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Pattern formation and localization in the forced-damped Fermi-Pasta-Ulam lattice
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We study spatial pattern formation and energy localization in the dynamics of an anharmonic chain with
guadratic and quartic intersite potential, subject to an optical, sinusoidally oscillating field and a weak damp-
ing. The zone-boundary mode is stable and locked to the driving field below a critical forcing that we
determine analytically using an approximate model, which describes mode interactions. Above such a forcing,
a standing modulated wave forms for driving frequencies below the band edge, while a “multibreather” state
develops at higher frequencies. Of the former, we give an explicit approximate analytical expression, which
compares well with numerical data. At higher forcing, space-time chaotic patterns are observed.
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I. INTRODUCTION chain. More recently, the same authors performed detailed
studies of the optical generation of such excitations under the
The dynamics of classical anharmonic lattices displays action of suitable impulsive fieldsl4]. Later on, investiga-

rich variety of features. Already the simplest models, like thetions of models of driven-damped antiferromagnetic chains
one-dimensional chain of equal-mass oscillators with15] opened also the way to some experiments, whose out-
nearest-neighbors nonlinear forces, exhibit nontrivial solucomes are interpreted as manifestations of intrinsic localiza-
tions like anharmonic wavdd,2], discrete soliton$3], and  tion [16]. Theoretical studies of the parametrically driven,
breatherd4]. Due to its simplicity, one of the most widely discrete, nonlinear Schilinger equatio18] and of coupled
studied examples in this class is the celebrated Fermi-Pastascillator system$17] have also been recently undertaken
Ulam (FPU) model[5], where the interparticle potential is a and led to the discovery of periodic, quasiperiodic, and even
simple fourth-order polynomial in the relative displacements.chaotic breathers.
Many investigations have focused on the process of energy However, the relation between the phenomena observed
equipartition among phonons, after having fed the energyn the Hamiltonian case with those appearing for forced-
into long wavelength modes, whose instability leads to thedamped lattices has not yet been studied in detail. Indeed, we
generation of solitonf5]. More recently the complementary expect significative differences due to the creation of station-
case where the energy is placed into the highest frequenayry states with nontrivial spatial structures, i.e., pattern for-
mode has been consider§d-9]. Above a certain energy mation[20,21. In our context, having already studied the
threshold, which vanishes asNl/N being the number of process of formation of stable localized structures arising
oscillators, this mode becomes modulationally unstablérom modulational instability in the conservative c48§ we
[11,12, leading to the growth of spatial modulations of the are strongly motivated to see how the presence of forcing
displacement field with a given finite wavelength. The sub-and damping affects this process. To remain close to the
sequent evolution consists of the creation of localized strucHamiltonian case, we restrict ourselves to the case of small
tures (envelope solitons which interact inelastically and damping.

coalesce in a few, large amplitude breathgt]. These Various types of forcing are in principle possible, depend-
have, however, a finite lifetime and decay slowly until theing on the physical situation under study. However, a general
asymptotic state of energy equipartition is attained. requirement for localization is to excite band-edge modes.

Up to now, processes of this kind have been studied-or Klein-Gordon lattices this is naturally realized using a
mainly for Hamiltonian lattices, and a quite natural questionspatially uniform driving field, which has been shown to in-
is to ask how such phenomena are affected by both forcinduce interesting pattern formation phenom¢hé]. On the
and/or dissipative mechanisms that may arise from the presther hand, this forcing would be uneffective for FPU lat-
ence of an external field and the interaction with other detices because, due to the symmetry of the Hamiltonian, the
grees of freedom, respectively. These issues were addresseero mode is decoupledee below. Alternatively, since spa-
by Rossler and Paggl3], who found that localized modes tial localization appears from the instability of band-edge
can indeed exist in a sinusoidally driven, undamped FPUnodes, we choose in this paper to drive the system at the

zone-boundary wavelength. Moreover, we consider the sim-
plest case in which the driving field oscillates sinusoidally in
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limit. Some details of the numerical simulations are pre-is done for the undamped capél, a considerable simplifi-

sented as well as the quantities used to detect localizatioration is achieved by neglecting higher-order harmonics that

and to study spectral properties. are produced by the cubic terrfthe so-called rotating wave
Section Il deals with the full characterization of the weak approximation. Moreover, in the limit of weak damping

forcing solution where the zone-boundary mode is locked to<w we find the following set of approximate equations:

the driving field. By increasing the forcing parameter, such a

solution becomes unstable. Approximate values of the criti- —2iwék—iwyak=(w§—w2)ak+ O,

cal forcing and frequency are analytically computed and suc-

cessfully compargd .Wlth n.u'merlcal results. . +6 E Gg 0.84,3 ag a3
Just beyond this instability more complex spatial patterns 41,9 1H2 T2 T

are attained by the system. For small enough frequencies a 5 .

stable standing wave arises, which we describe analyticallvhere wi=2(1—cosk), J . is equal to 1 fork== and 0

by solving for the fixed point of a suitable truncated modeotherwise and

expansionSec. IV). When the driving frequency exceeds a 1

iven resonant value, a multibreather, spatially aperiodic ~k _ = _ _

gtate is instead observed in numerical simSIati(E)ésc. F\)/) S0, 4[1~|—cos(q1+q2)+cos{k Gz) + cosk—ay)
Section VI is devoted to some conclusions and to a brief

discussion of the transition to chaos, which is observed by

increasing the forcing.

—cosk—cosq;—cosq,—cogk—q;—0qs)].

Equationdg3) correspond to the positive frequency projection
in the base given in Eq(2), the negative frequency ones
Il. THE FORCED AND DAMPED FPU MODEL being obtained by replacink— —k and taking the complex
|conjugate.

In the following, we aim at comparing the analytical pre-
dictions that can be drawn from the set of approximate equa-
tions (3) with the direct numerical simulations of modd).
We have integrated the equations of mot{@hby means of

+f cogwt—an), (1) a fourth-order Runge-Kutta algorithm with a step ranging
between 102 and 10 3. We have always chosen an initial
whereu,, denotes the displacement of thth oscillator with  condition with all oscillators in their equilibrium position
respect to its equilibrium position. Periodic boundary condi-y,(0)=0 and smallof the order of 10°) random Gaussian

tlon_sl,l, Unin=Un, are aslsumed, _W'tN being the nu?be;lr of hdistributed initial velocitiesu,(0). Several series of simula-
oscillators. Dimensionless units are used such that thg,,q haye been performed for different values of the param-
masses, the linear and nonlinear force constants, and the |, <., andf and for fixedy=0.1. The latter choice guaran-

.tice spacing are taken equal to unity. The forcing and dampt'ees that the conditioy<w holds in the resonance regions
ing strengths are gauged by the parametemd y, respec- close to the band edge, i.éw|~w,=2, which is of main

Flverlly, andfg is the drr]'v'nﬁ f.requ](cenhcy.f As.alrea}dﬁ/ ?enﬂoned interest here. Furthermore, the resulting time scales are rea-
n t el Introh uction, t eé: ou;e oft he orcmgthtf It el_s odrteStsonany short to allow a real-time analysis for chains as long
wavelength Is expected to favor the growth of localized exygN—517 Nonetheless, some of the results reported below

citatio_ns. Physica_lly, the last _terr_n in qu). models the |n have been checked also for another series of simulations per-
teraction of a uniform electric field applied to a chain of formed with y=0.01

alternating opposite charges; it can in fact be written as . . :

f(—1)"cos(t) [13]. Let Us stress again that the more widely We have monitored the energy density along the chain,

studied case of uniform forcind 9] is not viable for models 1.. 1 1

like Eq. (1), because the zero mode is completely decouplemn=EUﬁ+§[(un+1—un)2+(un—un_1)2]+z[(un+1—un)4

from the others as a consequence of the invariance oflkq.

under the transformation,— u,+ const. +(up—up-1)%, (4
In order to describe the forced oscillations of the system it

is convenient to represent the displacement field in the fornas well as the spectrum of mode energies

The equations of motion of the forced-damped FPU osci
lator chain are

- 3 3 )
Up=Upp1+Upn_1—2Up+ (Upyq—Up)°+ (Up_1—Uy)°— YU,

1 . . =|U, |2+ w?|Uy/? 5
unziz [ae/ @k 4 gt e-ilot—kn ] @) ex=|Uy*+ 0?|U,%, (5

where

wherea, are complex mode amplitudes ardr<k< 7 the N

corresponding wave number. Throughout the paper we will U :i E u eikn:@(a elottat eiot) (6)

mainly focus our attention on the dynamics of the zone- k \/ﬁ = " k K

boundary mode, which we refer to asmode for the sake of

brevity. is the amplitude of th&th Fourier mode, which can be effi-
The equations of motion for the amplitudags are ob-  ciently computed using a standard fast fourier transform rou-

tained by substituting Eq2) into Eq. (1). Similarly to what tine. In the limit in which thea,’s are slowly varying with

056606-2



PATTERN FORMATION AND LOCALIZATION IN THE . .. PHYSICAL REVIEW E 64 056606

respect to the forcing or reach a stationary value, one finds 0.2
that ¢, =Nw?|a,|? is constant in time. On the other hand, g unstable c
when monitoring quantities likk,, and/oru, it is convenient Y
to observe the system at time intervals that are integer mul-
tiples of the driving period. }

11l. MODULATIONAL INSTABILITY OF THE 7 MODE N} 0.1 i 8

Let us begin by considering solutions where only the i \\ 7 unstable
mode is excited. Such solutions are numerically observed to y
exist and be stable below a certain critical forcihg that | ‘
depends on botlw and vy. Indeed, in the typical simulation 3 A /
described at the end of the previous section, all modes with /j‘a/b"’é/e/ :
k# 7 damp out on a time scale set by the valueyoivhile 0 0 f 0'2f g
+ - or -

|a,| rapidly grows and finally appoaches a constant value.
Such an asymptotic amplitude, is obtained by solving for

the stationary solution of Eqs3), which corresponds to an g, 1. Squared amplitude of the multiple fixed-point solutions
oscillation locked to the driving field with a constant phaseys the forcingf for w=2.4 andy=0.1. The solid vertical line rep-

forcing amplitude f

lag. We get resents the critical value of the forcirif]'=0.224. Dashed lines are
the boundaries for the rande <f<f_ where three solutions exist.
_ f 7 The lettersA, B, C denote the three solutions from the smallest to
a;= w2—A— 12|aw|2_ i yw’ () the highest amplitude.
and writinga,. = |a,|exp(#6,) one obtains the resonance conditiom=2>k* holds[22]. The latter, to-
gether with definition(11), fixes the value of the wave num-
w
0,=atar| — Y |, ®) berk, of the most unstable mode as
w°—4—12a,]
2
w
where the squared modulus=|a,|? is the solution of the cosk, =1— 2 (13
. i 2(1+6la,|?)
cubic equation
1443 — 24(4— 02+ [(4— 02)%+ y2w?]z=f2.  (9) In the case in which a single real root of E) exists

(i.e.,|o|<w,), the threshold for modulational instability can

One can easily ascertain that the latter admits a single re&le computed explicitly. Indeed, by letting=0 in Eq.(12)
root only for |o|<w, where w, =2+ 3y/2, while three and using formulg13), one gets
distinct roots may otherwise exigsee the discussion in the
following). 2 _ Y

_ : , |lasle=2—- (14

Before treating in detail the differences between the two 3(w—2y)

cases, let us address the question of stability. This is accom- _ -
plished by solving the set of equations obtained Iinearizindr:'”a_‘”% from formula(7) one derives the value of the critical
Egs. (3) around the stationary solutiorise., neglecting all  T0rcing
interaction terms that are nonlinear in tags)

2
_ Y 2 Mo~y 2 2
Diwa—iwyac=(@—0)at30Zalal (10 fer= \/3(w—2'y)”w w2y TV (19
where In the case where three solutions exitv|C>w, ), the
~> o 2 stability properties must be considered separately for each of
wi=(1+6[a,]|*) o (1D them. Let us discuss this issue with reference to the ase

=2.4, illustrated by the graph in Fig. 1. Here the three solu-

is the frequency of th&th mode shifted by the interaction tions, which we labe, B, andC, coexist in the rangé ,

blex conjugate. is Salved ooking for solions of he form <" - The values of . can be computed from Eqo),
P jugate, 9 . since they correspond to the amplitudes
expdt). The relevant branch of the eigenvalue spectrum

reads s 2(w2—4)i \/(w2—4)2—3'y2a)2
o 2z = . . as
n= = ot granV9eilad i (wi-w?? (2
Hence, from formulg7) we obtain
The growth rate R} is maximal when the square root in . 5 s
the above expression attains its maximum value, i.e., when f.=la;[V(0?-4-12a,]?)?+ y*0?. (17
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Looking at the spectrunil2), it turns out that the largest 5
amplitude solutiorC is always modulationally unstable. The 0.6 | A
intermediate amplitude solutid® is modulationally unstable
above|a,|?= (w?—4)/24(corresponding té=0.235 in Fig.

1) while it has the maximal growth rate at« below this
point. The smaller amplitude solutioh is instead found to

be always stable. Since we choose to run the dynamics start-
ing always with almost zero mode amplitudes, it would be i
natural to conclude that the resulting trajectory converges to ®
the solutionA up to its existence boundary and hence that stable = mode N
f.,=f_. The numerical simulations show that this conclu- 0 ‘ %, stable x moda
sion is not actually correct. Indeed, the system approaches 1 1.5 20, 25 3
the stable solutiod only up to a critical value of the forcing driving frequency ®

fint which is definitely smaller thah_ (see the diamonds in

04 F £\

driving amplitude f

Fig. 1). Beyond such a value, the mode undergoes modu- . F'G- 2. Control parameter plane(f) for y=0.1. The dashed
line for w<w, is the critical forcingf,, given by formula(15) at

lational instability similar to the previous case. _ . . o )
An interpretation of this phenomenon can be given in thewhlch modulational instability occurs. The region for w, where

following way. Let us consider the equations of motion for three solutions exist is bounded by the solid lifes The dotted

2 . . line within corresponds to the instability threshdlf}' evaluated
';?Oem 'E;er(%?l dynamics of them mode that can be derived numerically from Eq.(18). The full triangles are the numerical es-

timates off.,. Open circles lefi(right) of the w=w, line denote
. points where standing wavébreathersoccur. The stars are some
—2iwa,—iwya,=(4—wda,+f+12a,a,|? (18 parameter values for which chaos is detected.

This nonlinear equation provides a good approximation of IV. STANDING NONLINEAR WAVES

the dynamics as long as all the other modes are not signifi- Let us now describe the states forming just above the
cantly excited. Its numerical solution_ indicates that for thresholdf,, after the development of the modulational in-
=f(w) the initial conditiona,.(0)=0,a,(0)=0 exits the  stability. Two different behaviors appear depending on
basin of attraction of the fixed point corresponding to thewhether the driving frequency lies below or above a reso-
solutionA. Such a value corresponds pretty well to the actuahance frequency, which for smaflis very close to the upper
critical forcing numerically determined for the full system band edgeo=2. In this section we discuss the first case. As
(see the solid vertical line )" in Fig. 1). In other words, at  expected from the spectruii2), the development of the
ficnrt the dynamics leaves the lowest amplitude solufiope-  instability leads to a fast growth of the modes belonging to
cause of this internal instability and “jumps” into the modu- the unstable band arourld, (and also its harmonics, see
lationally unstable region. Since a fixed point will not be below). Afterwards, the main band shrinks until the system
subsequently approached, we do not expect that the corréaturates to the asymptotic state. The result is basically a
sponding spectrum of growth rates will be described by formodulated standing wave locked in time with the forcing
mula (12). Nonetheless, a reasonable qualitative agreemeriteld (see the example illustrated in Fig) &nd the wave
between the two is observed, being both characterized by BUmber of the modulation is indeed very close to the ex-
sharp maximum around the most unstable mode with someected valuer—k, with k, given by Eq.(13). Furthermore,
broadened band around it. this state appears to be stable, at least on the time scale
Finally, the results described above are summarized igonsidered in the simulations. For instance, the wave profile
Fig. 2, where we show the control parameter space). shown in Fig. 3 remains unaltered up tx20° time units,
The dashed line fotw|<w, is the theoretical expression i-€., for more than & 10 driving periods.
(15) for the modulational instability, valid when only one  An approximate theoretical analysis can explain the for-
solution is present. Ak, two full lines start, given by for- mation of this pattern. Indeed, in view of the above results, it

mula (17), which bound the region where three solutionsis reasonable to look for a simplified description that neglects

occur. Inside this region, the dotted lifi& is the one ob- all the modes but the mode and the most unstable one with

tained numerically by looking at the internal mode insta- Wave numbek, . Under such assumptions and taking into

bility, as we have described above. The numerical datha account the resonance condition we obtain from E8jsthe

triangles were obtained by looking at the incipient modula- following coupled equations foa, anday_:

tional instability of the full system. An excellent agreement L

(within some perceiwith the theoretical results is observed —2iwa,—iwya,=(4—w?)a,+f+12a |a,l?

in the considered frequency range. We have also checked

that the critical wave numbek, is accurately predicted by

Eqg. (13). We thus conclude that both the theory developed 9

for the case of one solution and the approximate description oo : 2 2.+ 4 2
. . - ) - - = +— )

of the internal instability when three solution are present are 2lway, —loyay, =30 aza - 70 a, lay, |

basically correct. (29

2 4t 2 2
+6wj azay a_x +120wj aqla |
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0.07 ‘ The stationary solution obtained above corresponds to a
h, displacement field, which can be derived using expansion
0.06 | 1 ),
0.05 1 Unzlaw|(_1)nC03wt+077)+2|ak*|
0.04 1 X cogk, n)cog wt+ 6y ), (22
0.03 1 ] which is a standing modulated wave. These analytical results
0.02 ‘ are also in reasonable quantitative agreement with numerical
o 50 n 100 data. For example, in the case of Fig. @%€1.8, f=0.150,
and y=0.1) we get
0
Skw - | |a,|?=0.02085, |a, |?=4.88x10 * (numerical,
107 (23)
10 |a,|?=0.02085, |a |?°=4.27<10"* (theoretica).
I ] (24)
-12
10 ] the relative deviations being as expected of the onder.
e s MAMM N The above expressions are simplified close to the thresh-
107 5 ] P —— old and sufficiently far from resonance. Indeed in this case
k 0. is vanishingly smal[see Eq(8)] and therefore one gets,

FIG. 3. Pattern generated after the modulational instability forTom formulas(20), 6 = /4 and the approximate solution

»=1.8,f=0.150 (f,,=0.148). This pattern stabilizes &t 10*. In

the upper panel we show the energy density in a part of a chain of s ™
512 particles, in the lower panel the corresponding mode energy Un=[a|(—1) COS{wt)+2|ak*|COS{k* n)cog wt+ 4
spectrum in linear-log scale. (25)

The first equation is nothing but the modified version of Eq.This solution compares well with numerical data. Looking at
(18) with the interaction terms betweem and k, modes the pattern at times that are integer multiples @@, again
included. The stationary solutions are determined lettingor the example of Fig. 3 with the values in formu(24),

a, =|a, |exp(6, ) and first solving the second one of Egs.
(1k§) |2, lexpid,) g 45 U ~0.1437-1)"+0.0292 co&2.051)  (theoretical,

u,=0.142—-1)"+0.0359 co2.0251) (numerica),
(26)

302 \ |a77|4_ |a7|3r'
Ky which shows a good agreement.
Before concluding this section, let us discuss the issue of
higher-order corrections to the solutig2?2). Indeed, besides
. (200  the main component &, , the nonlinear terms induce the
|a| presence of severdkexponentially smajl harmonics whose
wave number can be expressed(i@&sall that— 7<k< )

|a:k*|2:

|ale

sin2(0,— Hik*)= -

Substituting the latter in the first one of Eq49) we get the
stationary value ofa,| above threshold, kn=k,n+(n—1)m, n=2, 3,.... (27)

Their amplitudes can be computed perturbatively from the
stationary solution of Eq.3). For instance, the first harmonic
(n=2) is evaluated as a function ef, and ay - We give

2 here for completeness the explicit expressions of the first and

|a,|?

<w2—4—12|a77|2—16 la,*—|a.ls

a,|*—|a,ls :
| || ||2 lcr +(yw+8m)2 —f2. second harmonics.
aﬂT
18 cosk, (cosk, —1
21 jay = OO T a2 (28)
(,()kz_(l)

Solving this equation, we can thus get., | andé.., from
Eq. (20). A fourth equation, which we do not explicitly dis- 3|1—6 cogk, + 2 cosk, | 3
play here for the sake of brevity, allows to compuig |ak3|: > 2 |ak*| : (29
as well. | i~ @]
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1.0 w 0.8
h,
0.8 |
0.6 | £
g
04 | §
k3
0.2 r S
0.0
0 50 n 100
. : : : -0.8 - .
20.0 10 30 50
& lattice site
150 | ) ) )
FIG. 5. Displacement pattern corresponding to the case of Fig.
4. The dashed line is the instantaneous configuration of the driving
100 ¢ field showing relative phase relations.
5.0 : tern in Fig. 4 has been observed to persist up to a time 2.0
X 10°, i.e., more than X 10* driving periods.
0.0 ‘ he A The corresponding displacement field in Fig. 5 reveals
0.0 1.0 2.0 3.0 that each breather is pretty similar to the “even-parity” lo-

k . . o ,
calized modes found in the Hamiltonian c44€], the main

FIG. 4. Multibreather pattern generated after the modulationadifference being the presence oframode background in-
instability for w=2.4, f=0.2250 ., =0.2245). This pattern stabi- duced by the field. No “odd-parity” mode is generated by
lizes att=5X10%. In the upper panel we report the energy density,the above mechanism in all the examined cases. Actually, a
in the lower panel the mode energy spectrum. closer inspection reveals that two distinct solutions of

slightly different amplitude are present. Moreover, apart
Higher-order harmonicsn(>2) can be computed recursively from a small lag induced by the damping, the background
in a similar way obtaining the general result oscillates always out of phase with respect to the field as can

be ascertained by comparing the dotted line in Fig. 5 with the

a, = 6 2 Gkn a at corresponding displacement pattern. On the contrary, the
K0 02 — w2 ay ppgk, OnPn dnTPT o breathers are always in phase with the field. Accordingly,
" depending on the site on which they sit, they can have equal

Q-+ potro=k, . (30) or opposite relative phases. Although localized solutions os-

cillating out of phase with the field are known to exist in

Notice that an infinite number of harmonics is expected hereSimilar modelq13], they are not detected in the present con-
This shows that the waves we are dealing with are moréext. o o .
general than those previously reported in the literature for The inhomogeneous distribution of vibrational energy is
damped-driven Klein-Gordon latticg&9]. In this latter case, distinctly reflected in the mode spectrusee the lower panel

the modulation has a finite number of harmonics due to th@f Fig. 4, which displays a localized structure and a band
peculiar mutual relationship among modes #/2, and =  broadening as a consequence of the irregular spacing among

that allows for solution where no other modes are excited. the breathers. . _ _ .
To give a more firm basis to our numerical observations,

V. MULTIBREATHER STATES it is useful to briefly point out some conclusions that can be
drawn by a suitable continuum approximation of the FPU
A different scenario is observed for driving frequency model. In analogy with the approach followed for the Hamil-
above resonance, which we briefly describe here with refertonian cas¢10], one can in fact write the displacement field
ence to the case=2.4, illustrated in Fig. 4. The instability asu,=(—1)"Re{#(x,t)expiwt)}, where ¢ is an envelope
described at end of Sec. Ill produces, on a relatively shortunction, which is assumed to be slowly varying in space and
time scale {~10?), a disordered assembly of sharply local- time on scales of the order of the interatomic spacing and the
ized structures in a similar way to what is observed for thedriving period, respectively. A standard calculation leads to
undriven cas¢8,10]. On longer time scales{10%, a fur-  the driven-damped nonlinear Scdinger equation
ther stage follows in which the localized peaks arrange them- _
selves until they eventually reach an asymptotic Stsee the 2Qiwp+ (4— 0’ +ioy) g+ P+ 120 9|2=1, (3D
upper panel of Fig. # This is a sort of “multibreather”
state, i.e., an array afinevenly spacetireathers. Remark- which in the spatially uniform case reduces to Etg) for
ably, such a complex solution appears to be stable as thtbe = mode amplitude. Notice, however, that this type of
previously illustrated nonlinear wave. For instance, the patdescription makes sense only when a relatively narrow
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packet of modes close ta 7 is excited and is thus less
general than the one based on E@. For a suitable choice

of parameters, Eq31) admits two soliton solutions of dif-
ferent amplitudeg23] as well as stable multisoliton com-
plexes arising from bifurcation of one of thef24]. Thus,

the localized states of Fig. 5 could be related to such solu-
tions, at least to the extent to which our lattice model can be
approximated by a continuum equation like E§1). Al-
though a more quantitative comparison would be desirable,
this is a solid argument in support of the existence of stable 0 ‘
multibreather complexes. 0 50 n 100

VI. CONCLUSIONS AND PERSPECTIVES 10

We have confirmed that modulational instability of zone-
boundary modes is a relevant mechanism for the generation 10
of nontrivial spatial structures in discrete anharmonic lat-
tices. Our results for the externally driven case complement

previous studies on Hamiltonian models and further show 10

that the interplay ofalmos}) resonant forcing and damping

can stabilize such structures. Our approximate analytical 1072 s s
framework has allowed also to derive the stability chart of 0 1 2 Kk 3

the zone-boundary mode. For forcing frequencies below

resonance, a modulated wave is formed after instability, FIG. 6. Chaotic state obtained far=1.8, f=0.27. In the upper
whose approximate analytical expression we have derived jRaneé! we show a snapshot of the energy density along the chain at
terms of mode amplitudes. For frequencies above resonanég 9200 and in the lower panel the corresponding mode energy
a “multibreather” state arises of which we have given aSPECtrum in linear-log scale.

phenomenological characterization. There are other proly,q ony intermediate spatial pattei26]. This is in apparent
lems that could be attacked within this approach, like theqnragiction with the existence of stable patterns found in
interesting issue of destabilization of the modulated waveg - numerics. On the other hand performing simulations at

This could also contribute to a better understanding of Iocal—y:o, the transition to chaos occurs as soorf &9, since

ization mechanisms. Furthermore, this points out the possithe modulational pattern does not attain any regular

bility of generatl?g Iongl- living and colmplezenerr}gy distribu- [asymptotic state. We can therefore conjecture that the pres-
tions In space for real lonic crystals under the action Olg,ce of friction alters the nature of the transition in a way

optical fields. . . that remains to be understood.
Let us also briefly comment on the fate of the two typical
spatial patterns described above. As expected, increasing the ACKNOWLEDGMENTS
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