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Stability and formation of localized surface waves at the dielectric—photorefractive crystal
boundary
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We consider specific features of the formation of localized surface waves at the interface between linear
dielectric and photorefractive crystals with a nonlocal diffusion component of nonlinear response. Profiles of
the surface waves are numerically found and guiding properties of the surface are investigated. Stability of the
obtained surface waves is considered and it is shown that the well-known Vakhitov-Kolokolov stability crite-
rion derived for the local Kerr or saturable material remains legible for the medium with a nonlocal diffusion
component of nonlinear response.
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[. INTRODUCTION waves actually have infinite energy due to the presence of the
long slowly decaying oscillating tails going away into the
Among the classical problems of nonlinear optics is thevolume of the photorefractive samplsee Ref[13] for ex-
problem of propagation of the laser beam near the boundangerimental observation of such wayeSormation of the sur-
of two media exhibiting different optical properties. The face wave in this case occurs due the interference between
most interesting from the practical point of view is the casewaves reflected from the boundary and Bragg grating formed
of a boundary between nonlinear optical materials. Thdn the photorefractive sample volunid2]. Later [14,15
propagation of the laser beams near the boundaries betwe&Fble near-surface localized beam propagation in the pres-
Kerr materials(see, for instance;1—6] for the case of the €Nce of both drift and diffusion photorefractive nonlinearity

linear-nonlinear boundary andi7] for the case of the (in the limit of a high dark irradiance levelas interpreted
nonlinear-nonlinear boundary quadratic optical materials as the result of the stable balance between the effect of total

: internal reflection from the less optically dense linear me-
[8], as well as propagation at the boundary of the Kerr mell s e
. . . . .~ dium and the effect of beam self-bending due to the diffusion
dium and absorbing mediufi9] were already considered in component of photorefractive nonlinear respofige-19. In

g][ga: det‘?l' Frc]ZTha lmathebmatlcal .E’ﬁmt of ;/lew the pr?blemeef. [15] an analogy between optical solitons and mechani-
ot Interaction of the faser beam with a surface consists o ?al particles was used to derive an ordinary differential equa-

solution of the equation that belongs to the wide class ofjo ot the second order describing the trajectory of the near-
nonlinear Schrdinger equations with coefficients, depending boundary beam propagation.

on the transverse coordinates. The absence of the translation The transient regime of the near-boundary beam propaga-

symmetry in the transverse direction results in this case ifion has also gained steady attenti@—22. It was moti-
the appearance of the structures localized at the boundagated by the fact that the main feature of any photorefractive
between different materials that nevertheless cannot be foungkvise is slow response time—but in general the response
with the aid of the methods of the inverse scattering techtime is inversely proportional to the light intensity. However,
nique even in the case of Kerr nonlinearity. the laser beam can be self-channeled along the surface of the
Starting from the simplest cases of Kerr nonlinear opticalphotorefractive crystal, thus enhancing the intensity in the
materials investigations were carried out to the material;arrow surface layer and speeding up the photorefractive re-
with more complicated nonlinear properties. Recent achievesponsg22]. It was shown[20] that in the transient regime
ments[10,1] in the generation of optical solitons in photo- the diffusion component of photorefractive response leads to
refractive crystals exhibiting high nonlinear properties at lowthe strong light-induced scattering known as the fanning
light intensities have encouraged intense investigations of theffect.
photorefractive surface waves. In Rgt2] specific proper- Another intriguing and important issue is the stability of
ties of “delocalized” photorefractive surface waves at thethe localized surface wavg¢2-7]. It was shown i 23] that
boundary between the unbiased photorefractive medium witthe generalized Vakhitov-KolokoloWK) stability criterion
purely diffusion logarithmic nonlinearity and linear dielectric that was initially derived for the solitons in a saturable fo-
or an ideal metal were described. Such delocalized surfaceusing optical medium for two transverse dimensi¢24]
provides also the stability of the fundamental modes on ar-
bitrary nonlinear waveguiding of both one and two trans-
*Corresponding author. Email address: azesh@gateway.phygerse dimensions, including solitons of local homogeneous
msu.su material and nonlinear surface waves at the interface be-
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tween two local homogeneous nonlinear materials. The simwith an arbitrary spatial period will grow up exponentially in
plicity of the method that enables us to make a conclusiorthe propagation process. However, the rate of this process
about the stability by reading the corresponding dispersioistrongly depends on the spatial period of perturbation and
diagramgdependencies of the mode energies on the value dluickly decreases with a decrease of the perturbation period.
propagation constantvithout further calculations makes it ~ To describe the propagation of the laser beam in the area
very attractive and calls for the further extension on the case@f a nonlinear photorefractive mediunx<0) we proceed

of more complicated models. At the present moment VKWith consideration of the material response of the medium,
criterion with corresponding modifications was extended toVhich in the two-dimensional case can be described by the
the surface waves in multilayered optical structures, solitonf0!lowing standard system of equations for the internal

in quadratic optical materials, solitons in the medium with SPace-charge fielis(x,z,t) produced by the photoinduced

competing quadratic and cubic nonlinearities, and solitons o?edistribution of the spatial charg85]:

the set of incoherently coupled nonlinear Salinger equa- + ;
. i . ang dng 1 9]
tions (for the comprehensive review see Ref25-34). — = —
However, stability of the surface waves in the presence of Jt gt e dXx
the nonlocal component of the nonlinear response have not

.
been addressed so far. d N .
. —=o(l+I Ng—nNg)—vyNNy
In the present paper we consider surface waves at the ot o darkd (Mg =N ) = ¥rNeNg
interface between the linear dielectric and photorefractive (1)

medium with local drift and nonlocal diffusion components
of the nonlinear response for the arbitrary dark irradiance
level. We have numerically found profiles of the surface
waves, investigate guiding properties of the boundary, and JEs. 4me

perform the linear stability analysis of the obtained solutions. x e (NetNa—Ng).

| ane
j=elng(Eo+Egs)— gkaW-

Hereng, ng, ng , andn, are the concentrations of the free
[l. THEORETICAL MODEL carriers, donors, ionized donors, and acceptors, respectively;
j is the charge currentr is the photoionization cross section;
| is the intensity of the light beamy,, describes the dark
irradiance level that can be increased due to the introduction
of the incoherent background illuminatioty, is the pair re-

We consider propagation of the slit laser be@ransverse
extent of the beam along tlyeaxis greatly exceeds that along
the x axis) in the direction of the longitudina axis near the

boundary between the linear dielectric and nonlinear photo L o
refractive medium with drift and diffusion components of combination rateg and{ are the charge and mobility of the

nonlinear response. It is supposed that the linear dieIectriEee carriersnegative for the electrons and positive for the

occupies an areg=0, whereas the nonlinear photorefractive t.0|93; Z.'S thlf ;tattrl]c %'e:fcmc constatnt _i,’_f. thtﬁ phcb)torlelj[rac—
medium occupies an area<0. The laser beam is linearly Ve Medilm.ky, 1S the bBollzmann constant, IS the absolute

polarized along the axis. The width of the transition area temperature; ané, i.s thg static electric fie!d applied to the
between the linear and nonlinear medishich is always photorefractive medium in the transverselirection. In the

nonzero in a real experimenis supposed to be small com- area of linear dielectricx=0) material equations take the

pared with the characteristic extent of the laser beam ixthe form of a I|nee_1r “?'a“o” between_electncaj d|sp|acemen_t and
nternal electric field. The material equations in both linear

direction and does not affect the profiles of the surfacd ; .
waves. As will be shown later, propagation of the laser bean"fmd ”0“"”9?“ media are completed by the stqndard shprtened
' ave equations for the complex slowly evolving amplitudes

in such a geometry can be described with one shortene\Hf he liaht field
wave equation regarding the compbexiependent amplitude ©' the light field A(x,z,1),
of the light field. Inclusion of they component of the optical

2
field obviously results in a more complicated set of coupled i %: — i 6_'2 for x=0,
nonlinear equations for the polarization components of the 9z 2kg dx
surface waves and the appearance of a number of new effects 5 s 2 5 2
affecting, for example the stability of the surface waties, i oA 1 A Kk _koA_ k= SnA for x<0
the appearance of polarization instabilignd their proper- Jz 2ko X2 2kg kon '

ties with respect to interaction with other light beams. More-

over, even the propagation of one-component slit lasewritten in the paraxial approximation. In Eqs2) kg
beams that are widely used in photorefractives for the veri=wny/c is the wave number in the area of the linear dielec-
fication of new theoretical predictions is affected by the de-ric; k=nw/c is the wave number in the area of the photo-
velopment of modulation instability. In our case such insta-refractive mediumn, is the dielectric refractive index is
bility will unavoidably result in gradual filamentation of the the unperturbed linear refractive index of the photorefractive
near-surface laser beam in the transvgrd@&ection because medium; w is the carrying frequency of the laser radiation;
the presence of the diffusion component of the photorefracén= — (1/2)r ;#n°Es{X,2,t) is the nonlinear perturbation of
tive response extends the bandwidth of the modulation instahe refractive index, arising under the influence of the inter-
bility domain up to infinity, so any-dependent perturbation nal space-charge fielHs{(X,z,t) through the linear electro-
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optic effect; o is the effective electro-optic coefficient. tions of continuity of both functiomj anddg/ 37 at the point
Equations(1) and(2) form the closed self-consistent system =0 that corresponds, respectively, to the continuity of the
that enables one to describe the interdependence of the sgangential component of the electric field and normal com-
tial distribution of the light intensity in the incident beam and ponent of the magnetic field at the boundary. There are sev-
internal space-charge fiel. in the area of a nonlinear pho- eral regimes of propagation of the laser beam near the
torefractive medium or free diffraction in the area of a linearboundary[15]. If the laser beam is launched into the photo-
dielectric. refractive medium far from the boundary, it self-bends to-
Further we consider material equatiofi$ in the steady ward the boundary in the process of propagation, thus ac-
state, wherg/dt—0. Under typical for the photorefractive quiring a definite incidence angle when it approaches the
crystals assumption,>n,, the systen{1) can be resolved boundary. If the incidence angle exceeds the total internal
with respect to the internal space-charge fi€lg(x,z,t), reflection angle, the beam experience total internal reflection
which in the first ordei(see for derivatiorf18,19) is given  that results in periodic near-boundary oscillations. If the in-
by expressionE.=[Eql ganct (KeT/€)(d1/3x)]1(1+ 14400 L.  Cidence angle is less then the total internal reflection angle,
Substituting an internal field in such form into the shortenedthe beam can be partially refracted into the linear dielectric
wave equationg2) and performing the standard normaliza- medium and the experience diffraction spreading. Formation
tion procedure one can finally obtain the following evolution of the stationary surface waves corresponds in this case to
equations for the normalized complex amplitude of the lightthe launching of the beam close to the boundary and the
field q( 7, &) in the areas of linear dielectricy=0) and non- ~ €xact balance between the competing processes of reflection

linear photorefractive mediumy<0): from a less optically dense linear dielectric and beam self-
bending toward the boundary. Equations analogous to Egs.
. dJq 1 d%q (3) were used in Refl15] to derive the ordinary differential
'3_52_5(9_772 for %=0, (33 equation of the second order describing a near-boundary
beam trajectory in the limit of a considerable dark irradiance
99 1 9°q qlql? q Jlql? level (that corresponds t8—0).
I (9—5 ) an pq 1+9q? tu 1+9q? a7 Typical experimentally achievable values of paramegrs
and u for the SnBaNb crystal and beams of the He-Ne laser
for 7<O. (3b)  with intensities of the order of\W/cn? at a wavelength

=633 nm, for the input beam radiug~50um, the effec-

Here q(7,£)=(KLgit/KoL1ed “?A(7,€)lganc is the dimen-  tive electro-optic coefficient o5=2.5< 10 °m/V, the un-
sionless amplitude of the light field\(#,&) is the slowly  perturbed refractive inder=2.35, the crystal temperature
varying envelope of the light fieldy=x/x, is the normal- T=300K, and an external electric fiel,=6x10°V/m is
ized transverse coordinate; is the characteristic transverse of the order ofS~1 andu~0.1. Guiding parametey varies
scale (for example, the width of the input laser beand  within rather wide frames depending on the difference be-
=27/Lgs is the normalized longitudinal coordinatd;q¢  tween the refractive index, of the linear dielectric and
=kox3 is the diffraction length in the area of linear dielec- unperturbed refractive indem of nonlinear photorefractive
tric, corresponding to the chosen transverse sggleL,s  medium.
=2/(kr4N’Ey) is the nonlinear refraction length; the satura-  In this paper we concentrate solely on the investigation of
tion parameteB=kgL .t/ kL describes the relative strength specific features of the stationary surface waves existing at
of the local drift component of the nonlinear response; pathe boundary, we numerically calculate profiles of the sur-
rameteru=k,T/(XoeE,) describes the relative strength of face waves of the different orders and corresponding disper-
the nonlocal diffusion component of the nonlinear responsesion diagrams, and both numerically and analytically con-
guiding parametep=(1/2) (k2—k§)xS—S’1 describes the sider stability of the obtained solutions with respect to small
waveguiding properties of the boundary and can take botierturbations of the input profiles.
positive and negative sigriisorresponding to the two differ-
ent types of reflection from the interface in linear approxi-
mation: “internal” reflection when the refractive index of IIl. STATIONARY PROFILES OF THE SURFACE WAVES
photorefractive materials exceeds that of the dielectric and i i ) ,
“external” reflection when the dielectric have higher refrac- 10 find stationary localized solutions of the system of
tive index than photorefractive matebial eq_uatlons(3),_ describing profiles of_ the surface waves we

The first term in the right-hand side of E€@b) describes Writé the field of the wave in the formq(7,¢)
the diffraction spreading of the light beam; the second one=P(7)exp(b¢), where a purely real wave shapéz)—0,
accounts for the beam refraction in the presence of the guid®S 7— =, andb being the real propagation constant. Sub-
ing structure(boundary; the third one describes the self- Stituting a wave field in such form into the shortened wave
focusing of the beam due to the local drift component oféquationg3) we obtain th.e ordinary differential equations of
nonlinear response and, finally, the last term accounts for thi¢ second order regardingz),
effects of self-bending of the beam in the propagation pro-
cess due to the stimulated transfer of the energy from the ,
lower-frequency spatial components into the high-frequency d—p=2b for n=0 (4a)
components. Equatior(8) should be completed with condi- d»? p 7=
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d’p 2p°  4up® dp 41
W—Z(b—p)p— l+Sp2 + l+Sp2 ﬁ for 77<0(,4b)

where bothp anddp/d» should match the continuity condi-
tions at the boundary poing=0. Due to the saturable char-
acter of the photorefractive nonlinear response and the pres-
ence of the nonlocal diffusion component the system of
equations(4) cannot be solved analytically and numerical
integration is necessary. To find the stationary solutions of

(b) 0>p-b>-1/S

potential energy U

24

system(4) we use the shooting method that enables one to (C) p—b<—1/S
transform a two-point boundary problem into a Caushy prob- -4 . . . . . .
lem. The starting conditions were chosen using the fact that 0 1 2 3 4 5 6
in the area of linear dielectric the first of Eq&l) admits wave amplitude P

exact analytical solutiop(7)=mexd —(2b)"?5], wherem
is the free parameter describing the strength of the nonlinear FIG. 1. Typical profiles of the potentidl(p) for the different
effects. Varying the values of parametéxsS u, andmwe  relations between propagation constanguiding parametep, and
obtain various profiles of the surface waves available at th@arameterS All quantities are plotted in arbitrary dimensionless
boundary between the linear dielectric and photorefractive/nits.
medium. Note that the saturation paramefeis inversely
proportional to the static electric fiel, applied to the pho- tative transformations with a change of the sign of the propa-
torefractive medium. The diffusion parameteris also in-  gation constanb, which in turn affects the character of the
versely proportional to the static electric fielh, and in-  Possible particle motions described by E@®, and, finally,
creases with a decrease of the input beam radius. Paramef¥gfiles of corresponding surface modes.
min fact defines the amplitude of the nonlinear surface wave In the case of the positive difference between the guiding
and consequently its propagation constant parameter and the propagation consantb>0 potentialU

It is rather convenient to classify all possible types ofhas one stable stationary pojmt=0 (curveain Fig. 1), i.e.,
solutions of the systeni4) using quite general treatment, this point is a local minimum of potential so dU(p
based on the direct analogy of Eqé) for the envelope of =0)/dp=0 and d?U(p=0)/dp?>>0 (note that the local
the surface modes and the equation describing the motion @haximum corresponds to the negative second derivative
the mechanical particle in the potential well with nonlineard?U/dp?). In this case a mechanical particle with nonzero
dissipation, where the wave amplitugdds equivalent to the initial energy U+T describing the corresponding surface
particle position(or shift from the equilibrium point and ~ mode will experience decaying oscillatiofwith a change of
transverse coordinate is equivalent to time. One can see 7 in the “negative” direction from 0 to—o°), moving peri-
that in the area of the nonlinear photorefractive medium ( odically from the right wing of the potential welpositive p)

<0) Eq.(4b) can be rewritten in the following form: to the left wing (negativep), and consequently losing its
energy due to the influence of nonlinear friction. As-
d 4up? (dp\? —o a particle asymptotically approaches the stable station-
E(U“L )= 1+—sz(ﬁ) ' ary pointp=0. This type of particle motion corresponds to

the well-knowndelocalizedsurface wave$12] having long
1 oscillating tails in the volume of the photorefractive medium.
U= (——b+ p)pz— —In(1+ Sp?), (5) Typical profiles of such waves are shown in Fig. 2. Careful
S numerical integration of Egs(4) and an analysis of the
) asymptotic  expression p(n— —»)~|un| Y2coq[2(p
T 1 (d_P) —b)]¥25} for the wave shapes at— —o show that delocal-
2\dyn) "’ ized surface waves have infinite energy due to the very slow
decay of the oscillating tail. Hence, stability of the delocal-
whereU andT are, respectively, potential and kinetic ener-ized surface waves is still an open question.
gies of the particle with unity mass, and the right-hand side In the case of the values of propagation constemts
of the first of Eqgs.(5) describes the force of nonlinear fric- matching the relations 8 p—b> —1/S the potentialU has
tion which is proportional to the square of the particle speedwo stable p==+{(b—p)/[1—S(b—p)]}*? (local mini-
dp/d#n and parameter describing the strength of diffusion mumsg and one unstable=0 (local maximum stationary
effects. The typical profiles of the potentibl(p) for the  points (see curveb in Fig. 1). A mechanical particle with
various values of propagation constémtguiding parameter nonzero initial energyJ + T will be periodically transferred
p, and saturation paramet&rare presented in Fig. 1. Note in this case from the right wing of the potential well into the
that the potentiall (p) is symmetric with respect to the point left wing. However, the particle consequently loses its en-
p=0, so in the figure we present only the right part of theergy due to the influence of nonlinear friction and at the
potential corresponding to the positive valuespoOne can  certain momengat certainy) the kinetic energy becomes too
see that the profile of the potential wellexperiences quali- small for the next transfer through the unstable stationary
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FIG. 2. Profiles of the delocalized surface waves with different
amplitudes. Guiding parametgr=0.5, propagation constart
=0.4, parameterg=0.2, S=1.0. All quantities are plotted in ar-
bitrary dimensionless units.

FIG. 4. Dependencies of the surface mode enexggn the
propagation constaru for the first three surface modes for positive
guiding parametep=0.5. The inset shows profiles of the surface
modes of the first three orders for=1.0. Parameterge=0.1, S

point p=0, so the particle either asymptotically approaches™ 1.0. All quantities are plotted in arbitrary dimensionless units.
the unstable stationary poipt=0 or remains located in one

of the wings of the potential well and asymptotically ap- Most interesting from a practical point of view is the case
proaches one of the stable stationary poipts ={(b  when a particle describing the profile of surface waves as-
—p)/[1—S(b—p)]}¥2 The second case corresponds to theymptotically approaches an unstable stationary ppistO
shock surface wavd$6] having infinite energy and nonzero (we still consider the interval  p—b> —1/S). This situa-
asymptotics ayy— — . Typical profiles of the shock surface tion corresponds to the formation of thecalized surface
waves of the first three orders are presented in Figursher ~ waves. There are two conventionally distinct types of the
we define the order of the surface wave as a number of wav@calized surface waves corresponding to the negative and
zeros plus one One can see from Fig. 3 that at the— positive values of the guiding parameterTypical profiles

—o surface shock waves have the form of decaying oscillaof the localized surface waves for a positive valuepadre
tions superimposed at the constant background where heightesented in the inset in Fig. 4, whereas profiles for a nega-
is given by expressions for position of the stable stationaryive value ofp are presented in Fig. 5. The main difference
point. The amplitude of oscillations and decay rate increaseBetween these two regimes is that the surface wave corre-
with an increase of the value of the diffusion parameter sponding to negativp can have a long slowly decaying tail
Note that the shock waves presented above are highly uri linear medium so the considerable part of the energy of
stable in the diffusion medium since they have zero harthe surface wave can be concentrated in the area of the di-
monic in the spatial spectrum and are affected by modulatioglectric, whereas for positivp the part of the energy con-
instability. centrated in the nonlinear photorefractive medium is always
higher than that in the dielectricompare Figs. 4 and)5
This is a consequence of the fact that for negagivelation

8 b—p>0 is matched for alb=0, thus providing unlimited
6 3 growth of mode energy
Q. 4] w
2 W:f p?*(n)dn (6)
2 o
. 1
3 0] as b—0 according to the exact expression for the surface
g wave shape in the area of linear dielectrig(7)
T 9 =mex —(2b)"?5] that follows from Eq.(4a. Dispersion
diagramgdependence of the mode energyn the value of
_420 ; - : , , the propagation constahyj for the first three surface modes
- -15 -1 5 0 5

and negative guiding parameteare shown in Fig. 5. As for
coordinate T the case of a boundary between the dielectric and the Kerr
‘ medium[2] dependence of energy on the propagation con-
FIG. 3. Profiles of the shock surface waves of the first threeStant is nonmonotonic. For the case of positive values of the
orders. Guiding parameter= 0.5, propagation constaht=1.0, pa- P mode energyw goes to zero aB—p and monotonically
rametersu=0.2, S=1.0. All quantities are plotted in arbitrary di- increases with an increase of the propagation constéste
mensionless units. Fig. 4 with dispersion diagrams for the first three surface
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As for the usual saturable optical medium an increase of the
saturation parametes at fixed u andp results in the flatten-

ing of the corresponding profiles of the surface modes, i.e.,
in an increase of the characteristic transverse extent of the
modes(full width at half maximum with the same energies.
Stability of the localized surface modes will be considered in
the next section.

Finally, returning to the example with the mechanical par-
ticle we consider the last case when the propagation constant
b>p+1/S. In this case potential has the only unstable
: stationary poinp=0 (see curvet in Fig. 1). In this case the

mode energy w

00 o1 02 03 finite motion is impossible except for the trivial case of zero
propagation constant b initial energyU+T. A particle with nonzerdJ + T will go
4 6 away fromp=0, which corresponds to infinitely increasing
3 b=0.01| o , b=0.1 oscillations of the light field so it is useless to speak about
E 2 @ surface waves in this case.
5 4 5 2
s S ol
§ 1 § ° IV. STABILITY OF THE LOCALIZED SURFACE WAVES
€ g -2
3 4 To investigate the stability of the localized surface waves

P Modmaten . 0 oordinaten atthe boundary between the linear dielectric and the photo-
: refractive medium with drift and diffusion nonlinearity we

) use the well-known linear stability analysis which is valid at

FIG. 5. Dependencies of the surface mode enaigyn the the initial stage of perturbation development. Note that an

propagation constatitfor the first three surface modes for negative N 2 .
guiding parametep= —0.5. Subfigures show profiles of the surface e_arller linearization technique was used mostly for the analy-

modes of the first three orders for propagation constant vdiues SIS O_f the stability O_f optical Solitons_in chal medium, where
=0.01 andb=0.1 corresponding to the different signs aiv/db. nonlinear perturbation of the refractive index depends solely

Parameters.=0.1, S=1.0. All quantities are plotted in arbitrary ©N the light intensity and does not contain derivatives of light
intensity on transverse coordinaté®5—34. In our case,
however, the presence of a nonlocal diffusion component of
modes. It will be shown further that this characteristic be- the nonlinear response strongly affects dispersion diagrams
havior of dispersion curves in the presence of a nonlocajprofiles of corresponding surface wayesd also breaks the
diffusion component of photorefractive response can be as;ssumptions that are usually used for the derivation of wide-
sociated with Ilnear stability or instability of correspondmg pread VK criterion provided that this criteridif it is ap-
surface modes just as for the case of the local Kerr materiagjicapie in nonlocal materialscalls for the separate justifi-
Note_ the following char.acten.stlc feature of the profiles Ofcation. We will search for the solutions of Eqf®) that
Iocaﬁzed surface waves: starting fr_om the vall_Jea si2 the describe the propagation of the surface waves with perturbed
profiles of the 0+ 1)-order wave without the first closest to input profiles of the following form:

the boundary period coincide with the profiles of tkerder '
wave without the first half-period. With an increase of mode ) ,
energy the profile of the surface mode becomes more and  A(7.8)=[p(n) +u(n,&)+iv(7.£)]expibé), (8

more asymmetric. This is due to the influence of the diffu-

sion component of nonlinear response. The position of thavhere, as earlierp(n) is the real stationary shape of the
intensity maximum shifts toward the boundary because fosurface wave; functionsi(#n,§) and v(7,&) are, respec-

the compensation of the influence of self-bending effectdively, the real and imaginary parts of the smali,{<p)
(which is approximately proportional to the fourth power of perturbation. Assumption of the small comparative ampli-
the wave amplitudeit is necessary to increase the strength oftude of perturbation, which is a quite general condition for
the boundary effects. As propagation constamipproaches the fundamental surface waves with no nodes, is rather re-
the approximate valug-+1/S the mode energy goes to strictive, however, for the surface modes of higher orders.
infinity—the mode amplitude in this case increases whereahus the small perturbation matching this condition should
the characteristic transverse extent decreases. In the limit & zero at the points where the corresponding surface mode
high amplitudes Eq(4b) can be linearized and admits the goes to zero, so a rather narrow class of perturbations can be
following  analytical  solution p(7)=mexp(2uS 17) considered with the aid of the linearization technique for
xcog (2S5 1—2b+2p—4u’S 2)Y?5], giving the more accu- higher-order modes and for proper analysis it is necessary to
rate thanp+ 1/S estimate of the upper limiting value of the Use nonlinearized equatiok8). Hence, we now concentrate
propagation constart at which localized surface waves are Solely on the investigation of the stability of the fundamental

dimensionless units.

still possible, modes. Substitution of expressi@8) into shortened wave
5 equationg3), subsequent linearization, and the derivation of
1 2 the real and imaginary parts yields the following system of
b=p+<=——. (7) . .
S S linear equations:
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Ju whereé is the complex incremer{growth rate of perturba-

(9—§= —Lv, tion, C; is the arbitrary constants, ands; and v s are the
) complex input profiles of the perturbation. Under the substi-

ov tution of serieg12) into the linear systeni9) and the equa-

— =7RuU, tion of terms with the same exponential coefficients é£p(
& one can obtain the following final system of linear equations

where linear operator§ andR, depending on the transverse with real linear operator£ andR:

coordinatez, have the following form in the area of nonlin-

ear photorefractive mediump<0): U=~ Lus,

(13
d? p? 2up dp 0V s=RUs.
gy PP s Thsay

(10) First of all we sqlvgd syster(]13).numerically, taking. into
2p2 4uSp® dp  2up dp account the vanlsh_lng_ asymp'_[qtlcs of the_ perturbatiom at
=L+ 175,22 + 19592 dr 154S,2 dn — *o and the continuity conditions at the interface between
(1+8p%)7  (1+5p9)" d7y P Hn the dielectric and photorefractive medium. We were mainly
2up® d interested here in the calculation of the dependencies of the
Tirsptdy real and imaginary parts of t_he incremenas functions of
propagation constamit Numerical integration shows that for
Note that in the area of linear dielectrioy&0) operators POSitive values of the guiding paramefesystem Eqs(13)
L£=R=(1/2)(d%d7?)—b. One can see from the form of gllow only solutions corresponding to the purely imaginary
expressiong10) that unlike for the medium with local non- INcrementss, so perturbed surface waves conserve the input
linear response the linear operamiis not self-adjoint in the ~ Structure upon propagation whereas arbitrary small perturba-
medium with nonlocal diffusion component of nonlinear re- tion Will experience harmonic oscillations along the longitu-
sponse due to the presence of the last term, containing tHiinal ¢ axis. Dependence of the imaginary part of the incre-
derivative of the first order on coordinatg whereas linear Mentdon the propagation constafor the positive guiding
operatorZ is still self-adjoint. The last circumstance preventsParametem is presented in Fig. (8). Note that the given
an attempt to perform the standard procedure of derivation ofalue of the propagation CO_nstatntgn correspond to several
the VK stability criterion, since eigenvalues of the combinedP€rturbation modes with different |ncrerplerﬁ$se;v§rjll SO-
operatorsCR andRL may now be complexthis will indi-  lutions of the system(13)]. As b—p+S™"—2u°S™* the
cate the presence of perturbations experiencing, besides éi!mber of possible perturbation modes infinitely increases
ponential growth, simultaneous harmonic oscillations along™i9- 6@ shows dependencies Ib) only for the first three
the £ axig), but not purely realsuch a facts corresponds to perturbation modgsand correspondmg value{s of increments
the existence of either exponentially growing perturbationd®nd to zero. Curves corresponding to the different perturba-

or perturbations experiencing harmonic oscillatioms it ~ ton modes branch off the strait line lov=b—p. Figures
was in the medium with local nonlinear response. The fol-6(C)—6(€) show normalized perturbation profilés and v

R

lowing properties of the operatos and R are components for the propagation constant valire=1.4 [at
this value of propagation constant there exist only three so-
Lp=0, (11a lutions of system(13)]. Since for positive values gb the
incrementd is purely imaginary it follows from the system
dp (13) that at purely real component componentu must be
Rﬁ=0, (11b  purely imaginary. One can see that despite the fact that the
corresponding fundamental surface wave has on nfdeigs
dp 6(b)] the lowest order perturbation mode has one ridde.
R—=p, (110 6(c)], the perturbation mode of the next order has two nodes
db [Fig. 6(d)], etc. With an increase of the perturbation order

b_profiles of u and v components practically coincidé-ig.
6(e)]. Note that for the surface modes of the highest orders
calculations in the frames of the mod8)—(13) also indicate

will be used further and can be easily verified by direct su
stitution of p, dp/d 5, anddp/db into expressions for opera-

tors (10). the absence of exponentially growing perturbations for posi-
We will search for solutions of systef®) in the form of . ) ! . . .

g . . : . ._tive p; however, this fact is not sufficient to prove the stabil-
decomposition on all possible perturbations with various in- o X .
crements ity due to the strong restrictions imposed on the perturbation

profile by conditionsu, v<p.
The picture, however, qualitatively changes for the nega-
u(n, &)= Re( Z Csus(n)exp 55)), tive values of guiding parametex In this case systerfil3)
° allows solutions corresponding to the purely real increngent
(12 in the certain interval of the propagation constant va[see
— the inset in the Fig. (&)], i.e., exponentially growing pertur-
=R C exp(6¢) |, . ) L !
v(7.) e(za o o 1) EXPL5¢) bations were found. Outside this interval only solutions cor-
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FIG. 6. (a) shows the typical dependence of the imaginary part ' G Re(v)
of incrementé$ on the propagation constahtfor the fundamental s 06 () g
surface wave and positive guiding paramgter (b) shows the pro- & o g
file of the stable fundamental surface wavelier 1.4 whereagc)— é ) E
(e) show profiles of the corresponding normalized perturbation g -0.4 8-
componentsu and v. Guiding parametep=0.5, parameters. 0o 09
=0.1,S=1.0. All quantities are plotted in arbitrary dimensionless -5 -0 5 0 5 5 0 S 0 5

units. coordinate coordinate 1

FIG. 7. (a) shows the typical dependence of the imaginary part
responding to the purely imaginary increments exksg. of incrementé on the propagation constahtfor the fundamental
7(a)]. Thus in the case of the medium with a diffusion com- surface wave and negative guiding paramgtefThe inset in(a)
ponent of nonlinear responséas for the case of the shows the dependence of the real part of increndeant the propa-
dielectric—Kerr medium boundafi2]), at negative values of gation constanb. (b) shows a profile of the unstable fundamental
guiding parametep we still did not find mixed solutions surface wave fob=0.03 whereasc) shows profiles of the corre-
corresponding to increments with simultaneously nonzer@ponding normalized perturbation components) shows a pro-
real and imaginary parts, i.e., real and imaginary parts of thdile of the stable_fundamental surface_wave h)FQ.?Z Whereas_
increment goes to zero at the same pbigit One can clearly (e)—(g) show prof!lgs of the corresponding normalized perturbation
see it if we compare dependencies &h) and Res(b) pre- ~ components. Guiding parametpr=—0.2, parameterg=0.1, S
sented in Fig. @). Typical examples of surface wave and =1.0. All quantities are plotted in arbitrary dimensionless units.
profiles of perturbation that correspond to the purely real
value of incremen® are presented in Figs(B) and 7c). As  order perturbation mode in this region is cut off by the strait
one can see the unstable surface mode has a long slowliye Im §=b that divides the areas of harmortaong ) and
decaying tail in the linear mediuffrig. 7(b)]. Profiles of the exponentially decaying aty— =« perturbations Direct
surface mod¢Fig. 7(d)] and perturbation modé¢figs. 1e)—  comparison of the results of integration of systélfi) pre-
7(g)] corresponding to the purely imaginary incremefitre  sented in the Figs. 6 and 7 with corresponding dispersion
analogous to that presented for the case of positive guidindiagrams for positive and negative values of guiding param-
parametep. One can see that systefh3) has no localized eter p (Figs. 4 and 5 shows that as for the case of the
solutions in the certain region of propagation constépést  dielectric—Kerr medium boundary fundamental surface
of the curve showing an imaginary increment for the lowestwaves at the boundary dielectric—photorefractive medium
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with drift and diffusion nonlinearity are stable dfw/db>0
and unstable iHw/db<0.
The latter conclusion that poitit, wheredw/db=0 de-

PHYSICAL REVIEW E 64 056610

For the positive guiding parametpithe right part of expres-
sion (16) is negative whereas the left one is assumed to be
positive. It means that the second derivatilfg/d 7? of the

rives the areas of existence of stable and unstable modes canrface wave profile is not continuous at the boundarty
also be proved analytically if one take into account that iny=0) whereasp anddp/d» are continuous.

this pointbg both Im§and Res goes to zero. Whed=0 the

For negativep substitution of the amplitudél6) and the

system(13) transforms into two independent linear equationscorresponding derivativdp(z=0)/d7 into expressiongb)

for the perturbation components:

(14

In the volume of the photorefractive mediutat »— —«)

for potentialU and kineticT energies results in negative total
energyU+T at which localized surface waves are impos-
sible (see Fig. ], and hence one again obtains that the sec-
ond derivatived?p/d »? is not continuous. This in turn shows
that the transverse derivative of the perturbation component
du/d# is not continuous at the boundaryuf-dp/d» with a
nonzero coefficient of proportionality, and hence the only

amplitude of the localized surface wave quickly decreasessolution of the linear equatioRu=0 matching the continu-
When amplitudep is small enough, nonlinear terms in Eq. ity conditions is the trivial solutiom= 0.

(4b) describing the wave profile can be neglected, provided Let us consider the small shiét of the propagation con-
that asymptotic expressions for the surface wave profile andtantb from the “stationary” valueb, corresponding to the

its transverse derivative are given ly-dp/dn~exd(2b
—2p)?5] as p— —=. In the area of linear dielectricy(
=0) the first of Egs.(4) have exact analytical solution
p(7)=po exr —(2b)*27] wherepy=p(7=0). Correspond-
ing asymptotic expressions for the linear operatdrand R
have the fornfsee formula(10)]:

2
L H—oc%R SIS + _bl
|77 |77 2 WZ p
(19

1 d?
Lly20=Rln=0=3 a2 o

zero increment=0 toward the area of propagation constant
values corresponding to the unstable modes. As it was shown
above, até6=0 perturbation components=0 andv ~p.

This allows us to write expressions for increment and pertur-
bation profiles corresponding to néwin the following form:

u(7)=up(n)ek,
v(7)=ap(7)|o=b, T Om(7)e", (17)
o~¢",

whereu,(#) andv (%) are the arbitrary functions of the
transverse coordinate describing the modification of the per-

As far as we consider localized perturbations, substitution ofurbation profile;« is the arbitrary coefficient. Linear opera-

the expressiongl5) for the operators into Eq$14) leads to

tors (10) also change with a change bfand can be ex-

the following asymptotic expressions for the perturbationpressed in the form of expansions in a Fourier series,

profiles: u~v~exd(2b—2p)Y?y] as n——o, and u

=uq exf —(2b)¥29], v =vo exd — (2b)*?7] for =0, where
ug=u(»=0) and vo=v(n=0). Comparing linear equa-
tions (14) with Egs.(1139 and(11b), and taking into account
the coincidence of the asymptotic expressionsudpo, p,

and dp/d», one obtains that at zero increment value the

perturbation component is proportional top and compo-
nentu is proportional todp/dn everywhere in the dielectric

L=L| + oL +1 2,925 +
T Llb=by T & 58 p2
0 T bl 20 P,
(18)
R=TR| + IR +1 2a2R +
—Rpep +&— Ze2—
o T bl 2" a7

and photorefractive medium if continuity conditions are Substituting perturbation profiles in the forfh7) and opera-

matched.

tors (18) into system(13) and equating the terms of the low-

Further we will show that for continuity conditions est(with respect to the small parameter orders, one can
matching it is necessary to have zero coefficient of proporebtain that indexes=1, k=n and, for instance,

tionality betweeru anddp/d#, i.e., the only solution of the

linear equatioriRu=0 that matches to the continuity of the

function u and its first derivativedu/d» at the boundary
point =0 is trivial solutionu=0. Since in the area of di-
electric p=po exd — (2b)?5] and p, dp/d 7 match the con-
tinuity conditions, one can write thatp(zn=0)/dnp=

—(2b)Yp, and d?p(7=0)/d7?=2bp, and substitute this
expressions into Eq(4b) (supposing also continuity of
d2p/d7?). This gives the following value of amplitude, :

P
2_
Po= 1+Sp+23/21ub1/2'

(16)

Rlp=b,Um( 1)~ p(7)|b=p,- (19
Upon comparison of expressigh9) with Eq. (11¢ one can
conclude that the perturbation profilsee formula(17)] is
proportional to

ap
m db beb
—r0

(20

Further we will use the fact that the perturbation component
u is orthogonal to the exact surface wave profile.e.,
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% diffusion component is comparable to the influence of focus-
f_xu(ﬂ)P(ﬂ)dﬁzo- (21)  ing drift nonlinearity and strongly affects mode profiles
This expression is a consequence of the first of equations V. CONCLUSION

(13) and can be obtained from the latter equation after its

S : . ) . In conclusion let us briefly list our main results. We con-
multiplication by p and integration over, if ones takes into

hat i o i f-adioi do | sider surface waves at the interface between the linear dielec-
account that linear operatt is self-adjoint andp IS an e gng photorefractive medium with drift and diffusion
eigenfunction ofC. Finally substitution of expressidi20) in .5 1nanents of nonlinear response. Using the simple analogy
(2D le?ds ijs to the dconclus;]on lt)hat t(;]e enbergy of thﬁ fulndabetween the surface waves and mechanical particles situated
mental surface modes at the boundary between the lineq i certain potential and subjected to the influence of non-
dielectric and photorefractive medium with drift and diffu- jihea¢ friction we have shown that there are three types of
sion nonlinearity asa functl.on of pfopagat"’” constahBs g tace waves possible at the interface under consideration:
a local extremum in the poirt, that derives the stable and o|qcalized, shock, and localized surface waves. Only the
unstable modes just as in the case of the dielectric—Kerqt yyne of photorefractive surface waves have limited en-
medium boundary1-6], i.e., ergy. It is shown that the influence of the diffusion compo-
9 (= nent of the photorefractive crystal response results in strong
%J p*(n)dn=0. (22 asymmetry of the surface wave profiles. Typical profiles of
- the localized surface waves and corresponding dispersion
._diagrams are calculated numerically. We also both numeri-
Eally and analytically investigated stability of the obtained

point (22) for each separate configuration should be Cor'S'd'surface modes and showed that VK stability criterion derived

Sre/dd tl:grgerlcallyi \é\lle n(r)]te that fo(; our ca/lzetszoodes W'thfor local saturable or Kerr materials remains legible even in
W were stab'e, whereas modes were .Ehe presence of the strong nonlocal diffusion component of

unstable as for the dielectric—Kerr medium boundary. Thus i

is shown that VK stability criterion remains legible for the he PRC response.
case of solitons in a photorefractive medium even in the
presence of a strong diffusion component of nonlinear re-
sponse(numerical integration was performed up to the val- Financial support from CONACYT under Grant No.
ues of u of the order of unity when the influence of the 34684-E is gratefully acknowledged.
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