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Nonlinear dynamics of higher-order solitons near the oscillatory instability threshold
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Nonlinear theory describing the dynamics of solitons in the vicinity of oscillatory instability threshold with
a low frequency offset is developed. The theory is tested on the example of parametric degenerate four-wave
mixing. All major predictions of our theory are in agreement with the results of direct numerical modeling.
This includes the position of oscillatory instability threshold, instability rates, and various instability develop-
ment scenarios.
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I. INTRODUCTION such instabilities is much more involved and one of the first
steps in this direction was made [ih3], where the general
Among the most fascinating objects of nonlinear sciencdinear asymptotic stability analysis capable of capturing
are solitons—self-guided beams and pulses. One of the regomplex eigenvalues has been developed, but has not been
sons for the current interest in optical solitons is due to théacked up with any physical example. The approach used in
possibility of all-optical switching and controlling light by [13] is based on the assumption that oscillatory and VK in-
light (see, e.g[1]). Continuous growth of theoretical knowl- Stabilities happen sufficiently close to each otfiarthe vi-
edge for existence, effective generation, and stability of dif-Cinity of the codimension two pointvhere four correspond-
ferent types of solitary waves is backed by a variety of suciNd eigenvalues merge at zero and the governing
cessful experimenti]. elgepvectors coincideOn the o_ther hand, regent numerlcal
Stability of solitons is one of the paramount questionsSt“d'es of the spectral_ properties of the optical solitons de-
(see e.g.[3] and references therginThe majority of theo- ~9enerate four-wave mixing=WM) [10] have revealed the
retical results related to the dynamics of solitary waves wer&Xistence of exactly such a point for one of the higher-order
obtained vidinear spectral stability analysis. This describes SCliton families, suggesting that this situation may be much
well only the initial stages of perturbed soliton evolution andMore typical for complex nonlinear evolutional models than
leaves unresolved its subsequent dynamical behavior. Durinjf€Viously thought. The goal of this work is a detailed study
the last decade several model equations, like generalizeff this FWM example and nonlinear generalization of the
nonlinear Schidinger equatior(NLS) [4,5] and three-wave Ilnear th_eory of Ref.[13]. We derive a norylmear ordinary
mixing [6,7], were used to develop theory describing longer-differential equatiofODE) model that provides a valuable
term nonlinear dynamics of solitons near the Vakhitov- INSight into longer-term instability-induced dynamics  of
Kolokolov (VK) instability threshold[8]. This theory suc- higher-order solitons allowing us to classify different insta-
cessfully explains persistent oscillations, decay and collapsgility development scenarios. All major predictions of our
of the solitary waves, and transitions between these scenarig@alytic results are in full agreement with direct numerical
[4]. VK instability being a particular example of the instabil- Simulations.
ity generated by purely real eigenvalues in the soliton spec-
trum, is a typical first instability for the fundamentaode-

les9 solitary solution. . . We intend to demonstrate all major steps of the derivation
Higher-order(excited-state solutions are also of signifi- ~ of our nonlinear dynamics theory in the example of a specific
cant fundamental and practical interest. Recently, wide interphysical model representing a degenerate case of parametric

est in such solitons has been aroused by the discovery @M in the presence of self- and cross-phase modulation.
several classes of stable higher-order solitons in differenfne equations for this model are

nonlinear medid9,10. The most typical scenario of insta-

Il. DEGENERATE FOUR-WAVE MIXING MODEL

bility of the higher-order states is, however, instability due to U U 1

complex eigenvalues. One of the first examples of complex ==+ E—BU + N1+§U*2W=0,
eigenvalues in the linear spectrum of a Hamiltonian system

is associated with the antisymmetric mode of nonlinear pla- 5 @
nar waveguide, Ref$11]. For more recent examples of os- |0M+ TW_ o(3B+A)W+N,+ EU3=0
cillatory instability see Refs[12]. Analytical treatment of 9L gx2 9 ’
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FIG. 2. Hamiltonian versus energy diagram for the soliton fami-
lies of Egs.(1). All labeling and notations correspond to the label-
ing and notations in Fig. 1.

FIG. 1. Soliton families of Eqs(1l) at c=2.5. Dashed curve
corresponds to the one-wave familyy €0, W+0); solid curves
represent two-wave soliton families. PoBitshows the position of
the bifurcation of two-wave soliton families from the one-wave
family separated by a turning poifit Insert shows the vicinity of
stability window bounded by VK instabilitypoint V) and oscilla-
tory instability (point O) thresholds.

Note, that for anyA >0 the corresponding diagrams may be

easily obtained by an appropriate scaling transformation.
The analysis of Ref.10] identified that fundamental two-

wave soliton family(the lowest inH-Q diagram, which goes

where nonparametric nonlinear terms are expressed by fun p to a pointl in Figs. 1 and 2is always stable in the whole

tions  Ny=(|U[2/9+2|W|2)U N, = (9|W|2+2|U|)W omain of'exister!céfor any fixgdA>Q 'and023). At the.
slowly varying complex functk;nlsl andW are amplitudes ,of turning pointT so_lltons '05‘3 t_helr stability anql the emerging
the fundamental and the third harmonics, respectively, th igher-order soliton family is unstable until VK stability

parameter3 measures the shift in the propagation constant reshold(point V), where surprisingly it does not acquire
A is the wave-vector mismatch, arilis the propagation the second instability mode, bugainsstability in a small

distance. For the spatial soliton case the dimensionless p ange of the parametg, before losing it again due to oscil-

rametero is the ratio of the wave numbers of the harmonics atory instability (pointO). Varying o one can find the codi-

and is equal to 3 whereas for the case of the temporal solitofrenston two point, where t_he_z stability _W'”dOW. _exactly van-
; . . iIshes, the eigenvectors driving both instabilities coincide,
the value ofc can vary. Some special sech-like solitons of

this model were found in Ref§14] whereas the question of and all formal conditions for the theory presented below are
families of two-wave solitons was addressed in Rgt&].

The key property of this model is that it admits the existence (a)' ' ' 2 (b)' '
of a broad range of different higher-order soliton families E ] :
including stable, unstable, and oscillatory unstable ¢h&k 3 3
Equationg1) have three integrals of motion, hamiltonian, ; 0 : 0
> o 3
energy, and momentum, of which Hamiltonidlnand energy
Q are important for our analysis. These invariants are given
by -2 . . . -2 .
-10 0 10 -10 0 10
H‘fﬂo i Lo 2wt 2)upzwie * N
= Alax Tlax eVl g WIt=2{ulFw] P .
(c)
—E(WU*3+W*U3)+0A|W|2 dX _
9 ! 0 AN
2 3
+ oo
Q= [ tlup+3owizax
—o -2 . . . . . .
-10 0 10 -10 0 10
x x

To present and classify soliton families we use invari@xs
calculated for soliton profiles. Figure 1 shows the depen-
dence of energf versus soliton parametgratA=1.0 and  profiles shown in plotsg), (b), and(c) correspond to the points
o=2.5. Corresponding parametric dependedceH(Q) is  L,M, andN in Figs. 1 and 2. Figured) is enlarged fragment of the
presented in Fig. 2. Examples of the representatives of twglot (c). Note nonmonotonic soliton tail— a distinctive feature of
lowest-order two-wave soliton families are given in Fig. 3. higher-order solitons.

FIG. 3. Examples of soliton profiles at energy le@+ 10. The
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satisfied exactly ¢.,=3.04, B.,=0.2692). We note, how- Fo(U,W,U* W*)=—g(38+A)W
ever, that our approach works quite well even whens
chosen relatively far fromr.,, and codimension two point +(9|W|2+2|U[D) W+ }Ug
conditions are only roughly satisfied. 9"’
Ill. DERIVATION OF THE NONLINEAR ASYMPTOTIC we define two linear operatofs andi,
MODEL: INVARIANT-BASED APPROACH
There are two known methods for derivation of the non- #?  OF, oF, aF,  oF,
linear dynamical model:(i) direct asymptotic approach ——tow T -t
- X . ) IW AW
[6,13] and (i) invariant-based asymptotic approach that in- [ o= 2 IW* IW*

volves series expansion of some integral of motion of the IF, JF, ?  9F, OF,
analyzed systerfd,7]. There is currently some confusion in ST —tow T
literature due the fact that so far no comparison has been Y ax2 W g
done between these two procedures. We clarify the situation
and demonstrate the complete equivalence between these P oF, oF, 9F, oF,

methods. We show that the first approach makes calculation ——t =T .
of linear terms relatively straightforward but computing of [ axz  du - gu* IW W+

i i iant- 1= )
nonlinear terms rather complex. In contrast, the invariant oF, oF, P oF, dF,

based asymptotic approach allows nonlinear terms to be ob- — s -y

tained directly as a result of a Taylor expansion of some aJ - gu* axz W gwr

conserved quantity of the governing equations. A burden-

some part in the implementation of this method is the calcuwhere all partial derivatives are calculated bkt (W,). For

lation of certain linear terms. In the next section we use thenhe case of Hamiltonian syste(t), operatord., andLy are

invariant-based method while an outline of the asymptoticself-adjoint. Now we are able to present major results of the

method(which we also use to check our reslilts given in - asymptotic approach in a reasonably compact form.

Appendix B. Substitution of the serie3) into system(1) and collec-
We assume that close to the stability threshold evolutioRjon of the terms of the zero order in simply allows us to

of the soliton parametep is slow (adiabati¢ in Z. This  optain the system of nonlinear ordinary differential equations

allows us to look for localized solutions of EG8l) in the  for stationary solitons Yg,W,). The first-order terms are

form of the asymptotic series, given by a solution of the following system &fiear inho-

e mogeneous differential equations,

Up(X,2)=UJLX,B(2)]+ > £"Un(X,2),
n=1 ~ [U1 - Usp
® L'(wl):_'ﬁ(owsﬁ)’ ©

where subscripB stands for the derivative with respectfo
System(5) has a localized solution only if its right-hand side
where the parameter measures smallness of deviation from is orthogonal to all localized solutions of the corresponding
a stationary soliton¢,W;) andz=eZ. We are looking for  homogeneous system. In particular, it should be orthogonal
a nonstationary, but localized solution of E¢$) and thus (5 the even neutral mode of operatdy that is given by
consider only localized functiond,,, W, . Below we often  (y_aw,). This orthogonality condition leads to the well-
refer to this nonstationary asymptotic solutionmesturbed  ynown VK criterion[8], which may be used to find stability

+ o0

wp<x,2>=ws[x,/3(z>]+n§1 "Wy (X,2),

soliton (Up,W). o threshold poins) at By .

The substitution of serie@®) into the systentl) allows us Presenting the first-order terms in the form
to calculate consequent orders &f {,W,) in an algorithmic
procedure.

Denoting all nonderivative terms of Eq4) as, ( Ul) ZiB( Ull) ©6)

1 1 Wl Wll ,
* = _ _ 2 2 1y*2

Fu(U,W,U*WH)=-U+ 9|'JI +2[W|FJU+ 3 U™w, we proceed to the second-order of our asymptotic approach,

(4) calculating the second order correctidu,(,\W5), defined by

< [U2) LU\ [ aUnlaB U2,(Ug/9—Wy/3) +2U U Wy4/3+ 2U W2,
Lr =B - : )

W, oWy, adWy,/9B U2,(2Ws— U/3) + 9W W2,
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The second-order termdJg,W,) do not impose any non- where terms 3 ,W5;), i=1,2,3 are solutions of some in-
trivial compatibility conditions and may be presented in thenomogeneous differential equations involving operaior
form (see Appendix A As all other odd order terms, the third-
Uy\ . .[Uy Uy order correction U 3,W;) impose some nontrivial orthogo-
( ) :32( ) I ( ) ) (8) nality conditions, which we assume to be approximately sat-
isfied.(These conditions in fact require that codimension two
point is close enough in the corresponding parameter space.
The terms of the fourth and higher order may be calculated
in a similar way, but are not essential for the invariant-based

W2 W21 W22

Proceeding further in a similar way we obtain the following
form for the third-order approximation,

Us| . .(Us| .. [Us) ..[Us approach used here. Thus we truncate the expression for the
W, =ip Wy +ipB W, +ip Wy’ (9 adiabatically evolving localized soliton as
|
Up _ US +i . Ull n 272 U21 n 2 U22 +i 3| 3 USl +2 - U32 + U33 (10)
A T R L e A B A B e R R N R VA

As the next step we construct the Lyapunov functiobal In the vicinity of codimension two bifurcation the following
=H+BQ, where HamiltoniarH and energyQ are given by  assumptions for coefficient®; are essentialD,=&*Dy,

expressions?2). D.=e2D ;
- . . . 1=¢&“Dy, Dj=,~0(1), (see Ref.[13]). Assuming that
Substituting the serie@) into the functionall and keep 5[;:8452;' expanding all functionals it in the Taylor se-

ing terms up to the fourth order inn we obtain . . :
9 P ries aroundB,, and keeping terms up to the? we obtain

L=H,+BQp ol ., 1 e
L Hp=Ho(Bo) + &' 5D158%+5D2(26B5B~ 5)
:HS+ﬂQS+82§DlB2
1 1
1 + §D°5'82+ 575,33 : (14)
+e*|5Dx(28 =B+ BA+ABB|.  (1D)
where all tildes are omitted for brevity.
Introducing canonical variableg|{,q,,p1,
whereH,Q, stand for the values of the invariants calcu- g Si{.d2,P1.P2)
lated for the perturbednonstationary asymptotic solution a,= 8B,
(10), Hy,Qq are invariants calculated for the stationary soli-
ton solutions Ug, W), coefficientsD; have the same defini- U= — 3B
tions as in[13]: 2 '
_ (15
. p1=D,6B+D168B,
D1(B)=—2((U11,Wip|L;(U11,W1p),
. P2=D,4B,
D =—2((Ua3,W33)|L;(Uy;,W
2A) ((Uss:Wag L (U1 Wap) we transform the function in the square brackets of the ex-
=2((U 2, W) |Lr(U 22, Wy»)), (120  pression(14) to the classical Hamiltonian form:

where(U|W)=Z,; [dXU,W; . The coefficientsA and B are
also given by similar overlap integrals, but we do not present
their specific structure here. . ) )

To simplify the expressiofl1) we introduce the variable DPynamical equations for this system have the form
6B=pB— By, Where soliton parameteB, is given by the .

N 1,1 ,1 1,
H:_p1Q2_2_D2p2+§DOQ1+§YQ1_§D1QZ- (16)

equationQy(Bo) =Q,. To go further we define two more 1=~ 02,
coefficients 1
(.12: -5 P2,
Fle) 1 4%Q D2
Do(Bo)= 2B | Fo Y(BO)ZE I (13 . , (17
B Bo p1=—Dod1— a1,

056612-4
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P2=p1+D1ds.

After back substitution of the definitiond5), the system of
equation(17) may be presented as
D,86B +D,6B+Dy8B+ y8B2=0. (18)

Nonlinear ODE (18) describes adiabatic evolution of the
soliton parametepB (=pB,+ 6B) in the vicinity of the VK

PHYSICAL REVIEW E 64 056612
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and oscillatory instability thresholds. Due to local one-to-one ~ FIG. 4. Dependenc®, versusD, (dashed lingin the neigh-
correspondence between the soliton solution and its intern&oerhood of stationary and oscillatory instability thresholdslid

parameter, modell8) indirectly describes adiabatic evolu-
tion of a weakly perturbed soliton.

An alternative derivation of Eq(18) may be found in
Appendix B. The structure of equatidii8) is generic for
Hamiltonian systems with phase-translational symmetry. Co
efficientsD,, D4, and D, measure orthogonality between
the corresponding symmetry-induced neutral mode and pe
turbations of the first lowest orders, characterizes depen-
dence of the corresponding conserved quariéhergy from
the corresponding internal parameter. A linear version of Eq
(18) was obtained in Ref.13]. Among other major conclu-
sions that can be obtained from analysis of Etp) is the
expression for the oscillatory instability threshold@y that
is given implicitly by the equation

DZ—4DyD,=0. (19
IV. ANALYSIS OF THE NONLINEAR EVOLUTION
MODEL

A. Calculation of the coefficients

Analysis of the nonlinear model starts from the calcula-
tion of the coefficients in Eq.18). Computing of the coeffi-
cientsDg and vy is direct. Expressions for other coefficients
involve computation of different order terms in the sefi®s
In particular, calculation of the coefficieb; (which is often
referred to as anasscoefficieny includes numerical resolu-
tion of the problem

y

Ull
Wll

Usgs
O-WSB

(20

The general solution of Eq§20) is a sum of the solution of tion

lines) plotted foroc=2.5, (a), ando=2.8, (b).

To expel this part from the general solution we use a homo-
topy method. We introduce a continuous parametend

eonstruct a linear operator familiz(s)=sL,+(1—s)Lg.
The generalized problert20) with operatorL, replaced by

T:(s) is singular only as=1, where even localized solution
of the corresponding homogeneous problem exists. Numeri-
cally this singularity manifests itself in a small vicinity
arounds=1. Replacing the solution of the generalized inho-
mogeneous problem in the singular region by the interpola-
tion of the solutions from the neighboring regular regions we
obtain U;1,W3,), ats=1 with a high accuracy.
CoefficientD, can be calculated in a standgrbnsingu-
lar) way provided the right-hand side of the Egq.

Lr(U o, Way) =(Uq;,0W,,) is even inX and automatically
orthogonal to the neutralzero eigenvalue eigenmode

(dUgldX,dWg/9X) of operatorI:R. Figure 4 represents re-
sults of calculation of th®;, i=0,1,2 in the vicinity of VK
instability (Do=0) and oscillatory instability thresholds
(D2=4DD,) for two representative values of Note that,
for our model,D; (mass coefficientis negativein the vicin-
ity of VK and oscillatory instability thresholds at~ 3.

B. Linear limit

To check accuracy of the asymptotic modé8) we cal-
culated the spectrum of the linearizébout stationary soli-
tong version of systen(1) in the vicinity of the stability
window. Strictly speaking, systeitl) is Galilean invariant
only at o= 3.0 when instability development due to bifurca-
from the antisymmetric neutral mode

the corresponding homogeneous problem and the particuld?Us/dX,dWs/9X) is absent. We assume that this scenario

solution of the inhomogeneous problem itseld 4, W)
=(U11,W19),+C(U,3Ws), Cis an arbitrary constant. For
our purposes we only need thel {;,W, ), part. In theoret-
ical consideration the contributiofi(U¢,3Ws) can be elimi-
nated by simply takingC=0. However, numerical separa-
tion of two parts(both of even symmetpyof the localized
solution U4;,W;1)4 may be a challenging tasksingular

ODE problem. This separation is necessary indeed, becaust

the solvability condition for the calculation of the first-order
terms in the serie$10) only demands thepproximateor-
thogonality of Ugs,Wsp) to the neutral mode of the opera-

torL,, i.e., to Ug,3Wy), and thus any small deviation ¢,
from VK point By may lead to nontrivial and uncontrol-
lable contributions td®; coefficient due taC(U4,3W) term.

05661

of instability development is absent in the vicinity =3
and to avoid excessive difficulties related to smallness of the

8 o ]
[ ° Codimension 2
- _ \\ bifurcation ‘
S 4 V/ E
= ]
of b

2.4 2.6 2.8 3.0 3.2

ag

FIG. 5. Size of the stability window versus Solid line corre-
sponds to the theoretical prediction of the model, the circles present
the direct numerical results.
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g g g B
FIG. 6. Linear spectrum of Eq1) calculated forr=2.5(a), and FIG. 7. Energy invarianQ [see Eq.(2)] calculated for the

o=2.8(b). Solid curves and filled circles correspond to the positivehigher-order soliton family of interest versus soliton paramgter
real part of the eigenvalue, dashed curves and open circles, to tHgolid curveg and its parabolic approximatiddashed curvgsised
imaginary part. All curves are given by the analytic expresgiii, in the model(18). Filled circles correspond to the instability thresh-
the circles represent the direct numerical results. olds. (@) for 0=2.5, (b) for ¢=2.8.

stability window (Fig. 5 choose a value of the for which  sociated with the increased dimensionality of the phase space

the stability window is easily detectable. of Eq. (18) resulting in broader variety of spectral character-
The model(18) predicts the appearance of quadruplets ofistics and instability development scenarios.

complex eigenvalues that are given by the following expres- Direct modeling of Eq(18) is straightforward except for

sion: certain difficulties associated with unbounded type of motion
demonstrated by this dynamical systefBounded trajecto-
2
N2= —D;*yD1—4DoD; 21) ries exist only in the vicinity of the stable stationary points.
2D, ' However, significant physical insight into the behavior of the

complete systenil) may be obtained from consideration of
The comparison between analytical re€aft) and direct nu-  the cross sections of the phase diagram corresponding to the
merical computations is presented in Fig. 6 for two casesfour-dimensional phase space of the mods).
o=2.5 ando=2.8. Our theory correctly predicts both the  First, let us consider energQ, of the perturbed soliton
positions of the stability and oscillatory instability thresholdslying in the interval Q,x,Q.s), WhereQ,, andQ,s are en-
and the linear spectrum in the vicinity of these thresholdsergies of stationary solitons at the VK and oscillatory insta-
The agreement is better for the case 2.8 as then the maxi- bility thresholds, respectively, Fig(&. In this case dynam-
mal deviation from the codimension two point,=3.04, ics of the system is determined by coexistence of the saddle-
Bc2=0.2692) is smaller. center fixed pointBy; and the centeps, that is presented
qualitatively in Fig. &c). If an initial perturbation of the

C. Stationary points stationary soliton withBy, is “positive,” i.e., brings B to the

Coefficients in front of the nonlinear terms in the model

(18) arise as a result of Taylor expansion of the energy func-Q
tional near the VK instability threshold. This expansion can

result in the inclusion of cubic and other higher-order cor- Cor}
rections into the final modé€ll8). Our analysis shows that it

is sufficient to include only the quadratic term. Physically, i
the condition for the truncation of this Taylor series is the :
adequate description of major characteristic features of the o

complete nonlinear system. In the case of systéinthis

includes the number and type of soliton states achievable foB (0 ]
some fixed soliton energ®, in the vicinity of By« . Our = :

model (18) with only the lowest-order nonlinear term cor- & fi
rectly predicts the number of stationary poirit®rrespond- - N’
ing to stationary solitonsand their types. Figure 7 shows the

reason for this successful behavior demonstrating a rathe

small deviation between actual dependence of energy invari B, By B B, B B
ant calculated on stationary soliton family and the parabolic
approximation employed in our modgl8). FIG. 8. Qualitative change due to increase of perturbation

strength. Left part(a) smaller perturbatiolower level ofQ,) of a
stationary soliton in the vicinity of3yk leads to a phase diagram
cross section that includes center and saddle-center fixed gojints

Both the previous modelsee Refs[4,6]) and model18)  Right part: (b) larger perturbatiorthigher level ofQ,) leads to a
yield similar predictions for the number and positions of thephase diagram cross section that includes unstable spiral and
stationary points for variation of the soliton parameter,saddle-center fixed pointsl). Solid circles stand for the instability
namely,§8=0,—Dgy/vy. The advantage of our model is as- thresholds.

D. Instability scenarios

056612-6
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FIG. 9. Unstable stationary soliton with small “negative” per- £ 17 perturbed stable stationary soliton. Beating of two fre-
turbation. Rapid increase of amplitude with oscillations resulting 'nquencies, a8=0.2619 andr=2.8.

decay.8=0.2635,0=2.8.

] ] - _ . cross section and demonstrates a complex quasiperiodic evo-
right of By, instability development leads to a rapid in- |ytion (see Fig. 1B

crease of soliton parametgr similar to the regime 1 of Fig. Note, that to check predictions of mod@g), we inte-

3(b) of Ref. [4]. At the same time presence of an internal grated the system of partial differential equatiofiRDE)
mode in this region o can lead to simultaneous excitation starting from the differently perturbed stationary solitons in

of oscillations. This scenario persists for small “negative” the vicinity of VK threshold. Perturbation was taken in the
initial perturbations, which bring initigB to the left of Bp;.  form:

This regime isdifferentfrom the regime 3 of Fig. ®) of

Ref.[4] due to presence of an extra degree of freedom in our AU
model — we observenore than ondarge-scale oscillation AW =a
before rapid increase @8. We note, that due to absence of

collapse in systentl) and influence of nonlinear terms be- ®U/oX®
yond the approximation of the mod@l8) this rapid increase (asw /&xe),
of B evolves into decaysee Fig. 9. In contrast, if an initial S
negative perturbatiodB puts the system closer to the stable wherea, b, ¢, andd define the perturbatiofWe need four

point By, (region ) the motion of the system becomes al- oqefficients to define the perturbation in order to span four-

most periodic(see Fig. 10 This regime is similar to the  ginensional phase space of Ed8).] Other choices of four
regime 2 of Fig. 8) of Ref.[4]. The initial conditions taken perturbation functions are possible.

in a close vicinity of the stable poi;; results in the phase
trajectory lying on the torus corresponding to the beating of
two frequencies(see Fig. 1L There is no analog to this

behavior in any previous works. . In conclusion, we have developed a theory describing

Scenarios of instability de_velopment in the case when €Nfonger-term nonlinear dynamics of perturbed higher-order
ergy Q of the perturbed soliton is greater théhs are de-  gpjitons in the vicinity of codimension two point. It was
fined by coexistence of the saddle-center pigtand of the  ghown that for a large range of instability scenarios that
focus By, Figure &b,d). All observed regimes for this case coyld not be analyzed in the frame of previously known
have no analogs in previous worlé-7]. For small positive  nonlinear models our theory successfully describes higher-
deviation 58 from the parametep, (region ) we again  order soliton perturbation-induced dynamics. For the thor-
have a few large-scale oscillations that after rapid increase Qfughly investigated example of solitons due to degenerate
f evolve into decay of the soliton. If initial perturbati@®  FwM our theory predicts correctly the linear spectrum of
forces transition of the system into a state in vicinity of theperturbation(instability threshold positions, instability rajes
focus Bs, (region lll) initial evolution of the perturbation

Us 9?Ugl 9X? 9*UgloX?
+o| 2| TC| 4 4
W, 9?W/ 9X W,/ 9X

(22

V. CONCLUSION AND DISCUSSION

undergoes oscillatory instability that usually develops into  , ., 3 s
decay(see Fig. 12 However, a confined regime of soliton «_ g ] «_1.365} ]
evolution is also possible for this case. This regime utilize J ) 3
the fact that the stationary poifl;, may have center-type 2 2 F :
2.562 ¢ 3 1.350 t 3
0 60 120 0 60 120
1.2 1.4 2 2
N 4
& o~ (© o
X 5 =
= z 2 3
2 £
0.2 . . . 0.6 . . / 0
0 100 200 0 100 200 0 100 200 300 400 0 100 200 300 400
z z z z

FIG. 10. Unstable stationary soliton with larger “negative” per- FIG. 12. Perturbed oscillatory unstable stationary soliton. Oscil-
turbation. Longer-term oscillations #@=0.262, c=2.5. Negative latory instability at3=0.2667 ando=2.8. (g,(b) initial stage;
initial 58 puts the system into region Il in Fig. 8. (c),(d) longer-scale behavior.
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0.68 The major difference between our mod&B) and previ-
ously developed one-parameter soliton evolution models is
N§ 0.67 in increased dimensionality of model phase space. In fact Eq.
<3 (18) is a nonlinear Hamiltonian system with two degrees of
2 o.66 freedom. Thus, it is almost certainly chaotic system[16].
0.65 For the particular case of parameter values in #8) asso-
0 100 200 300 400 0 100 200 300 400 ciated with degenerate FWM solitons studied in this paper
z z chaotical motion characteristics are hard to analyze because

FIG. 13. Perturbed oscillatory unstable stationary soliton. Con-the correspondl'ng dyngmlcal trajectorles. are typically un-

fined oscillatory instability a3=0.25 ando=2.5. Negative initial bounded, bl_“lt this can differ for other phys_lcal mOdeI.S where

SB. our theory is applicable. The challenge is to identify such
soliton systems.

_ ) ) ) Another interesting direction of further activity is in gen-
and types of stationary points as well as various scenarios firalization of our results to multi-parameter soliton systems
longer-term soliton evolution. In general, we have completede ., with two or mores-like parametens Promising candi-
the missing link between codimension one point weakly nongates for the corresponding physical example are not fully
linear approaches of Reff,4] and codimension two point degenerate parametric four-wave-mixing models.
linear theory of Ref[13].

The two-fold derivation of the nonlinear model has dem-
onstrated complete equivalence between asymptotic and
invariant-based approaches leading to two alternative inter- D.V.S. acknowledges support from the Royal Society of

pretations of the resulting coefficients. The structure of theedinburgh and UK EPSRC Grant No. GR/N19830.
nonlinear model suggests that our results may be readily ap-

plied to other nonlinear models of different physical content.
In practice, our theory may be used to describe perturbed
higher-order soliton dynamiasn, or close to, their stability
windows if more conventional approaches fail in this region =~ Components of the third-order approximati® can be
of system parameters. found from the following differential equations:

ACKNOWLEDGMENT

APPENDIX A: THIRD-ORDER TERMS
FOR THE INVARIANT-BASED APPROACH

) <U31) U1/ 9B+ U39— U3W,/3+ 2U U5 W, /3| [ 2U W3+ 2U 1[U5q(Ug— 3Wg) — 6W,q(U— 6W,) /9
"Wy W,y /98— U39+ 2U U U,y/3 - 2U3W, + 9WE + 2W; (2U U 1+ 9WW,)) ’

C Us, o 2Up1+ U5,/ 08 )_2 UsU2oW; + U4 [U5p(U /3= W) — U Woy|
NWa) | 2Woy+ 0dW,0/38 UU U+ 3W;(2UUpp+ QW W,/

3
12
'\ Was oWy,

APPENDIX B: ASYMPTOTIC APPROACH 22U

R * *) =4 —i
We assume that close to the stability threshold the phase Ix2 TRy (uw,ut, W) =e"oBu—izuy,

shift 8 varies adiabatically with distanceand the variation

of it 68=B— By is small, wheregB, is taken in the vicinity

of VK stability threshold. We look for solutions in the form 92w
§+Fz(u,w,u*,W*)=3845,8W—isawz,

(B2)

z

u(Xx,z)= u(X,z;B)eissf sp(dt

0

whereF,; andF, are given similar to Eq(4) definitions.
There are two ways to proceed with the asymptotic ap-

proach:(i) to add a pair of equations complex conjugate to

the systemB2) and work with vectors if,w,u* ,w*) as in

z
W(X,Z)= W(X,z;,6’)e3i@3f0 sp(Hdt

z=¢eZ, &<l, (B1)  Ref.[13], (ii) or to separate complex functions,{) into
real and imaginary parts and work with vectors
and obtain the following system of equations (ug,wg,u,,w;). Below we adopted the second approach.

056612-8
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We expand the solution to EqB2) into an asymptotic VK-like bifurcation from an antisymmetric neutral mode

series: (duglaX,owg/ dX) of linear spectrum. We assume that this
property stays foir=23 and only consider perturbations be-
u=ug+etu,+iedug+elug+ - - -, longing to the class of symmetric functions. This assumption
(B3)  ensures that all consecutive even order corrections in series
W=Wg+ W, +ie®ws+ eSwgt - - -. (B3) are purely real, whereas all odd order corrections are

purely imaginary. This, in turn, allows us to work with
Here we already take into account the structure of EB8)  2X 2 matrix operators, instead obd4 operators.
explicitly omitting first three trivial(zerg orders. Also atr Linearization of functions=y,F, about real stationary so-
=3 the system(1) is Galilean invariant. As a result at  lution (us,ws) yields linear self-adjoint operators!, and
=3 the stability of stationary waves cannot be lost due taViy,

9 9F, JF, o7F1+(9F1

ﬁjL u u* W gw*
Mg= ,
IF, dF, #?  9F, JF,
W+ au* WjL 07_W+ ow*
#?  9F, OJF, oF, OF,
ﬁjL u au* ow ow*
M, = ,
IF, dF, 9  9F, JF,
u au* EJF ow ow*

with all partial derivatives taken at stationary soliton solutionwe can proceed with the sixth-order correction,

(us,ws) that is obtained in the zero order in The next, y u
three-order corrections are trivicderg as we have already MR( 6) _ 5,3( 51 ) (B8)
mentioned above. Solution of the next, fourth-order approxi- Wg oWsy) '’
mation is given by the system
which we present in the form
R
M = , B4 u .{u
Rl w, B 3owg ( 6) = 5B( 61). (B9)
We We1

and may be found exactly as
Note that odd order corrections do not impose any nontrivial

Uy Usg compatibility conditions. Next order terms may be found
=6p . B9 fom
W, Wgg
Proceeding further we obtain N ( u7) _ —55 Us1 _ (B10)
: W7 O'Wel.
~ [Us| Usp 5
M; We T oWgp) (B6) Again, as in all odd orders, we need to satisfy certain or-

thogonality conditions. At this stage we just assume that
In this order we have the nontrivial solvability condition that these conditions are approximately satisfied and present
is approximately satisfied if the stationary soliton of zero-seventh-order correction as
order approximationuys,ws) is chosen in the vicinity of the

VK stability threshold. Presenting the fifth-order correction uz)} - Un
. =58 . (B11)
in the form w- Wog
( US) :513( u51), (87)  First contribution from the nonlinear terms of Eq82) to
Wsg W5y the asymptotic expansion appears in the eighth order,
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i Ug —5',é Uz
R W8 B O'W71

Solution due to the terms with3? factor can be calculated analytically. This allows us to present the eighth-order terms in the

form:
u . lu 1 u
( 8)=5ﬁ( 81)+—5,82< W). (B13)
Wg Wgy/ 2 Wsgp

Proceeding to the ninth order we obtain

2
Usg— 2usW§3 ) _ 5,82( %(US+WS)U33+(%US+4WS) UspWsp

2
3oWep—2WWgp (5Ust2Wg) U5+ AUglspWeg

2
o [ Y u [ | S uguggws—u
M, 9):_5B(V) 81 — 5868 sBB — 5B8B 3 Wstspiis1™ Hsl
Wy oWg OWspg
4usUspWs1— 30Wsg

(%us_ %Ws)usﬁu51+ (4Ws_ %US)U51W3B
. (B14)

2
18WWgzWs1+ 5UsUggUsy

—5353(

Now we use acombinedsolvability condition for all odd +oo
orders we considerefdvhich requires that the sum of right- Do=2j (UgUgg+3aWoWgg) dX,
hand-side parts of the systen®6),(B10),(B14) should be o
orthogonal to the neutral mode ®fl, operator (i5,3Ws)] 1 92Q
obtaining y=7——
2 (752

. ) Bo
D,8BM+D,8B+Dy6B+2y5B5B=0, (B15)
26P 105+ Dadf pop It may be shown that all coefficien{816) are identically

where equal to the corresponding coefficierii®?) and (13). After
one integration of Eq(B15) in z and putting the integration
PN e constant to zero we obtain the model describing nonlinear
Dz_zf_x (Uggy + 30WoWsy) dX, ®B18  oliton dynamics in the vicinity of the stability threshold:

oo D,8B +D,8B+DydB+ y5B%=0. (B17)
Dl:2f (U0U61+30'W0W61) dX,

This equation is identical to the modgl8).
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