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Acoustic pulse propagation and localization in bubbly water
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Acoustic pulse propagation in bubbly water is studied using a self-consistent method. The acoustic trans-
mission and backscattering are evaluated numerically. Under proper conditions, the localization of acoustic
waves is identified within a range of frequency. The results show that when a short pulse is transmitted the
waves of frequencies within the localization regime will be trapped in the system and reveal a coherent
behavior. A phase diagram approach is used to describe the localization behavior.
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I. INTRODUCTION

The propagation of waves through random media con
ues to be the subject of vivid research@1–5#. By analogy
with the well-known localization of the electron transport
disordered condensed matters arising from the interfere
effects in multiple scattering@6,7#, it has been discusse
much in the literature that similar localization may also ex
in the transmission of the classical waves in random me
when the multiple scattering becomes strong@8–16#. Such a
localization phenomenon has been characterized by two
els. One is the weak localization associated with the
hanced backscattering. The second is termed as the s
localization in which a significant inhibition of transmissio
surfaces indicating that the energy is mostly confined i
region of space in the neighborhood of the emission. In ot
words, under certain conditions, the wave can be trapped
spatial domain.

Considerable efforts have been devoted to propagatio
classical waves in random media. While the weak locali
tion, regarded as a precursor to the strong localization,
been well studied theoretically and observed experiment
@17#, the phenomenon of strong localization in three dime
sions has also been reported in a number of systems.
dom underwater topography can give rise to water wave
calization@18#. Localization effects have also been report
for microwaves@13#, for light @19#, and for acoustic waves
@20# in disordered media.

In a recent paper@21#, we have shown that localizatio
may be achieved for acoustic waves propagation in w
with even a very small fraction of air-filled spheric
bubbles, supporting in part the previous conjecture@10#. It is
shown that the localization appears within a region of f
quency slightly above the natural frequency of the individ
air bubbles. Outside this region, wave propagation rema
extended. In this paper, we present a further numerical
vestigation of acoustic localization in bubbly water. In pa
ticular, we consider the propagation of acoustic pul
through water having many air-filled bubbles. Such a rand
medium can be either generated in experimental laborato
or can be commonly found at ocean surfaces where
bubbles are generated by breaking waves. Unlike most
vious approaches that derive approximately a diffusion eq
tion for the ensemble averaged energy, our method is
solve the scattering problem from the fundamental wa
1063-651X/2001/64~5!/056607~9!/$20.00 64 0566
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equations. The approach is based on a genuine s
consistent scheme following the procedure of Twersky@4#
reviewed in Ref.@22#, and has been discussed in Ref.@23#. In
the approach, the wave propagation is represented by a s
coupled equations and is solved rigorously. Wave transm
sion and backscattering are thus obtained. We investig
how the acoustic waves are established in the medium a
the pulses are transmitted. A different method is propose
describe the phase transition between localized and exte
states. The approach enables to isolate the localization e
from the residual absorption effect; the inability to discrim
nate the localization effect from the absorption effect h
caused considerable debate in the literature with regard to
claimed observation of wave localization being actually d
to the absorption@24#.

Before moving on, we point out that considerable effo
from both theoretical and experimental point of view ha
been devoted to propagation of acoustic waves in bub
liquids. A review on general aspects of the subject may
found in the monography@25#. The strong localization of
acoustic waves in bubbly liquids was first suggested by S
nette and Souillard@10#. But no detailed results were given
Later, acoustic wave propagation in bubbly waters was a
studied using the perturbative diagrammatic method@26,27#.
Including a higher order correction representing the mut
interaction between two bubbles, their results show t
when the concentration of the bubbles reaches a cer
value, the wave phase speed can become negative; on
their suggestions is the appearance of wave trapping.
obvious shortcoming of the diagrammatic approach, ho
ever, is that it cannot exclude the possibility of the brea
down of the perturbative calculation, and how many a
what type of perturbation terms should be included are
known. In order to gain a definite insight into the problem
is therefore highly desirable that one can study the prob
in a rigorous or an effectively exact manner. Although this
virtually impossible for systems containing an infinite num
ber of scatterers, the rigorous results can be obtained
systems consisting of a finite number of scatterers. This
per is one of such studies.

The paper is organized as follows. The general theor
presented in the following section, followed by some a
proximations. The theoretical model and the results are p
sented in Sec. III. A summary concludes this paper in S
IV.
©2001 The American Physical Society07-1



h
in
v

e
f
is

i.e

a
o

t
ls
th

n
for
m-

nt a
for

on-
-
r-
be
ul-
ill

ring
tent
f

er-
ed

we

e
cat-

als
t
al

;

KANG-XIN WANG AND ZHEN YE PHYSICAL REVIEW E 64 056607
II. THEORY

A. Pulses generation

We consider a point acoustic source in a medium. T
source is located atrW0, and is transmitting acoustic pulses
all directions. The wave equation for the acoustic wa
propagation in the medium can then be written as

S“22
1

c2~rW !

]2

]t2D p~rW,t !524pd (3)~rW2rW0!s~ t !, ~1!

wherec(rW) is the sound speed in the medium, and the tim
dependent source terms(t) reflects the temporal aspect o
the acoustic source. Inside the scatterer the sound speedc1
while that of the surrounding medium isc. In the following,
we assume that the source is located at the origin,
r 050.

Upon the Fourier transformation, Eq.~1! becomes

S“21
v2

c2~rW !
D p~rW,v!524pd (3)~rW !S~v!, ~2!

where we used

p~rW,t !5
1

2pE2`

`

dv e2 ivtp~rW,v!, ~3!

and

s~ t !5
1

2pE2`

`

dv e2 ivtS~v!. ~4!

We have considered two types of pulse shapes.~a! For broad
band pulses, we have

s~ t !5H 0, t,0

e2at, t>0.
~5!

This gives

S~v!5
1

2~a2 iv!
. ~6!

For smallv (v!a), the spectral density is approximately
constant:s(v)'2p/a. ~b! The narrow band pulses are als
considered. In this case,

s~ t !5H cosv0t, 2b,t,b and v0b@1

0, utu.b.
~7!

Then the spectral density is found as

S~v!5
sin~v1v0!b

2p~v1v0!
1

sin~v2v0!

2p~v2v0!
. ~8!

The Gaussian pulses may also be considered. We found
the results are qualitatively the same for different pu
shapes. For simplicity, we only present the results for
broad band pulses.
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B. Scattering by an ensemble of scattering spheres

Although in the later part of the paper we will focus o
the low frequency acoustic scattering by air bubbles
which a much simplified scheme can be developed, for co
pleteness and future uses, here we would like to prese
general scattering theory for many scatterers that is valid
all frequencies and any configuration of bubble clouds. C
sider a wave being scattered byN spherical scatterers, lo
cated atrW i ( i 51,2, . . . ,N.) When a wave encounters a ta
get, it will be scattered; and the scattered wave will
scattered consequently by other scatterers, forming a m
tiple scattering process. After all scattering, the wave w
reach a receiver. The multiple scattering in such a scatte
system can be conveniently studied by the self-consis
scheme outlined by Twersky@4#. Here we present a brie
account of the procedure.

Equation~4! shows that we can first compute the scatt
ing problem for each frequency and the final signal receiv
can be inverted from the inverse Fourier transformation

p~rW,t !5
1

2pE2`

`

dv e2 ivtp~rW,v!. ~9!

In this section, we will derive a formula forp(rW,v).
We take the following convention: For each scatterer,

can associate it with a coordinate system, and use@rW# i to
denote the coordinates measured from thei th scatterer and
userW for the coordinates for the global system.

Assume that the scattering wave from thej th scatterer is
written as

ps~rW j ,rW,v!5(
l 50

`

(
m52 l

m5 l

Clm
j hl

(1)~kurW2rW j u!Yl
m~@u,f# j !,

~10!

whereYl
m(u,f) is the spherical harmonic, andu j andf j are

the two spherical angles measured at thej th scatterer. Here-
after,k5v/c.

The incident wave on thei th scatterer is equal to th
summation of the direct wave from the source and the s
tering wave from all other scatterers

pin~rW,v!5p0~rW,v!1 (
j 51,j Þ i

`

ps~rW j ,rW,v!, ~11!

where p0 is the direct wave from the source and equ
S(v)eikr /r . Here rW is around thei th scatterer. The inciden
wave in Eq.~11! can be expanded in terms of the spheric
harmonic functions fromrW i ,

pin~@rW# i ,v!5(
l 50

`

(
m52 l

m5 l

Dlm
i j l~kurW2rW i u!Yl

m~@u,f# i !,

~12!

where j l is the j th order Bessel function of the first kind
taking j l prevents the wave from divergence atrW5rW i .
7-2
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By the addition theorem@28#, taking the following expan-
sion of thej th scatterer in terms of thei th scatterer

hl
(1)~kurW2rW j u!Yl

m~@u,f# j !

5 (
a50

`

(
b52a

b5a

Tab
lm, j i j a~kurW2rW i u!Ya

b~@u,f# i !,

~13!

into Eq. ~10!, we get

Dlm
i 5Slm

i 1 (
j 51,j Þ i

N

(
p51

`

(
q52p

q5p

Cpq
j Tlm

pq, j i

5Slm
i 1(

j 51

N

(
p51

`

(
q52p

q5p

~12d i j !Cpq
j Tlm

pq, j i , ~14!

whereSlm
i is due to the direct incident wave on thei th scat-

terer and assumed to be known, i.e.,

p0
i ~rW,v!5(

l 50

`

(
m52 l

m5 l

Slm
i j l~kurW2rW i u!Yl

m~@u,f# i !. ~15!

In Eq. ~13!, the coefficientTab
lm, j i can be solved as

Tab
lm, j i 5E @dV# i

@hl
(1)~kurW2rW j u!#Si

j l~ka!
Yl

m~@u,f# j !Ya
b~@u,f# i !,

~16!

where @hl
(1)(kurW2rW j u)#Si

means taking the value whenrW is

located on the surface of thei th scatterer. Please note th

@u,f# j andrW also depend on the position of the point on t
surface of thei th scatterer.

Now we solve the boundary conditions at thei th scatterer.
The wave inside thei th bubble is written as

pinside
i 5(

l 50

`

(
m52 l

m5 l

Alm
i j l~k1urW2rW i u!Yl

m~@u,f# i !. ~17!

The boundary conditions state that the pressure and the
mal velocity be continuous across the interface betwee
scatterer and the surrounding medium. From these condit
we have

Clm
i hl

(1)~ka!1Dlm
i j l~ka!5Alm

i j l~k1a!, ~18!

and

Clm
i hl

(1)8~ka!1Dlm
i j l8~ka!5

1

gh
Alm

i j l8~k1a!, ~19!

where f 8(x)5d f(x)/dx, k15v/c, g5r1 /r, andh5c1 /c
with c and c1 , r and r1 being the sound speeds and ma
densities inside the air bubble and in the water mediu
respectively.

From Eqs.~18! and ~19!, we obtain
05660
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Clm
i [2G lDlm

i

52
@ j l~ka! j l8~k1a!2gh jl~k1a! j l8~ka!#

@hl
(1)8~ka! j l8~k1a!2gh jl~k1a!hl

(1)8~ka!#
Dlm

i .

~20!

With Eq. ~20!, the coefficientsClm
i can be obtained from

the self-consistent equation~14!. OnceClm
i are known, the

field at any spatial point can be obtained from

p~rW,v!5p0~rW,v!1(
j 51

N

(
l 50

`

(
m52 l

m5 l

Clm
j hl

(1)

3~kurW2rW j u!Yl
m~@u,f# j !. ~21!

We also note that the present approach also works for ela
spherical scatterers as long as the transfer coefficient2G l is
modified to take into account the shear modulus followi
Ref. @29#. Equation~21! is valid for any distribution of the
scattering spheres. In addition, the spheres can have diffe
radii.

C. Approximations

1. Approximation for tenuous media

From Eq.~21!, the total wave reaching a receiver can
written as

p~rW,v!5p0~rW,v!1(
i 51

N

ps~rW i ;rW,v!, ~22!

wherep0(rW,v) is the direct wave arriving at the receiver an
the summation term represents the scattered waves
scatterers.

When kurW2rW i u@1, valid for tenuous media, the abov
derivation can be simplified. The scattered wave from e
target, say thei th target, can be generically written as

ps~rW i ;rW,v!5p0~rW i ,v!Fi~rW i ,rW;kW in!
eikurW2rW i u

urW2rW i u
, ~23!

whereFi is the effective scattering function of thei th target.
Using

hl
(1)~x!→ 1

kx
exp@ ikx2 i ~ l 11!p/2#, as x→`,

we have from Eq.~10!

Fi~rW i ,rW;kW in!5(
l 50

`

(
m52 l

m5 l

Clm
i 1

kp0~rW i ,v!

3Yl
m~@u,f# i !e

2 i ( l 11)p/2. ~24!

Equation ~23! is also called the far-field approximation
Without multiple scattering among targets,Fi will be equal
7-3
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to the bare scattering function of the single targ
f i(rW i ,rW;kW in) that, obtained when other targets are absen
readily derived as

f i~rW i ,rW;kW in!5(
l 50

`

(
m52 l

m5 l

~2G l !Slm
i 1

kp0~rW i ,v!
Yl

m~@u,f# i !.

~25!

Here we used the fact that when there are no other scatte
the incident wave on any scatterer will be just be that fr
the source. Thus we have from Eq.~14!

Dlm
i 5Slm

i ~26!

and then Eq.~20! yields

Dlm
i 52G lSlm

i . ~27!

Note here thatf i(rW i ,rW;kW in) is interpreted as the scatterin
function of the i th target in the scattering directionrW2rW i

when the incidence is along the direction ofkW in , whereas
Fi(rW i ,rW;kW in) is the effective scattering function incorporatin
multiple scattering from other targets.

On the other hand, the scattered wave from thei th target
is a linear response to the total incident wave incident on
target, which as a result of multiple scattering includes
direct incident wave and the scattered wave from other
gets, and can be thus written alternatively as

ps~rW i ;rW,v!5Q~rW i ;rW !
eikurW2rW i u

urW2rW i u
~28!

with

Q~rW i ;rW !5 f i~rW i ,rW;kW in!p0~rW i ,v!

1 (
j 51,j Þ i

N

p0~rW j ,v! f i~rW i ,rW; r̂ i2 r̂ j !

3F j~rW j ,rW i ;kW in!
eikurW i2rW j u

urW i2rW j u
. ~29!

Equating Eqs.~23! and ~28!, we get

Fi~rW i ,rW;kW in!5 f i~rW i ,rW;kW in!

1 (
j 51,j Þ i

N
p0~rW j ,v!

p0~rW i ,v!
f i~rW i ,rW; r̂ i2 r̂ j !

3F j~rW j ,rW i ;kW in!
eikurW i2rW j u

urW i2rW j u
. ~30!

Setting rW at the targets except thei th, we obtainN21
equations
05660
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Fi~rW i ,rW l ;kW in!5 f i~rW i ,rW l ;kW in!1 (
j 51,j Þ i

N
p0~rW j ,v!

p0~rW i ,v!

3 f i~rW i ,rW l ; r̂ i2 r̂ j !F j~rW j ,rW i ;kW in!
eikurW i2rW j u

urW i2rW j u
;

~ l 51,2, . . . ,N, except l 5 i .! ~31!

Now in each of theN21 equations, we allowi to vary from
1 to N. Then we have otherN equations. In total we would
have (N21)3N equations forN(N21) unknown coeffi-
cientsF j (rW j ,rW i ;kW in):

Fi~rW i ,rW l ;kW in!5 f i~rW i ,rW l ;kW in!1 (
j 51,j Þ i

N
p0~rW j ,v!

p0~rW i ,v!

3 f i~rW i ,rW l ; r̂ i2 r̂ j !F j~rW j ,rW i ;kW in!
eikurW i2rW j u

urW i2rW j u
;

~ i ,l 51,2, . . . ,N; iÞ j .! ~32!

The scattering functionFi(rW i ,rW l ;kW in) can be solved from the
self-consistent equation~32!. Then the total wave at any spa
tial point is given by

p~rW,v!5p0~rW,v!1(
i 51

N

p0~rW i ,v!Fi~rW i ,rW;kW in!
eikurW2rW i u

urW2rW i u
.

~33!

2. Low frequency limit

When we consider the most interesting low frequen
acoustic scattering in bubble water, the problem can be
ther simplified. In this case, the tenuous approximation
be relaxed. It is found for frequencies satisfying (v/c)a
,0.4, only l 50 mode in the bubble scattering is importa
@30#. More explicitly, for (v/c)a,0.4 below roughly about
0.4, the acoustic scattering by an air bubble in water can
well mimicked by the scattering by a radially vibratin
sphere. The error in such approximation is less than a
percent. In this situation, the bubble physically behaves
a resonating sphere. The pulsating mode dominates the
tering. In this case, the scattered wave from thei th bubble
without other bubbles can be written as

ps~rW i ,rW !5p0~rW i ,v! f i

eikurW2rW i u

urW2rW i u
, ~34!

where f i is the isotropic scattering function of the bubb
without other bubbles’ presence and can be computed as@21#

f i5
ai

v0,i
2 /v2212 ikai

, ~35!
7-4
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FIG. 1. Transmission~a! and
backscattering~b! as a function of
ka.
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wherev0,i is the natural frequency of thei th bubble. Under
the normal conditions, i.e., at the pressure of one atmosp
and the room temperature, the nature frequency is de
mined as

~v0,i /c!ai'0.0136. ~36!

When other bubbles are present, the scattered wave is wr
as

ps~rW i ,rW !5p0~rW i ,v!Fi

eikurW2rW i u

urW2rW i u
. ~37!

In this case, Eq.~32! can be simplified into

Fi5 f i1 (
j 51,j Þ i

N
p0~rW j ,v!

p0~rW i ,v!
f iF j

eikurW i2rW j u

urW i2rW j u
;

~ i ,l 51,2, . . . ,N; iÞ j !. ~38!

OnceFi is obtained, the pressure field at any spatial po
can be derived as

p~rW,v!5p0~rW,v!1(
i 51

N

p0~rW i ,v!Fi

eikurW2rW i u

urW2rW i u
. ~39!

III. NUMERICAL MODEL AND RESULTS

A. The model

In the following, we restrict our attention to the scatteri
at low frequencies, i.e.,ka,0.4. The numerical model is se
up as follows. Consider a point acoustic source in bub
water. The source is assumed to be at the origin. There aN
spherical air-filled bubbles of the same radius and th
bubbles are randomly distributed within a spatial doma
which is taken as the spherical shape. We require that no
bubbles occupy the same spot. In other words, the p
source is placed at the center of a spherical bubble clo
such a model actually describes the acoustic noise natu
generated inside the bubble clouds in the upper ocean
cesses. The reason why the source is placed inside ra
than outside the bubble cloud is that only in this way t
problem of whether the transmitted waves can indeed
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trapped inside the medium can be investigated without a
biguity and we will be able to isolate the localization effe
from boundary effects. The radius of the bubbles isa. The
volume fraction, the fraction of volume occupied by th
bubbles per unit volume isb. Therefore the numerical den
sity of the bubbles isn53b/4pa3 and the radius of the
bubble cloud isR/a5(N/b)1/3. In the following, we study
the total acoustic field given by Eqs.~9! and ~21!.

B. The results

For reference, first we repeat the case of a unit po
source transmitting a continuous monochromatic wave of
gular frequencyv. A set of numerical experiments has be
carried out for various bubble sizes, numbers and concen
tions. The locations of the bubbles are randomly genera
within the prescribed sphere by the computer, to simulate
random configurations of the bubble cloud. We found that
features are qualitatively the same for any random confi
rations. As an example, Fig. 1 shows typical results for wa
transmission and backscattering as a function of frequenc
terms ofka. Hereafter, ‘‘a.u.’’ stands for ‘‘arbitrary unit.’’ In
this simulation, we takeb51023, andN5200. The radius of
the bubble can be used as the length unit in the simulat
Here we see that in a range of frequencies the wave tr
mission is greatly inhibited. This is the range that sugge
the wave localization@21#. A further numerical computation
discovers such a range appears as long asb is greater than
about 1025 @31#. For the backscattering situation the res
shows that the backscattering signal persists for all the
quencies. In this particular case, the range of inhibition
ka50.014–0.08. While the waves are moderately localiz
betweenka50.02 and 0.08, the most severe inhibition o
curs between 0.014 and 0.02. In general, the localiza
range is widened asb increases.

Now consider the pulse propagation. A number of pu
shapes are considered and yield the same qualitative feat
In the following, we present the results for the broad ba
pulse given by Eq.~5!. The following parameters are use
a5531027 and b51023. The number of bubbles varie
from 100 to 400. Greater number of bubbles is possible, o
to take more computing time. In the simulation, all lengt
are scaled by the radius of bubbles. Figure 2 shows the t
series of the transmitted, forwardly and backwardly receiv
7-5
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FIG. 2. Time series of the signals. Left co
umn from bottom to top: the transmitted signa
the signal received at the transmitting site~back-
scattering!, and the signal received at the poin
2R. Right: the corresponding power spectra f
the signals shown in the left column.
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signals and their power spectra, respectively. The forw
receiver is located at 2R from the cloud. From the figure, it is
clear that as a signal is transmitted, the backscattered s
is significantly greater than that received outside the bub
cloud, an indication of enhanced backscattering in line w
the previous discussion. A very short pulse generates a
tively long response in both the forward and backward s
nals. For the backscattering the greatest portion of the si
is within the range of frequencies in which the transmiss
is most severely inhibited, referring to Fig. 1. In contrast,
the forward direction, the transmitted waves do not ha
much this portion of frequencies. The most significant f
ward signal is located around the resonance frequency o
single bubble, referring to Eq.~36!; this is because at thes
frequencies the scattering is very strong. These results
that when a pulse is transmitted, the waves of frequen
within the localized regime will be strongly backscattere
while those with frequencies outside this regime can
transmitted outward. Due to the finite size of the clou
waves in the moderately inhibited region can still leak o
This is why we only observe a narrow dip rather than
whole localization range in the forward signal; when t
05660
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sample size is increased, more waves within the localiza
regime will be trapped and the dip will be widened.

We now study the residual signals, i.e., the signals t
remain inside the bubble cloud, by considering the time
ries of the signals after the pulses are transmitted for a pe
of time; in this way we can investigate what portions of t
signals remain inside the bubble cloud. It is clear that wi
out the bubbles, the transmitted waves will all leave the s
tem and there will be no residual signals in the system. In
presence of bubbles, due to multiple scattering some wa
will reverberate inside and around the system. Figure
shows the time series of the signals for one random distr
tion of bubbles at 0.1R and 2R, corresponding the case
when the receiver is located inside and outside the bub
cloud, respectively. The time series is plotted 1 ms afte
pulse is fired, a period considerably long after the pulse
generated. From the left diagram, we find that there ind
exist the residual signals. On the right side of the figure,
Fourier analysis of the signals shows that the main porti
of the signals in the frequency spectra are well within t
most localized regime indicated by Fig. 1. In other word
these signals reflect the waves that are most localized in
7-6
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FIG. 3. The residual time se
ries of signal received at 0.1R~in-
side the cloud! and 2R ~outside
the cloud!.
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the bubble cloud. As the localization length is a function
frequency, the more localized is the wave, the shorter is
localization length and the stronger is the residual signal
the figure, the residual signal is contributed mostly from
waves betweenka50.014 andka50.02. The waves at othe
localization frequencies have longer localization lengths
order to trap the waves with long localization length, t
sample should be sufficiently large. Figure 3 also shows
the signal received at 2R ~i.e., outside the cloud! is signifi-
cantly smaller than that being received at 0.1R. This is ex-
pected, as the further away from the transmitting site, the
energy will be received for the localized waves.

To further explore the signals observed in Fig. 3, we c
sider the backscattering signal, i.e., the signal received a
transmitting site, for different sample sizes. The typical n
merical results are presented in Fig. 4. The time serie
taken at 1 ms after a pulse is transmitted. As shown by th
results, the increase in the size of the bubble cloud lead
an increase in the residual signal. This indicates that as
sizes increases, the localization effect becomes stronger.
left portion of Fig. 4 shows that the greater is the sam
size, the wider is the power spectrum of the residual sig
We expect that as the sample size increases, the frequ
spectrum will become wider and wider and eventually
waves in the localization region will be trapped inside t
medium.

We can also study the phase behavior of the acou
fields. In terms of wave fieldp, the energy flow in the system
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is calculated from JW (rW);Re@p(rW) i“p(rW)#. Writing p

5upueiu, the flow becomesJW;upu2
“u. Clearly, whenu is a

constant andupu is nonzero, the energy flow stops, i.e.,JW
50, and the wave is then localized or frozen in the spa
Therefore an investigation of the phase behavior of
acoustic field will provide useful information about the lo
calization effect. Consider the signal received at an arbitr
point rW, described byF(rW,t) say. Its Fourier component i
determined by

f ~rW,v!5E dt eivtF~rW,t !. ~40!

We rewrite

f ~rW,v!5u f ~rW,v!uexp@ iu~rW,v!#. ~41!

For the phase field, we define a unit phase vector

uW ~rW,v!5cosu~rW,v!eW x1sinu~rW,v!eW y . ~42!

We will then plot the phase vector versus various frequenc
at different spatial points for different random realizations
the bubble cloud. Here we consider the time series of
signals from 1 ms after the pulse is transmitted. A typical
of results is shown in Fig. 5. Here we show the phase d
grams for three frequency ranges at two spatial points ins
-
r

FIG. 4. The residual time se
ries of the backscattered signal fo
two bubble numbers.
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FIG. 5. The phase diagram
for signal received at various spa
tial points and for various fre-
quency ranges.
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the bubble cloud at 0.1R and 0.6R, and two points located
outside the cloud at 2R and 3R. To save the computing time
yet without losing the essence of the problem, we only p
the results forN5200. The three ranges of frequencies a
located below, within, and above the localization regim
respectively. For example, the range ofka from ka
50.0106 to 0.0108 refers to that below, that from 0.0180
0.0182 to within, and that from 0.0849 to 0.0851 to abo
the localization regime.

On the left are the phase vectors for the transmitted pu
Due to the nature of the pulse, the phase vectors poin
various directions for different frequencies. The phase v
tors for the acoustic waves inside the cloud are presente
the middle column. On the figure the full-headed arrows
lighter gray refer to the phase vectors at 0.1R while the nor-
mal arrows refer to the phase vectors at 0.6R. Here the re-
sults demonstrate that for both below and above the loca
tion range~B1 and B3!, the phase vectors point to differen
directions at different locations and are not in any cohere
with the phase vectors of the transmitting source. Within
localization regime, however, the phase vectors for the
locations inside the cloud coincide with each other, as sho
in ~B2!. As a matter of fact, they are in the same phase as
acoustic source. Physically, this means that the field os
lates in the same phase of the source. We have perfor
more simulations and conclude that once within the locali
tion range the acoustic field at all spatial points inside
bubble cloud tends to oscillate completely in phase with
source. Such a coherence behavior prohibits waves f
propagation and effectively traps waves; no work can
done when the medium moves in the same phase as
source. However, we must stress that as the sample is in
tably finite, the waves within the moderate localization ran
can still leak out from the system. In this case, the in-ph
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feature such as that shown by B2 becomes less evident.
example, although the frequencies ranging fromka50.07 to
0.08 are within the localization regime as shown by Fig.
the localization effect at these frequencies is too moderat
exhibit the in-phase behavior. But, when the sample siz
increased, the coherence in the phase vectors is expect
appear.

The ordering in the phase vectors guarantees that the
time lag is the prominent peak position of the correlati
between the time series at any two spatial points. To
explicit, consider two arbitrary real time seriesf (t) andg(t).
Their Fourier transforms aref (v) andg(v). The time cor-
rection of the two series is

F~t!5E dt f~ t !g~ t1t!. ~43!

This can be evaluated as

F~t!5E dv f ~v!g!~v!e2 ivt. ~44!

When f (v) and g(v) are in phase, the fact thatF(t) is a
real function leads todF(t)/dtut5050. The second time
derivative at zero time lag is

d2F~t!

dt2 U
t50

52E dv v2f ~v!g!~v!. ~45!

As f (v) andg(v) are in phase, we have

d2F~t!

dt2 U
t50

,0. ~46!
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ThereforeF(t) at zero time lagt50 is a maximum. In
experiments, this feature may serve as an indication for
wave localization or trapping.

For points located outside the cloud, there is no ph
ordering in the received time series for all frequency com
nents. In fact, once waves leak out from the bubble clo
they start to propagate toward infinity. In this situation, t
oscillation phase of acoustic waves will be position dep
dent. These are clearly illustrated by the right column of F
5. Here the full-headed and normal arrows refer to the ph
vectors at 2R and 3R, respectively. The out-of-phase pro
erty indicates that there is energy flow outside the bub
cloud. This energy flow must be a result of wave leaki
from the system, due to the finite size of the system. T
there is energy flow even for frequencies within the m
localized regime~C2! implies that for a finite system th
in-phase behavior at these frequencies shown by B2 will
grade as the time elapses and all waves will leak out ev
tually.

Finally, we emphasize that all the above features ass
ated with the phase vectors hold for any random realiza
of the bubble clouds. We also note that in the simulation
acoustic absorption caused by the viscosity and thermal
change is neglected. This is a valid assumption when
s

an

d

sa
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bubbles are not too small@31#. The absorption will degrade
the in-phase behavior.

IV. SUMMARY

We studied the localization behavior of acoustic pulses
random bubble water using a self-consistent approach.
results show that after a signal is transmitted, waves wit
the localized regime contribute to the residual acoustic rev
beration in the system for any random configuration
bubble clouds in water. These waves are actually trappe
localized inside the system. The degree of wave trapp
effect is sensitive to the frequency, the sample sizes, and
bubble concentrations. It is also found that once localiz
the field tends to oscillate in phase at any spatial points
other words, the localized waves behave as a standing w
inside the random medium. This is supported by a sim
theoretical argument. The coherence phenomenon i
unique feature associated with the wave localization and m
be used to distinguish the localization effect from the
sidual absorption effect.
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