)50 is an integrable equation an
many explicit solutions corresponding to various bound
conditions are known. A comprehensive overview of the
solutions is found in@20#. If V(x)Þ0, NLS is not integrable.
In this case, only small classes of explicit solutions can m
likely be obtained. Our choice of potential~2! is motivated
by the form of the stationary solution of the NLS wit
V(x)50. An overview of these stationary solutions and th
properties is found in@13#. At present, we restrict our atten
tion to stationary solutions of Eq.~1!, i.e., solutions whose
time dependence is restricted to

c~x,t !5r ~x!exp@2 ivt1 iu~x!#. ~3!

If ux[0, then the solution is referred to as having triv
phase and we chooseu(x)50. Substituting the ansatz Eq
~3! in Eq. ~1! and dividing out the exponential factor resu
in two equations: one from the real part and one from
imaginary part. The second equation can be integrated:

u~x!5cE
0

x dx8

r 2~x8!
, ~4!

where c is a constant of integration. Note thatu(x) is a
monotonic function ofx. Substitution of this result in the
remaining equation gives

vr 4~x!5
c2

2
2

r 3~x!r 9~x!

2
2r 6~x!2V0 sn2~x,k!r 4~x!.

~5!

The following subsections describe two classes of soluti
of this equation.

A. Type A

For these solutions,r 2(x) is a quadratic function of
sn(x,k),

r 2~x!5A sn2~x,k!1B. ~6!

Substituting this ansatz in Eq.~5! and equating the coeffi
cients of equal powers of sn(x,k) results in relations among
the solution parametersv,c,A, andB and the equation pa
rametersV0 andk. These are

v5
1

2 S 11k223B1
BV0

V01k2D , ~7a!

c25BS B

V01k2
21D ~V01k22Bk2!, ~7b!
05661
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A52~V01k2!. ~7c!

For a given potentialV(x), this solution class has one fre
parameterB that plays the role of a constant backgrou
level or offset. The freedom in choosing the potential give
total of three free parameters,V0 , k, andB.

The requirements that bothr 2(x) andc2 are positive im-
poses conditions on the domain of these parameters,

V0<2k2, B>0, ~8a!

or

V0>2k2, ~V01k2!<B<S 11
V0

k2 D . ~8b!

The region of validity of these solutions is displayed
Fig. 1.

For typical values ofV0 ,k, and B, the above equations
give rise to solutions of Eq.~1! that are not periodic inx.
r (x) is periodic with period 2K(k), whereas exp„iu(x)… is
periodic with periodT5u21(2p). In general these two pe
riods 2K(k) and T are not commensurable. Thus, requirin
periodic solutions results in another condition, name
2K(k)/T5p/q, for two positive integersp andq. The most
convenient way to express this phase quantization condi
is to assume the potential~i.e., V0 and k) is given, and to
consider values ofB for which the quantization condition is
satisfied. Introducingb5B/(V01k2), we find

6
Ab~b21!~12k2b!

p E
0

K(k) dx

2sn~x,k!21b
5

p

q
. ~9!

This equation is solved forb, after whichB5b(V01k2).
For numerical simulations, the number of periods of the p
tential is set. This determinesq, limiting the number of so-
lutions of Eq.~9!. Solutions with the same periodicity as th
potential requirep/q51.

Note that solutions of TypeA reduce to stationary solu
tions of Eqs.~1! and ~2! with V050. Furthermore, all sta-
tionary solutions of the integrable equation are obtained
limits of solutions of TypeA.

The trivial phase case.The solutions of TypeA have
trivial phase whenc50. Sincec2 has three factors that ar

FIG. 1. The region of validity of the solutions of TypeA is
displayed shaded for a fixed value ofk. The edges of these region
correspond to various trivial phase solutions.
5-2
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STABILITY OF ATTRACTIVE BOSE-EINSTEIN . . . PHYSICAL REVIEW E64 056615
linear in B @see Eq.~7a!#, there are three choices ofB for
which this occurs:B50, B5V01k2, andB5(V01k2)/k2.
These possibilities are three of the four boundary lines of
region of validity in Fig. 1. Note that the remaining bounda
line (V052k2) corresponds tor 2(x)5B, which gives rise
to a plane wave solution. Using Jacobian elliptic functi
identities@17#, one finds that the three other boundary lin
give rise to simplified solution forms.B50 gives

r 1~x!5A2~V01k2! sn~x,k!, v5
11k2

2
. ~10!

B5V01k2 gives

r 2~x!5AV01k2 cn~x,k!, v5
1

2
2V02k2, ~11!

where cn(x,k) denotes the Jacobian elliptic cosine functio
Lastly, B5(V01k2)/k2 gives

r 3~x!5
AV01k2

k
dn~x,k!, v5212

V0

k2
1

k2

2
, ~12!

where dn(x,k) denotes the third Jacobian elliptic functio
Solution ~10! is valid for V0<2k2, whereas the other two
solutions~11! and ~12! are valid forV0>2k2. The ampli-
tude of these solutions as a function of potential strengthV0
is shown in Fig. 2.

Both cn(x,k) and sn(x,k) have zero average as function
of x and lie in@21,1#. On the other hand, dn(x,k) has non-
zero average. Its range is@A12k2,1#. Furthermore, cn(x,k)
and sn(x,k) are periodic inx with period 4K(k), whereas
dn(x,k) is periodic with period 2K(k). Some solutions with
trivial phase are shown in Fig. 3.

The trigonometric limit.In the limit k→0, the elliptic
functions reduce to trigonometric functions andV(x)5
2V0 sin2(x)5(V0/2) cos(2x)2V0/2. Then

r 2~x!52V0sin2~x!1B, v5
1

2
2B. ~13!

In this case, the phase integral Eq.~4! results in

tan@u~x!#56A12V0 /B tan~x!. ~14!

Note that this formula guarantees that the resulting solu
is periodic with the same period as the potential, so no ph
quantization is required. In the trigonometric limit, th

FIG. 2. The amplitude of the trivial-phase solutions of TypeA
versus the potential strengthV0 .
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wedge between the two regions of validity in Fig. 1 disa
pears. This is no surprize, as in this limit, dn(x,k)→1, and
the third trivial-phase solution reduces to a plane wave so
tion. The corner point of the region of validity also moves
the origin. Some trigonometric solutions are illustrated
Fig. 4.

B. Type B

For these solutions,r 2(x) is linear in sn(x,k) or dn(x,k).
First we discuss the solution with sn(x,k). The quantities
associated with this solution will be denoted with a subind
1. The quantities associated with the dn(x,k) solution re-
ceive a subindex 2.

FIG. 3. Trivial-phase solutions fork50.5. V(x) is indicated
with a solid line. For the top figureV0521. For the bottom figure
V051.

FIG. 4. Phase and amplitude of the trigonometric solutions.
all these figures, the solid line denotesV(x), the dashed line isr (x),
and the dotted line isu(x)/(2p). Note thatu(x) becomes piecewise
constant, asB approaches the boundary of the region of validi
Far away from this boundary,u(x) is essentially linear.
5-3
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Substituting

r 1
2~x!5a1sn~x,k!1b1 , ~15!

in Eq. ~5! and equating different powers of sn(x,k) gives the
relations:

V052
3

8
k2, ~16a!

v15
1

8
~11k2!2

6a1
2

k2
, ~16b!

c1
252

a1
2

4k6
~16a1

22k4!~16a1
22k2!, ~16c!

b15
4a1

2

k2
. ~16d!

The class of potentials, Eq.~2!, is restricted by the first of
these relations so thatV0 is in the narrow range23k2/8
<V0<0. The solution class now depends on one free am
tude parametera1 and the free equation parameterk.

The region of validity of this solution is, as before, dete
mined by the requirementsc1

2>0 andr 1
2(x)>0,

k

4
>ua1u>

k2

4
. ~17!

The period ofr 1(x) is twice the period of the potentia
Requiring periodicity inx of this first solution of TypeB
gives

6
A~16a1

22k4!~k2216a1
2!

4pk3 E
0

2K(k) dx

4a1

k2
1sn~x,k!

5
p

q
.

~18!

For givenk and integersp, q, this equation is solved fora1.
The dn(x,k) solutions are found by substituting

r 2
2~x!5a2dn~x,k!1b2 , ~19!

in Eq. ~5!. Equating different powers of dn(x,k) imposes the
following constraints on the parameters:

V052
3

8
k2, ~20a!

v25
1

8
~11k2!16a2

2 , ~20b!

c2
25

a2
2

4
~16a2

221!~16a2
21k221!, ~20c!

b2524a2
2 . ~20d!
05661
li-

The class of potentials~2! is restricted as for the previou
solution by the first of these relations. The solution cla
again depends on one free amplitude parametera2 and the
free equation parameterk.

The region of validity of this solution is once more dete
mined by the requirementsc2

2>0 andr 2
2(x)>0,

0<a2<
A12k2

4
. ~21!

The period ofr 2(x) is equal to the period of the potentia
Requiring periodicity inx of this second solution of TypeB
gives

6
A~16a2

221!~16a2
21k221!

p E
0

K(k) dx

4a22dn~x,k!
5

p

q
.

~22!

For given k and integersp, q, this equation is solved to
determinea2.

In contrast to solutions of TypeA, solutions of TypeB do
not have a nontrivial trigonometric limit. In fact, for solu
tions of TypeB, this limit is identical to the limit in which
the potential strengthV0523k2/8 approaches zero. Thus
is clear that the solutions of TypeB have no analogue in the
integrable nonlinear Schro¨dinger equation. However, othe
interesting limits do exist.

The trivial phase case.Trivial phase corresponds toc
50. This occurs precisely at the boundaries of the region
validity. For the first solution of TypeB, there are four pos-
sibilities: a15k2/4, a15k/4, a152k2/4 or a152k/4. By
replacingx by x12K(k), one sees that the last two poss
bilities are completely equivalent to the first two, so only t
first two, need to be considered. Fora15k2/4,

r 1
2~x!5

k2

4
@11sn~x,k!!, v15

1

8
2

k2

4
. ~23!

Equatinga15k/4 gives

r 1
25

1

4
@11k sn~x,k!#, v152

1

4
1

1

8
k2. ~24!

For the second solution, there are two possibilities,a250 or
a25A12k2/4. The first one of these results in a zero so
tion. The second one gives an interesting trivial-phase s
tions. Letk85A12k2. Then, fora25A12k2/45k8/4,

r 2
2~x!5

k8

4
@dn~x,k!2k8#, v25

1

4
1

k82

4
. ~25!

These solutions are shown in Fig. 5.

III. STABILITY

We have found a large number of solutions to the gove
ing Eqs.~1! and~2!. In this section, we consider the stabilit
of the different solutions. Both analytical and numerical r
sults are presented for the solutions with trivial phase.
5-4
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contrast, only numerical results are discussed for
nontrivial-phase cases.

The linear stability of the solution~3! is investigated. To
do so, the exact solutions are perturbed by

c~x,t !5@r ~x!1ef~x,t !#exp@ i $u~x!2vt%#, ~26!

wheree!1 is a small parameter. Collecting terms atO(e)
gives the linearized equation. Its real and imaginary parts
U5(U1 ,U2) t5(Re@f#,Im@f#) t:

Ut5JLU5JS L1 S

2S L2
DU, ~27!

where

L152
1

2 S ]x
22

c2

r 4D 23r ~x!21V~x!2v, ~28a!

L252
1

2 S ]x
22

c2

r 4D 2r ~x!21V~x!2v, ~28b!

S52
c

r ~x!
]x

1

r ~x!
, ~28c!

and

J5S 0 1

21 0D
is a skew-symmetric matrix. The operatorL is Hermitian as
areL1 andL2 while S is anti-Hermitian. Considering solu
tions of the formU(x,t)5Û(x)exp(lt) gives the eigenvalue
problem

FIG. 5. Solutions of TypeB with trivial phase. The figures cor
respond to, from top to bottom,k50.5, k50.9, andk50.999. The
potential is indicated with a solid line. The other curves are~1!
ur 1(x)u with a25k2/4, ~2! r 1(x) with a25k/4, and~3! ur 2(x)u with
a25k8/4.
05661
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whereL5JL andl is complex. If alll are imaginary, then
linear stability is established. In contrast, if there is at le
one eigenvalue with a positive real part, then instability
sults. Using the phase invariancec→eigc of Eq. ~1!, Noet-
her’s theorem@21# gives

LS 0

r ~x!
D 50, ~30!

which implies thatL2r (x)50. Thusl50 is in the spectrum
of L2 . For general solutions of the form~3!, determining the
spectrum of the associated linearized eigenvalue prob
~27! is beyond the scope of current methods. However, so
cases of trivial-phase solutions (c50) are amenable to
analysis.

The Hermitian operatorsL6 are periodic Schro¨dinger op-
erators and thus the spectra of these operators is real
consists of bands of continuous spectrum contained
@l6 ,`) @21#. Herel6 denote the ground state eigenvalu
of L6 , respectively. They are given by

l65 infifi51^fuL6uf&, ~31!

whereifi25^fuf&. From the relationL15L222r (x)2 it
follows thatl1,l2 . Also l2<0 sincel50 is an eigen-
value ofL2 .

If l250, thenL2 is non-negative and self-adjoint, so w
can define the non-negative square root,L2

1/2, via the spectral
theorem @21#, and hence the Hermitian operatorH
5L2

1/2L1L2
1/2 can be constructed. The eigenvalue problem

L in Eq. ~29! is then equivalent to

~H1l2!w50, ~32!

with Û15L2
1/2w. Denote the left-most point of the spectru

of H by m0. If m0>0 thenl2,0 and the eigenvalues ofL
are imaginary and linear stability results. SinceH
5L2

1/2L1L2
1/2 andL2

1/2 is positive,m0>0 if and only if L1 is
non-negative. In contrast, ifm0,0 thenl2.0 andL has at
least one pair of real eigenvalues with opposite sign. T
shows the existence of a growing mode leading to instab
of the solution.

This nonperturbative method distinguishes between
cases:

~i! If r (x).0 then Eq.~30! implies r (x) is the ground
state ofL2 so thatl250 @21# while l1,0. Thus the solu-
tion ~3! is unstable.

~ii ! If r (x) has a zero, it is no longer the ground state@21#
andl2,0. Thusl2 andl1 are both negative and the situ
ation is indefinite. The nonperturbative methods are insu
cient to determine linear stability or instability.

While the solutions in Eqs.~12! and ~24! satisfy the in-
stability criterion, the stability of the remaining solutions
undetermined by this method. We therefore rely on dir
computations of the nonlinear governing Eqs.~1! and ~2! to
determine stability.
5-5
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Note that the instability of a solution does not exclude
observation in experiments. If the time scale over which
onset of instability occurs far exceeds the duration of
experiments with attractive condensates, then the form
unstable solution is as relevant for the experiment as is
stable solution. For current experiments, the nondimens
alized time lapse is on the order of 0.2@22,23#. For all the
unstable runs shown below, the onset of instability occ
well pastt50.2.

For all computational simulations, 12 spatial periods
used. However, to better illustrate the dynamics, typica
four spatial periods are plotted. Moreover, all computatio
are performed with white noise included in the initial data

A. Trivial phase: Type A

1. dn„x,k…

In the case of the dn(x,k) solution ~12!, r (x).0 and the
instability criterionA applies. The unstable evolution is d
picted in Figs. 6 and 7. WithV0520.3 andk50.7 the onset
of instability occurs att'20. Figure 7 depicts an overhea
view of the dynamics with the onset of instability fork
50.7 and for values of the potential strengthV0
520.3,0,0.3. For increasing values of the amplitude,A
5AV01k2/k, the onset of instability occurs earlier. For th
middle figure of Fig. 7,V050 and we are solving the inte
grable nonlinear Schro¨dinger equation. The instability of thi
solution is not surprizing since dn(x,k) resembles a plane
wave that is known to be modulationally unstable@20#. For
increasing values of the amplitudeA, the nonlinearity in Eq.
~1! becomes more dominant, resulting in an earlier onse
the modulational instability.

FIG. 6. Unstable evolution of a TypeA dn(x,k) solution given
by Eq. ~12! over 40 time units withk50.7 andV0520.3.

FIG. 7. Top view of the unstable evolution of TypeA dn(x,k)
solutions given by Eq.~12! over 40 time units withk50.7 and with
V0520.3 ~left!, V050.0 ~center!, andV050.3 ~right!.
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2. cn„x,k… and sn„x,k…

For the cn(x,k) solution ~11!, the indeterminate stability
criterion B results. However, the stability analysis for th
linear Schro¨dinger equation suggests that two distinct ca
must be considered. ForV0.0, the density is localized on
the peaks of the potential, and the solution is unstable
illustrated in the bottom of Fig. 8. The onset of instabili
occurs neart'30. In contrast, for2k2,V0,0, the density
is localized in the troughs of the potential, which sugge
that the solution might be stable. Indeed, as the top of Fig
illustrates, the cn(x,k) solution is stable in this regime.

For the sn(x,k) solution ~10!, the indeterminate stability
criterion B results once again. The stability analysis for t
linear Schro¨dinger equation suggests that this case is
stable since the density is localized on the peaks of the
tential ~see Fig. 3!. This is confirmed by numerical simula
tions.

B. Trivial phase: Type B

1. sn„x,k…

For the TypeB sn(x,k) solution ~23! with a15k2/4, the
indeterminate stability criterionB applies. For this solution
the period of the density is twice the period of the poten
so that the density is not localized in the troughs of t
potential. Stability analysis for the linear Schro¨dinger equa-

FIG. 8. Dynamics of TypeA cn(x,k) solutions given by Eq.
~11! over 40 time units withk50.7 and withV0520.3 ~top, stable!
andV050.3 ~bottom, unstable!.
5-6
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STABILITY OF ATTRACTIVE BOSE-EINSTEIN . . . PHYSICAL REVIEW E64 056615
tion suggests that this case is unstable as with the TypA
sn(x,k) solution. Figure 9 illustrates this behavior and sho
the onset of instability to occur fort'200 for k50.5 andt
'15 for k50.999.

The TypeB sn(x,k) solution ~23! with a15k/4 is node-
less. Thusr (x).0 and the instability criterionA results.

2. dn„x,k…

For the TypeB dn(x,k) solution ~25!, the indeterminate
stability criterion B results again. However, the stabilit
analysis for the linear Schro¨dinger equation again sugges
that the solution might be stable since the density is locali
in the troughs of the potential. The dynamics of this solut
for k50.5 is illustrated in Fig. 10.

IV. NONSTATIONARY SOLUTIONS: SPATIALLY
EXTENDED BREATHERS

Equation~1! has many solutions describing condensa
that oscillate in time. In this section, we construct such sp
and time periodic solutions in the large well separation lim
(k→1). We consider only time-periodic solutions for whic
the condensate in each potential well oscillates with the s
frequency. More time-periodic solutions will be consider
elsewhere@24#.

Our solutions are obtained through a series of approxi
tions. First, we assume the ansatz

FIG. 9. Unstable evolution of TypeB sn(x,k) solutions with
a15k2/4 given by Eq.~23! over 300 time units fork50.5 ~top! and
over 20 time units fork50.999.
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c~x,t !5A exp~2 ivt ! (
k52`

`

sech@x2jk~ t !#. ~33!

This equation is motivated by the fact that a trivial-pha
cn(x,k→1) solution can be written as( j 52`

` sech„x
24 jK (k)… up to exponentially small terms describing th
interaction between neighboring peaks. Note that the am
tude A and frequencyv in Eq. ~33! are fixed across the
condensate.

Using the variational Lagrangian reduction approach@25#,
effective equations for the motion of a single lump of co
densate are derived. The dynamics of the center of a lum
condensatejk(t) are then given by the Newtonian equatio
of motion, j̈k52]W(jk2jk

0)/]jk where jk
0 is the center

position of thekth potential well, with potential

W~z!52V0n̄z2@a2bz21O~z3!#, ~34!

where n̄ is the average width of the condensate@24#, a
54/15 andb52/63. For a small displacement the conde
sate undergoes near-harmonic oscillations with freque
A22aV0n̄.

After the self-interaction, the next largest contributio
are the nearest-neighbor interactions that arise from ex
nentially small tail overlaps. These interactions result in
following lattice differential equation~LDE! for the kth po-
sition jk(t),

j̈k524A3~e2ADjk2e2ADjk21!1W8~jk2jk
0!. ~35!

Here Djk5jk112jk is the separation between centers
consecutive condensates. The same LDE can be der
from soliton perturbation theory@26,27# or a variational ap-
proach@28# and corresponds to a Toda lattice@29# with ad-
ditional on-site potentials due toW.

We look for oscillatory solutions of Eq.~35! by consider-
ing a Fourier expansion forjk @30#,

jk~ t !5(
j 50

`

ak~ j !cos~ j Vt !. ~36!

FIG. 10. Stable evolution of the TypeB dn(x,k) solution given
by Eq. ~25! over 40 time units withk50.5.
5-7
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We insert this ansatz into Eq.~35! and Taylor expand the
exponentials, keeping terms to second order. Equating c
ficients of cos(jVt), we obtain a recurrence relation betwe
the amplitudesak5ak( j 51):

ak1153bW0ak
31~214aW02V̄2!ak2ak21 , ~37!

where by using uDjk
0u52K(k), we find V̄

5V exp„AK(k)…/2A2 andW05(V0/32A3)exp„2AK(k)….
The recurrence relation Eq.~37! may be written as a two

dimensional map@31# (xk11 ,yk11)5F(xk ,yk) by defining
xk5ak andyk5ak21,

xk1153bW0xk
31~214aW02V̄2!xk2yk , ~38a!

yk115xk . ~38b!

Fixed points of this map are calculated by solving (x0 ,y0)
5F(x0 ,y0). This results in three fixed pointsPi5(x0 ,y0)
( i 51,2,3): P15(0,0), P25(x* ,y* ), and P35(2x* ,
2y* ), where

x* 5y* 56AV̄224aW0

3bW0
, ~39!

provided the root is real. From Eq.~36!, fixed pointsP2 and
P3 correspond to vibrational modes in which each lump
condensate oscillates in time with the same amplitude,
quencyV, and phase. This dynamic is shown in Fig. 1
which is obtained from numerical simulation of Eq.~1!.
Period-two orbits of this map are calculated by solvi
(x0 ,y0)5F„F(x0 ,y0)… and are of the form$( x̂,ŷ),(2 x̂,
2 ŷ)% @31#. This period-two orbit corresponds to two alte
nating amplitudes (x̂ and2 x̂) of oscillation for consecutive
condensates. Since the period-two orbit is symmetric w
respect to the origin, consecutive condensates oscillate
the same magnitude but opposite phase. The dynamics
this case is shown in Fig. 12.

FIG. 11. Stable vibrational mode of the condensate correspo
ing to the fixed pointP2 over 100 time units withV0520.1. The
initial conditions are a perturbation of the cnoidal wave solut
~11! with k50.979 104 844 4 giving an initial lump-to-lump sep
ration of Djk56.
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In a similar fashion, period three and higher behavior c
also be analyzed with the given ansatz Eq.~33!. In addition
to allowing the lump positions to vary in time, we can al
capture amplitude time variations. For simplicity, we illu
trate the case where only the amplitudes vary in time. T
construction of the appropriate LDE follows from previou
methods. The fixed-point solution is illustrated in Fig. 1
where lumps of condensate oscillate in time with the sa
time-periodic amplitude, frequency, and phase. This solut
type is referred to as an extended breather. Spatially lo
ized breathers also exist and will be considered elsewh
@24#

V. SUMMARY AND CONCLUSIONS

We considered the attractive nonlinear Schro¨dinger equa-
tion with an elliptic function potential as a model for

d-

FIG. 12. Stable two-period vibrational mode of the condens
corresponding to a period-two orbit over 100 time units withV05
20.1. The initial conditions are a perturbation of the cnoidal wa
solution ~11! with k50.979 104 844 4 giving an initial lump-to
lump separation ofDjk56.

FIG. 13. Stable evolution of a breathing mode of the condens
over 50 time units withV0520.1. The initial conditions are a
perturbation of the cnoidal wave solution~11! with k
50.979 104 844 4 giving an initial lump-to-lump separation
Djk56.
5-8
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trapped, quasi-one-dimensional Bose-Einstein conden
Two new families of periodic solutions of this equation we
found and their stability was investigated both analytica
and numerically. Additionally, stable time-periodic solutio
have been analyzed.

Using perturbations with trivial phase~analysis! or pertur-
bations with random phase~numerics!, we find that station-
ary trivial-phase solutions are stable provided they h
nodes and their density is localized in the troughs of
potential. Nodeless solutions are unstable with respect to
same class of perturbations. This is reminiscent of the mo
lational instability of the plane wave solution of the attracti
integrable nonlinear Schro¨dinger equation.

Using random-phase perturbations, we find all nontrivi
phase solutions to be unstable. However, the time scale
the onset of instability for nontrivial-phase solutions var
significantly: nontrivial-phase solutions with parameter v
ues close to values for trivial-phase solutions appear u
fected by the perturbation for long times. Other nontrivi
phase solutions go unstable more quickly. This implies t
even stable trivial-phase solutions are structurally unsta
n

,

ys

s

s.

A

ev

ev

v.
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the smallest amount of phase ramping causes such solu
to lose their stability, albeit on time scale that may be long
than the lifetime of the BEC.

This result implies self-focusing of any attractive statio
ary condensate. However, the effects of self-focusing can
negligible on the lifetime of the BEC if there is no pha
ramping, the density is localized in the wells of the potent
and adjacent density peaks are separated by nodes. T
fore, we have demonstrated within the mean-field model
existence of at least one experimentally stable station
state of an attractive BEC in a standing light wave.
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