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Stability and formation of localized surface waves at the dielectric—photorefractive crystal
boundary

Victor Aleshkevich, Yaroslav Kartashov,* and Alexey Egorov
Physics Department, M. V. Lomonosov Moscow State University, Vorobiovy gory, 119899 Moscow, Russia

Victor Vysloukh
Departamento de Fisica y Matematicas, Universidad de las Americas-Pueblo, Sta. Catarina Martir, Codigo Postal 72820,

Pueblo, Cholula, Mexico
~Received 14 May 2001; published 22 October 2001!

We consider specific features of the formation of localized surface waves at the interface between linear
dielectric and photorefractive crystals with a nonlocal diffusion component of nonlinear response. Profiles of
the surface waves are numerically found and guiding properties of the surface are investigated. Stability of the
obtained surface waves is considered and it is shown that the well-known Vakhitov-Kolokolov stability crite-
rion derived for the local Kerr or saturable material remains legible for the medium with a nonlocal diffusion
component of nonlinear response.
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I. INTRODUCTION

Among the classical problems of nonlinear optics is
problem of propagation of the laser beam near the bound
of two media exhibiting different optical properties. Th
most interesting from the practical point of view is the ca
of a boundary between nonlinear optical materials. T
propagation of the laser beams near the boundaries betw
Kerr materials~see, for instance,@1–6# for the case of the
linear-nonlinear boundary and@7# for the case of the
nonlinear-nonlinear boundary!, quadratic optical materials
@8#, as well as propagation at the boundary of the Kerr m
dium and absorbing medium@9# were already considered i
great detail. From a mathematical point of view the probl
of interaction of the laser beam with a surface consists o
solution of the equation that belongs to the wide class
nonlinear Schro¨dinger equations with coefficients, dependi
on the transverse coordinates. The absence of the transl
symmetry in the transverse direction results in this case
the appearance of the structures localized at the boun
between different materials that nevertheless cannot be fo
with the aid of the methods of the inverse scattering te
nique even in the case of Kerr nonlinearity.

Starting from the simplest cases of Kerr nonlinear opti
materials investigations were carried out to the mater
with more complicated nonlinear properties. Recent achie
ments@10,11# in the generation of optical solitons in photo
refractive crystals exhibiting high nonlinear properties at l
light intensities have encouraged intense investigations of
photorefractive surface waves. In Ref.@12# specific proper-
ties of ‘‘delocalized’’ photorefractive surface waves at t
boundary between the unbiased photorefractive medium
purely diffusion logarithmic nonlinearity and linear dielectr
or an ideal metal were described. Such delocalized sur
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waves actually have infinite energy due to the presence of
long slowly decaying oscillating tails going away into th
volume of the photorefractive sample~see Ref.@13# for ex-
perimental observation of such waves!. Formation of the sur-
face wave in this case occurs due the interference betw
waves reflected from the boundary and Bragg grating form
in the photorefractive sample volume@12#. Later @14,15#
stable near-surface localized beam propagation in the p
ence of both drift and diffusion photorefractive nonlinear
~in the limit of a high dark irradiance level! was interpreted
as the result of the stable balance between the effect of
internal reflection from the less optically dense linear m
dium and the effect of beam self-bending due to the diffus
component of photorefractive nonlinear response@16–19#. In
Ref. @15# an analogy between optical solitons and mecha
cal particles was used to derive an ordinary differential eq
tion of the second order describing the trajectory of the ne
boundary beam propagation.

The transient regime of the near-boundary beam propa
tion has also gained steady attention@20–22#. It was moti-
vated by the fact that the main feature of any photorefrac
devise is slow response time—but in general the respo
time is inversely proportional to the light intensity. Howeve
the laser beam can be self-channeled along the surface o
photorefractive crystal, thus enhancing the intensity in
narrow surface layer and speeding up the photorefractive
sponse@22#. It was shown@20# that in the transient regime
the diffusion component of photorefractive response lead
the strong light-induced scattering known as the fann
effect.

Another intriguing and important issue is the stability
the localized surface waves@2–7#. It was shown in@23# that
the generalized Vakhitov-Kolokolov~VK ! stability criterion
that was initially derived for the solitons in a saturable f
cusing optical medium for two transverse dimensions@24#
provides also the stability of the fundamental modes on
bitrary nonlinear waveguiding of both one and two tran
verse dimensions, including solitons of local homogene
material and nonlinear surface waves at the interface

ys.
©2001 The American Physical Society10-1
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ALESHKEVICH, KARTASHOV, EGOROV, AND VYSLOUKH PHYSICAL REVIEW E64 056610
tween two local homogeneous nonlinear materials. The s
plicity of the method that enables us to make a conclus
about the stability by reading the corresponding dispers
diagrams~dependencies of the mode energies on the valu
propagation constant! without further calculations makes
very attractive and calls for the further extension on the ca
of more complicated models. At the present moment V
criterion with corresponding modifications was extended
the surface waves in multilayered optical structures, solit
in quadratic optical materials, solitons in the medium w
competing quadratic and cubic nonlinearities, and soliton
the set of incoherently coupled nonlinear Schro¨dinger equa-
tions ~for the comprehensive review see Refs.@25–34#!.
However, stability of the surface waves in the presence
the nonlocal component of the nonlinear response have
been addressed so far.

In the present paper we consider surface waves at
interface between the linear dielectric and photorefrac
medium with local drift and nonlocal diffusion componen
of the nonlinear response for the arbitrary dark irradian
level. We have numerically found profiles of the surfa
waves, investigate guiding properties of the boundary,
perform the linear stability analysis of the obtained solutio

II. THEORETICAL MODEL

We consider propagation of the slit laser beam~transverse
extent of the beam along they axis greatly exceeds that alon
thex axis! in the direction of the longitudinalz axis near the
boundary between the linear dielectric and nonlinear pho
refractive medium with drift and diffusion components
nonlinear response. It is supposed that the linear dielec
occupies an areax>0, whereas the nonlinear photorefracti
medium occupies an areax,0. The laser beam is linearl
polarized along thex axis. The width of the transition are
between the linear and nonlinear media~which is always
nonzero in a real experiment! is supposed to be small com
pared with the characteristic extent of the laser beam in thx
direction and does not affect the profiles of the surfa
waves. As will be shown later, propagation of the laser be
in such a geometry can be described with one shorte
wave equation regarding the complexx-dependent amplitude
of the light field. Inclusion of they component of the optica
field obviously results in a more complicated set of coup
nonlinear equations for the polarization components of
surface waves and the appearance of a number of new ef
affecting, for example the stability of the surface waves~i.e.,
the appearance of polarization instability! and their proper-
ties with respect to interaction with other light beams. Mo
over, even the propagation of one-component slit la
beams that are widely used in photorefractives for the v
fication of new theoretical predictions is affected by the d
velopment of modulation instability. In our case such ins
bility will unavoidably result in gradual filamentation of th
near-surface laser beam in the transversey direction because
the presence of the diffusion component of the photorefr
tive response extends the bandwidth of the modulation in
bility domain up to infinity, so anyy-dependent perturbatio
05661
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with an arbitrary spatial period will grow up exponentially
the propagation process. However, the rate of this proc
strongly depends on the spatial period of perturbation
quickly decreases with a decrease of the perturbation per

To describe the propagation of the laser beam in the a
of a nonlinear photorefractive medium (x,0) we proceed
with consideration of the material response of the mediu
which in the two-dimensional case can be described by
following standard system of equations for the intern
space-charge fieldEsc(x,z,t) produced by the photoinduce
redistribution of the spatial charge@35#:

]ne

]t
5

]nd
1

]t
2

1

e

] j

]x
,

]nd
1

]t
5s~ I 1I dark!~nd2nd

1!2g rnend
1 ,

~1!

j 5ezne~E01Esc!2zkbT
]ne

]x
,

]Esc

]x
5

4pe

«
~ne1na2nd

1!.

Herene , nd , nd
1 , andna are the concentrations of the fre

carriers, donors, ionized donors, and acceptors, respectiv
j is the charge current;s is the photoionization cross section
I is the intensity of the light beam;I dark describes the dark
irradiance level that can be increased due to the introduc
of the incoherent background illumination;g r is the pair re-
combination rate;e andz are the charge and mobility of th
free carriers~negative for the electrons and positive for th
holes!; « is the static dielectric constant of the photorefra
tive medium;kb is the Boltzmann constant;T is the absolute
temperature; andE0 is the static electric field applied to th
photorefractive medium in the transversex direction. In the
area of linear dielectric (x>0) material equations take th
form of a linear relation between electrical displacement a
internal electric field. The material equations in both line
and nonlinear media are completed by the standard short
wave equations for the complex slowly evolving amplitud
of the light fieldA(x,z,t),

i
]A

]z
52

1

2k0

]2A

]x2 for x>0,

~2!

i
]A

]z
52

1

2k0

]2A

]x2 2
k22k0

2

2k0
A2

k2

k0n
dnA for x,0,

written in the paraxial approximation. In Eqs.~2! k0
5vn0 /c is the wave number in the area of the linear diele
tric; k5nv/c is the wave number in the area of the phot
refractive medium;n0 is the dielectric refractive index;n is
the unperturbed linear refractive index of the photorefract
medium;v is the carrying frequency of the laser radiatio
dn52(1/2)r effn

3Esc(x,z,t) is the nonlinear perturbation o
the refractive index, arising under the influence of the int
nal space-charge fieldEsc(x,z,t) through the linear electro
0-2
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STABILITY AND FORMATION OF LOCALIZED . . . PHYSICAL REVIEW E 64 056610
optic effect; r eff is the effective electro-optic coefficien
Equations~1! and~2! form the closed self-consistent syste
that enables one to describe the interdependence of the
tial distribution of the light intensity in the incident beam an
internal space-charge fieldEsc in the area of a nonlinear pho
torefractive medium or free diffraction in the area of a line
dielectric.

Further we consider material equations~1! in the steady
state, when]/]t→0. Under typical for the photorefractiv
crystals assumptionna@ne , the system~1! can be resolved
with respect to the internal space-charge fieldEsc(x,z,t),
which in the first order~see for derivation@18,19#! is given
by expressionEsc5@E0I dark1(kbT/e)(]I /]x)#(I 1I dark)

21.
Substituting an internal field in such form into the shorten
wave equations~2! and performing the standard normaliz
tion procedure one can finally obtain the following evoluti
equations for the normalized complex amplitude of the lig
field q(h,j) in the areas of linear dielectric (h>0) and non-
linear photorefractive medium (h,0):

i
]q

]j
52

1

2

]2q

]h2 for h>0, ~3a!

i
]q

]j
52

1

2

]2q

]h22pq2
ququ2

11Suqu2 1m
q

11Suqu2

]uqu2

]h

for h,0. ~3b!

Here q(h,j)5(kLdif /k0L ref)
1/2A(h,j)I dark

21/2 is the dimen-
sionless amplitude of the light field;A(h,j) is the slowly
varying envelope of the light field;h5x/x0 is the normal-
ized transverse coordinate;x0 is the characteristic transvers
scale ~for example, the width of the input laser beam!; j
5z/Ldif is the normalized longitudinal coordinate;Ldif

5k0x0
2 is the diffraction length in the area of linear diele

tric, corresponding to the chosen transverse scalex0 ; L ref
52/(kreffn

2E0) is the nonlinear refraction length; the satur
tion parameterS5k0L ref /kLdif describes the relative streng
of the local drift component of the nonlinear response;
rameterm5kbT/(x0eE0) describes the relative strength
the nonlocal diffusion component of the nonlinear respon
guiding parameterp5(1/2)(k22k0

2)x0
22S21 describes the

waveguiding properties of the boundary and can take b
positive and negative signs~corresponding to the two differ
ent types of reflection from the interface in linear appro
mation: ‘‘internal’’ reflection when the refractive index o
photorefractive materials exceeds that of the dielectric
‘‘external’’ reflection when the dielectric have higher refra
tive index than photorefractive material!.

The first term in the right-hand side of Eq.~3b! describes
the diffraction spreading of the light beam; the second o
accounts for the beam refraction in the presence of the g
ing structure~boundary!; the third one describes the sel
focusing of the beam due to the local drift component
nonlinear response and, finally, the last term accounts for
effects of self-bending of the beam in the propagation p
cess due to the stimulated transfer of the energy from
lower-frequency spatial components into the high-freque
components. Equations~3! should be completed with cond
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tions of continuity of both functionq and]q/]h at the point
h50 that corresponds, respectively, to the continuity of
tangential component of the electric field and normal co
ponent of the magnetic field at the boundary. There are s
eral regimes of propagation of the laser beam near
boundary@15#. If the laser beam is launched into the phot
refractive medium far from the boundary, it self-bends
ward the boundary in the process of propagation, thus
quiring a definite incidence angle when it approaches
boundary. If the incidence angle exceeds the total inter
reflection angle, the beam experience total internal reflec
that results in periodic near-boundary oscillations. If the
cidence angle is less then the total internal reflection an
the beam can be partially refracted into the linear dielec
medium and the experience diffraction spreading. Forma
of the stationary surface waves corresponds in this cas
the launching of the beam close to the boundary and
exact balance between the competing processes of refle
from a less optically dense linear dielectric and beam s
bending toward the boundary. Equations analogous to E
~3! were used in Ref.@15# to derive the ordinary differentia
equation of the second order describing a near-bound
beam trajectory in the limit of a considerable dark irradian
level ~that corresponds toS→0!.

Typical experimentally achievable values of parameterS
andm for the SnBaNb crystal and beams of the He-Ne la
with intensities of the order ofmW/cm2 at a wavelengthl
5633 nm, for the input beam radiusx0;50mm, the effec-
tive electro-optic coefficientr eff52.5310210m/V, the un-
perturbed refractive indexn52.35, the crystal temperatur
T5300 K, and an external electric fieldE0563103 V/m is
of the order ofS;1 andm;0.1. Guiding parameterp varies
within rather wide frames depending on the difference
tween the refractive indexn0 of the linear dielectric and
unperturbed refractive indexn of nonlinear photorefractive
medium.

In this paper we concentrate solely on the investigation
specific features of the stationary surface waves existin
the boundary, we numerically calculate profiles of the s
face waves of the different orders and corresponding dis
sion diagrams, and both numerically and analytically co
sider stability of the obtained solutions with respect to sm
perturbations of the input profiles.

III. STATIONARY PROFILES OF THE SURFACE WAVES

To find stationary localized solutions of the system
equations~3!, describing profiles of the surface waves w
write the field of the wave in the formq(h,j)
5r(h)exp(ibj), where a purely real wave shaper(h)→0,
ash→6`, andb being the real propagation constant. Su
stituting a wave field in such form into the shortened wa
equations~3! we obtain the ordinary differential equations
the second order regardingr~h!,

d2r

dh2 52br for h>0, ~4a!
0-3



i-
r-
re
o

a
o

ob
th

e

th
tiv

e
av

o
t,

n
a

e
(

r-
id
-
e

n

e
t
he

pa-
e

ing

tive
ro
e

s

ion-
to

m.
ful

low
al-

e
n-

he
o
ary

s

ALESHKEVICH, KARTASHOV, EGOROV, AND VYSLOUKH PHYSICAL REVIEW E64 056610
d2r

dh2 52~b2p!r2
2r3

11Sr2 1
4mr2

11Sr2

dr

dh
for h,0,

~4b!

where bothr anddr/dh should match the continuity cond
tions at the boundary pointh50. Due to the saturable cha
acter of the photorefractive nonlinear response and the p
ence of the nonlocal diffusion component the system
equations~4! cannot be solved analytically and numeric
integration is necessary. To find the stationary solutions
system~4! we use the shooting method that enables one
transform a two-point boundary problem into a Caushy pr
lem. The starting conditions were chosen using the fact
in the area of linear dielectric the first of Eqs.~4! admits
exact analytical solutionr(h)5m exp@2(2b)1/2h#, wherem
is the free parameter describing the strength of the nonlin
effects. Varying the values of parametersb, S, m, andm we
obtain various profiles of the surface waves available at
boundary between the linear dielectric and photorefrac
medium. Note that the saturation parameterS is inversely
proportional to the static electric fieldE0 applied to the pho-
torefractive medium. The diffusion parameterm is also in-
versely proportional to the static electric fieldE0 and in-
creases with a decrease of the input beam radius. Param
m in fact defines the amplitude of the nonlinear surface w
and consequently its propagation constantb.

It is rather convenient to classify all possible types
solutions of the system~4! using quite general treatmen
based on the direct analogy of Eqs.~4! for the envelope of
the surface modes and the equation describing the motio
the mechanical particle in the potential well with nonline
dissipation, where the wave amplituder is equivalent to the
particle position~or shift from the equilibrium point!, and
transverse coordinateh is equivalent to time. One can se
that in the area of the nonlinear photorefractive mediumh
,0) Eq. ~4b! can be rewritten in the following form:

d

dh
~U1T!5

4mr2

11Sr2 S dr

dh D 2

,

U5S 1

S
2b1pD r22

1

S2 ln~11Sr2!, ~5!

T5
1

2 S dr

dh D 2

,

whereU andT are, respectively, potential and kinetic ene
gies of the particle with unity mass, and the right-hand s
of the first of Eqs.~5! describes the force of nonlinear fric
tion which is proportional to the square of the particle spe
dr/dh and parameterm describing the strength of diffusio
effects. The typical profiles of the potentialU(r) for the
various values of propagation constantb, guiding parameter
p, and saturation parameterS are presented in Fig. 1. Not
that the potentialU(r) is symmetric with respect to the poin
r50, so in the figure we present only the right part of t
potential corresponding to the positive values ofr. One can
see that the profile of the potential wellU experiences quali-
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tative transformations with a change of the sign of the pro
gation constantb, which in turn affects the character of th
possible particle motions described by Eqs.~5!, and, finally,
profiles of corresponding surface modes.

In the case of the positive difference between the guid
parameter and the propagation constantp2b.0 potentialU
has one stable stationary pointr50 ~curvea in Fig. 1!, i.e.,
this point is a local minimum of potentialU so dU(r
50)/dr50 and d2U(r50)/dr2.0 ~note that the local
maximum corresponds to the negative second deriva
d2U/dr2!. In this case a mechanical particle with nonze
initial energy U1T describing the corresponding surfac
mode will experience decaying oscillations~with a change of
h in the ‘‘negative’’ direction from 0 to2`!, moving peri-
odically from the right wing of the potential well~positiver!
to the left wing ~negativer!, and consequently losing it
energy due to the influence of nonlinear friction. Ash→
2` a particle asymptotically approaches the stable stat
ary pointr50. This type of particle motion corresponds
the well-knowndelocalizedsurface waves@12# having long
oscillating tails in the volume of the photorefractive mediu
Typical profiles of such waves are shown in Fig. 2. Care
numerical integration of Eqs.~4! and an analysis of the
asymptotic expression r(h→2`);umhu21/2cos$@2(p
2b)#1/2h% for the wave shapes ath→2` show that delocal-
ized surface waves have infinite energy due to the very s
decay of the oscillating tail. Hence, stability of the deloc
ized surface waves is still an open question.

In the case of the values of propagation constantsb
matching the relations 0.p2b.21/S the potentialU has
two stable r56$(b2p)/@12S(b2p)#%1/2 ~local mini-
mums! and one unstabler50 ~local maximum! stationary
points ~see curveb in Fig. 1!. A mechanical particle with
nonzero initial energyU1T will be periodically transferred
in this case from the right wing of the potential well into th
left wing. However, the particle consequently loses its e
ergy due to the influence of nonlinear friction and at t
certain moment~at certainh! the kinetic energy becomes to
small for the next transfer through the unstable station

FIG. 1. Typical profiles of the potentialU(r) for the different
relations between propagation constantb, guiding parameterp, and
parameterS. All quantities are plotted in arbitrary dimensionles
units.
0-4
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point r50, so the particle either asymptotically approach
the unstable stationary pointr50 or remains located in on
of the wings of the potential well and asymptotically a
proaches one of the stable stationary pointsr56$(b
2p)/@12S(b2p)#%1/2. The second case corresponds to
shock surface waves@36# having infinite energy and nonzer
asymptotics ath→2`. Typical profiles of the shock surfac
waves of the first three orders are presented in Fig. 3~further
we define the order of the surface wave as a number of w
zeros plus one!. One can see from Fig. 3 that at theh→
2` surface shock waves have the form of decaying osc
tions superimposed at the constant background where he
is given by expressions for position of the stable station
point. The amplitude of oscillations and decay rate increa
with an increase of the value of the diffusion parameterm.
Note that the shock waves presented above are highly
stable in the diffusion medium since they have zero h
monic in the spatial spectrum and are affected by modula
instability.

FIG. 2. Profiles of the delocalized surface waves with differ
amplitudes. Guiding parameterp50.5, propagation constantb
50.4, parametersm50.2, S51.0. All quantities are plotted in ar
bitrary dimensionless units.

FIG. 3. Profiles of the shock surface waves of the first th
orders. Guiding parameterp50.5, propagation constantb51.0, pa-
rametersm50.2, S51.0. All quantities are plotted in arbitrary di
mensionless units.
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Most interesting from a practical point of view is the ca
when a particle describing the profile of surface waves
ymptotically approaches an unstable stationary pointr50
~we still consider the interval 0.p2b.21/S!. This situa-
tion corresponds to the formation of thelocalized surface
waves. There are two conventionally distinct types of t
localized surface waves corresponding to the negative
positive values of the guiding parameterp. Typical profiles
of the localized surface waves for a positive value ofp are
presented in the inset in Fig. 4, whereas profiles for a ne
tive value ofp are presented in Fig. 5. The main differen
between these two regimes is that the surface wave co
sponding to negativep can have a long slowly decaying ta
in linear medium so the considerable part of the energy
the surface wave can be concentrated in the area of the
electric, whereas for positivep the part of the energy con
centrated in the nonlinear photorefractive medium is alw
higher than that in the dielectric~compare Figs. 4 and 5!.
This is a consequence of the fact that for negativep relation
b2p.0 is matched for allb>0, thus providing unlimited
growth of mode energy

w5E
2`

`

r2~h!dh ~6!

as b→0 according to the exact expression for the surfa
wave shape in the area of linear dielectricr(h)
5m exp@2(2b)1/2h# that follows from Eq.~4a!. Dispersion
diagrams~dependence of the mode energyw on the value of
the propagation constantb! for the first three surface mode
and negative guiding parameterp are shown in Fig. 5. As for
the case of a boundary between the dielectric and the K
medium @2# dependence of energy on the propagation c
stant is nonmonotonic. For the case of positive values of
p mode energyw goes to zero asb→p and monotonically
increases with an increase of the propagation constantb ~see
Fig. 4 with dispersion diagrams for the first three surfa

t

e

FIG. 4. Dependencies of the surface mode energyw on the
propagation constantb for the first three surface modes for positiv
guiding parameterp50.5. The inset shows profiles of the surfa
modes of the first three orders forb51.0. Parametersm50.1, S
51.0. All quantities are plotted in arbitrary dimensionless units
0-5
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ALESHKEVICH, KARTASHOV, EGOROV, AND VYSLOUKH PHYSICAL REVIEW E64 056610
modes!. It will be shown further that this characteristic b
havior of dispersion curves in the presence of a nonlo
diffusion component of photorefractive response can be
sociated with linear stability or instability of correspondin
surface modes just as for the case of the local Kerr mate
Note the following characteristic feature of the profiles
localized surface waves: starting from the values ofn52 the
profiles of the (n11)-order wave without the first closest t
the boundary period coincide with the profiles of then-order
wave without the first half-period. With an increase of mo
energy the profile of the surface mode becomes more
more asymmetric. This is due to the influence of the dif
sion component of nonlinear response. The position of
intensity maximum shifts toward the boundary because
the compensation of the influence of self-bending effe
~which is approximately proportional to the fourth power
the wave amplitude! it is necessary to increase the strength
the boundary effects. As propagation constantb approaches
the approximate valuep11/S the mode energy goes t
infinity—the mode amplitude in this case increases wher
the characteristic transverse extent decreases. In the lim
high amplitudes Eq.~4b! can be linearized and admits th
following analytical solution r(h)5m exp(2mS21h)
3cos@(2S2122b12p24m2S22)1/2h#, giving the more accu-
rate thanp11/S estimate of the upper limiting value of th
propagation constantb at which localized surface waves a
still possible,

b5p1
1

S
2

2m2

S2 . ~7!

FIG. 5. Dependencies of the surface mode energyw on the
propagation constantb for the first three surface modes for negati
guiding parameterp520.5. Subfigures show profiles of the surfa
modes of the first three orders for propagation constant valueb
50.01 andb50.1 corresponding to the different signs ofdw/db.
Parametersm50.1, S51.0. All quantities are plotted in arbitrar
dimensionless units.
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As for the usual saturable optical medium an increase of
saturation parameterS at fixedm andp results in the flatten-
ing of the corresponding profiles of the surface modes,
in an increase of the characteristic transverse extent of
modes~full width at half maximum! with the same energies
Stability of the localized surface modes will be considered
the next section.

Finally, returning to the example with the mechanical p
ticle we consider the last case when the propagation cons
b.p11/S. In this case potentialU has the only unstable
stationary pointr50 ~see curvec in Fig. 1!. In this case the
finite motion is impossible except for the trivial case of ze
initial energyU1T. A particle with nonzeroU1T will go
away fromr50, which corresponds to infinitely increasin
oscillations of the light field so it is useless to speak ab
surface waves in this case.

IV. STABILITY OF THE LOCALIZED SURFACE WAVES

To investigate the stability of the localized surface wav
at the boundary between the linear dielectric and the ph
refractive medium with drift and diffusion nonlinearity w
use the well-known linear stability analysis which is valid
the initial stage of perturbation development. Note that
earlier linearization technique was used mostly for the ana
sis of the stability of optical solitons in local medium, whe
nonlinear perturbation of the refractive index depends so
on the light intensity and does not contain derivatives of lig
intensity on transverse coordinates@25–34#. In our case,
however, the presence of a nonlocal diffusion componen
the nonlinear response strongly affects dispersion diagr
~profiles of corresponding surface waves! and also breaks the
assumptions that are usually used for the derivation of wi
spread VK criterion provided that this criterion~if it is ap-
plicable in nonlocal materials! calls for the separate justifi
cation. We will search for the solutions of Eqs.~3! that
describe the propagation of the surface waves with pertur
input profiles of the following form:

q~h,j!5@r~h!1u~h,j!1 iv~h,j!#exp~ ibj!, ~8!

where, as earlier,r~h! is the real stationary shape of th
surface wave; functionsu(h,j) and v(h,j) are, respec-
tively, the real and imaginary parts of the small (u,v!r)
perturbation. Assumption of the small comparative amp
tude of perturbation, which is a quite general condition
the fundamental surface waves with no nodes, is rather
strictive, however, for the surface modes of higher orde
Thus the small perturbation matching this condition sho
be zero at the points where the corresponding surface m
goes to zero, so a rather narrow class of perturbations ca
considered with the aid of the linearization technique
higher-order modes and for proper analysis it is necessar
use nonlinearized equations~3!. Hence, we now concentrat
solely on the investigation of the stability of the fundamen
modes. Substitution of expression~8! into shortened wave
equations~3!, subsequent linearization, and the derivation
the real and imaginary parts yields the following system
linear equations:
0-6
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]u

]j
52Lv,

~9!
]v
]j

5Ru,

where linear operatorsL andR, depending on the transvers
coordinateh, have the following form in the area of nonlin
ear photorefractive medium (h,0):

L5
1

2

d2

dh22b1p1
r2

11Sr22
2mr

11Sr2

dr

dh
,

~10!

R5L1
2r2

~11Sr2!2 1
4mSr3

~11Sr2!2

dr

dh
2

2mr

11Sr2

dr

dh

2
2mr2

11Sr2

d

dh
.

Note that in the area of linear dielectric (h>0) operators
L5R5(1/2)(d2/dh2)2b. One can see from the form o
expressions~10! that unlike for the medium with local non
linear response the linear operatorR is not self-adjoint in the
medium with nonlocal diffusion component of nonlinear r
sponse due to the presence of the last term, containing
derivative of the first order on coordinateh, whereas linear
operatorL is still self-adjoint. The last circumstance preven
an attempt to perform the standard procedure of derivatio
the VK stability criterion, since eigenvalues of the combin
operatorsLR andRL may now be complex~this will indi-
cate the presence of perturbations experiencing, beside
ponential growth, simultaneous harmonic oscillations alo
the j axis!, but not purely real~such a facts corresponds
the existence of either exponentially growing perturbatio
or perturbations experiencing harmonic oscillations! as it
was in the medium with local nonlinear response. The f
lowing properties of the operatorsL andR are

Lr50, ~11a!

R dr

dh
50, ~11b!

R dr

db
5r, ~11c!

will be used further and can be easily verified by direct s
stitution ofr, dr/dh, anddr/db into expressions for opera
tors ~10!.

We will search for solutions of system~9! in the form of
decomposition on all possible perturbations with various
crements

u~h,j!5ReS (
d

Cdud~h!exp~dj! D ,

~12!

v~h,j!5ReS (
d

Cdvd~h!exp~dj! D ,
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whered is the complex increment~growth rate! of perturba-
tion, Cd is the arbitrary constants, andud and vd are the
complex input profiles of the perturbation. Under the sub
tution of series~12! into the linear system~9! and the equa-
tion of terms with the same exponential coefficients exp(dj),
one can obtain the following final system of linear equatio
with real linear operatorsL andR:

dud52Lvd ,
~13!

dvd5Rud .

First of all we solved system~13! numerically, taking into
account the vanishing asymptotics of the perturbation ah
→6` and the continuity conditions at the interface betwe
the dielectric and photorefractive medium. We were mai
interested here in the calculation of the dependencies of
real and imaginary parts of the incrementd as functions of
propagation constantb. Numerical integration shows that fo
positive values of the guiding parameterp system Eqs.~13!
allow only solutions corresponding to the purely imagina
incrementsd, so perturbed surface waves conserve the in
structure upon propagation whereas arbitrary small pertu
tion will experience harmonic oscillations along the longit
dinal j axis. Dependence of the imaginary part of the inc
mentd on the propagation constantb for the positive guiding
parameterp is presented in Fig. 6~a!. Note that the given
value of the propagation constantb can correspond to severa
perturbation modes with different incrementsd @several so-
lutions of the system~13!#. As b→p1S2122m2S22 the
number of possible perturbation modes infinitely increa
@Fig. 6~a! shows dependencies Imd(b) only for the first three
perturbation modes# and corresponding values of incremen
tend to zero. Curves corresponding to the different pertur
tion modes branch off the strait line Imd5b2p. Figures
6~c!–6~e! show normalized perturbation profiles~u and v
components! for the propagation constant valueb51.4 @at
this value of propagation constant there exist only three
lutions of system~13!#. Since for positive values ofp the
incrementd is purely imaginary it follows from the system
~13! that at purely real componentv componentu must be
purely imaginary. One can see that despite the fact that
corresponding fundamental surface wave has on nodes@Fig.
6~b!# the lowest order perturbation mode has one node@Fig.
6~c!#, the perturbation mode of the next order has two no
@Fig. 6~d!#, etc. With an increase of the perturbation ord
profiles of u and v components practically coincide@Fig.
6~e!#. Note that for the surface modes of the highest ord
calculations in the frames of the model~8!–~13! also indicate
the absence of exponentially growing perturbations for po
tive p; however, this fact is not sufficient to prove the stab
ity due to the strong restrictions imposed on the perturba
profile by conditionsu, v!r.

The picture, however, qualitatively changes for the ne
tive values of guiding parameterp. In this case system~13!
allows solutions corresponding to the purely real incremend
in the certain interval of the propagation constant values@see
the inset in the Fig. 7~a!#, i.e., exponentially growing pertur
bations were found. Outside this interval only solutions c
0-7
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responding to the purely imaginary increments exist@Fig.
7~a!#. Thus in the case of the medium with a diffusion com
ponent of nonlinear response~as for the case of the
dielectric–Kerr medium boundary@2#!, at negative values of
guiding parameterp we still did not find mixed solutions
corresponding to increments with simultaneously nonze
real and imaginary parts, i.e., real and imaginary parts of
increment goes to zero at the same pointb0 . One can clearly
see it if we compare dependencies Imd(b) and Red(b) pre-
sented in Fig. 7~a!. Typical examples of surface wave an
profiles of perturbation that correspond to the purely re
value of incrementd are presented in Figs. 7~b! and 7~c!. As
one can see the unstable surface mode has a long slo
decaying tail in the linear medium@Fig. 7~b!#. Profiles of the
surface mode@Fig. 7~d!# and perturbation modes@Figs. 7~e!–
7~g!# corresponding to the purely imaginary incrementsd are
analogous to that presented for the case of positive guid
parameterp. One can see that system~13! has no localized
solutions in the certain region of propagation constants~part
of the curve showing an imaginary increment for the lowe

FIG. 6. ~a! shows the typical dependence of the imaginary p
of incrementd on the propagation constantb for the fundamental
surface wave and positive guiding parameterp. ~b! shows the pro-
file of the stable fundamental surface wave forb51.4 whereas~c!–
~e! show profiles of the corresponding normalized perturbati
componentsu and v. Guiding parameterp50.5, parametersm
50.1, S51.0. All quantities are plotted in arbitrary dimensionles
units.
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order perturbation mode in this region is cut off by the str
line Imd5b that divides the areas of harmonic~alongh! and
exponentially decaying ath→6` perturbations!. Direct
comparison of the results of integration of system~13! pre-
sented in the Figs. 6 and 7 with corresponding dispers
diagrams for positive and negative values of guiding para
eter p ~Figs. 4 and 5! shows that as for the case of th
dielectric–Kerr medium boundary fundamental surfa
waves at the boundary dielectric–photorefractive medi

t

n

FIG. 7. ~a! shows the typical dependence of the imaginary p
of incrementd on the propagation constantb for the fundamental
surface wave and negative guiding parameterp. The inset in~a!
shows the dependence of the real part of incrementd on the propa-
gation constantb. ~b! shows a profile of the unstable fundamen
surface wave forb50.03 whereas~c! shows profiles of the corre
sponding normalized perturbation components.~d! shows a pro-
file of the stable fundamental surface wave forb50.72 whereas
~e!–~g! show profiles of the corresponding normalized perturbat
components. Guiding parameterp520.2, parametersm50.1, S
51.0. All quantities are plotted in arbitrary dimensionless units
0-8
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with drift and diffusion nonlinearity are stable ifdw/db.0
and unstable ifdw/db,0.

The latter conclusion that pointb0 wheredw/db50 de-
rives the areas of existence of stable and unstable mode
also be proved analytically if one take into account that
this pointb0 both Imd and Red goes to zero. Whend50 the
system~13! transforms into two independent linear equatio
for the perturbation components:

Lv50,
~14!

Ru50.

In the volume of the photorefractive medium~at h→2`!
amplitude of the localized surface wave quickly decreas
When amplituder is small enough, nonlinear terms in E
~4b! describing the wave profile can be neglected, provid
that asymptotic expressions for the surface wave profile
its transverse derivative are given byr;dr/dh;exp@(2b
22p)1/2h# as h→2`. In the area of linear dielectric (h
>0) the first of Eqs.~4! have exact analytical solutio
r(h)5r0 exp@2(2b)1/2h# wherer05r(h50). Correspond-
ing asymptotic expressions for the linear operatorsL andR
have the form@see formula~10!#:

Luh→2`'Ruh→2`'
1

2

d2

dh2 1p2b,

~15!

Luh>05Run>05
1

2

d2

dh2 2b.

As far as we consider localized perturbations, substitution
the expressions~15! for the operators into Eqs.~14! leads to
the following asymptotic expressions for the perturbat
profiles: u;v;exp@(2b22p)1/2h# as h→2`, and u
5u0 exp@2(2b)1/2h#, v5v0 exp@2(2b)1/2h# for h>0, where
u05u(h50) and v05v(h50). Comparing linear equa
tions ~14! with Eqs.~11a! and~11b!, and taking into accoun
the coincidence of the asymptotic expressions foru, v, r,
and dr/dh, one obtains that at zero increment value t
perturbation componentv is proportional tor and compo-
nentu is proportional todr/dh everywhere in the dielectric
and photorefractive medium if continuity conditions a
matched.

Further we will show that for continuity condition
matching it is necessary to have zero coefficient of prop
tionality betweenu anddr/dh, i.e., the only solution of the
linear equationRu50 that matches to the continuity of th
function u and its first derivativedu/dh at the boundary
point h50 is trivial solutionu50. Since in the area of di
electricr5r0 exp@2(2b)1/2h# andr, dr/dh match the con-
tinuity conditions, one can write thatdr(h50)/dh5
2(2b)1/2r0 and d2r(h50)/dh252br0 and substitute this
expressions into Eq.~4b! ~supposing also continuity o
d2r/dh2!. This gives the following value of amplituder0 :

r0
252

p

11Sp123/2mb1/2. ~16!
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For the positive guiding parameterp the right part of expres-
sion ~16! is negative whereas the left one is assumed to
positive. It means that the second derivatived2r/dh2 of the
surface wave profile is not continuous at the boundary~at
h50! whereasr anddr/dh are continuous.

For negativep substitution of the amplitude~16! and the
corresponding derivativedr(h50)/dh into expressions~5!
for potentialU and kineticT energies results in negative tot
energyU1T at which localized surface waves are impo
sible ~see Fig. 1!, and hence one again obtains that the s
ond derivatived2r/dh2 is not continuous. This in turn show
that the transverse derivative of the perturbation compon
du/dh is not continuous at the boundary ifu;dr/dh with a
nonzero coefficient of proportionality, and hence the on
solution of the linear equationRu50 matching the continu-
ity conditions is the trivial solutionu50.

Let us consider the small shift« of the propagation con-
stantb from the ‘‘stationary’’ valueb0 corresponding to the
zero incrementd50 toward the area of propagation consta
values corresponding to the unstable modes. As it was sh
above, atd50 perturbation componentsu50 and v;r.
This allows us to write expressions for increment and per
bation profiles corresponding to newb in the following form:

u~h!5um~h!«k,

v~h!5ar~h!ub5b0
1vm~h!« l , ~17!

d;«n,

whereum(h) and vm(h) are the arbitrary functions of the
transverse coordinate describing the modification of the p
turbation profile;a is the arbitrary coefficient. Linear opera
tors ~10! also change with a change ofb and can be ex-
pressed in the form of expansions in a Fourier series,

L5Lub5b0
1«

]L
]bU

b5b0

1
1

2
«2

]2L
]b2U

b5b0

1¯ ,

~18!

R5Rub5b0
1«

]R
]b U

b5b0

1
1

2
«2

]2R
]b2U

b5b0

1¯ .

Substituting perturbation profiles in the form~17! and opera-
tors ~18! into system~13! and equating the terms of the low
est ~with respect to the small parameter«! orders, one can
obtain that indexesl 51, k5n and, for instance,

Rub5b0
um~h!;r~h!ub5b0

. ~19!

Upon comparison of expression~19! with Eq. ~11c! one can
conclude that the perturbation profile@see formula~17!# is
proportional to

u;um;
]r

]bU
b5b0

. ~20!

Further we will use the fact that the perturbation compon
u is orthogonal to the exact surface wave profiler, i.e.,
0-9
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E
2`

`

u~h!r~h!dh50. ~21!

This expression is a consequence of the first of equat
~13! and can be obtained from the latter equation after
multiplication byr and integration overh if ones takes into
account that linear operatorL is self-adjoint andr is an
eigenfunction ofL. Finally substitution of expression~20! in
~21! leads us to the conclusion that the energy of the fun
mental surface modes at the boundary between the li
dielectric and photorefractive medium with drift and diffu
sion nonlinearity as a function of propagation constantb has
a local extremum in the pointb0 that derives the stable an
unstable modes just as in the case of the dielectric–K
medium boundary@1–6#, i.e.,

]

]b E2`

`

r2~h!dh50. ~22!

Stability of the surface modes in the areas around transi
point ~22! for each separate configuration should be cons
ered numerically. We note that for our case modes w
dw/db.0 were stable, whereas modes withdw/db,0 were
unstable as for the dielectric–Kerr medium boundary. Thu
is shown that VK stability criterion remains legible for th
case of solitons in a photorefractive medium even in
presence of a strong diffusion component of nonlinear
sponse~numerical integration was performed up to the v
ues of m of the order of unity when the influence of th
pt
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diffusion component is comparable to the influence of foc
ing drift nonlinearity and strongly affects mode profiles!.

V. CONCLUSION

In conclusion let us briefly list our main results. We co
sider surface waves at the interface between the linear die
tric and photorefractive medium with drift and diffusio
components of nonlinear response. Using the simple ana
between the surface waves and mechanical particles situ
in the certain potential and subjected to the influence of n
linear friction we have shown that there are three types
surface waves possible at the interface under considera
delocalized, shock, and localized surface waves. Only
last type of photorefractive surface waves have limited
ergy. It is shown that the influence of the diffusion comp
nent of the photorefractive crystal response results in str
asymmetry of the surface wave profiles. Typical profiles
the localized surface waves and corresponding disper
diagrams are calculated numerically. We also both num
cally and analytically investigated stability of the obtain
surface modes and showed that VK stability criterion deriv
for local saturable or Kerr materials remains legible even
the presence of the strong nonlocal diffusion componen
the PRC response.
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