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Optical pulse propagation in nonlinear photonic crystals

N. A. R. Bhat and J. E. Sipe
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7
(Received 23 April 2001; published 15 October 2p01

We present a formalism for optical pulse propagation in nonlinear photonic crystals of arbitrary dimension-
ality. Using a multiple-scale analysis, we derive the dynamical nonlinear iciger equation obeyed by the
envelope function modulating an underlying Bloch function. Effective coefficients appear in that equation
characterizing the effects of Kerr nonlinearity, linear gain or loss, and material dispersion. They depend on how
the underlying Bloch function “samples” these effects in the photonic crystal, and require for their calculation
a specification of these effects throughout the photonic crystal, and the calculated bandstructure of the photonic
crystals in the linear, nondispersive limit. We show that wave packets from different bands can experience
significantly modified effective material properties.
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[. INTRODUCTION weak one-dimensional gratingdl]. In higher-dimensional
photonic crystals, where the refractive index difference be-
As codes become available for the calculation of photonidween components can be large, this approach is both theo-
band structures, and the linear optical properties of photonicetically suspect and in practice insufficient, in that it does
crystals become better understood, attention can shift to theot yield parameters that adequately capture the conse-
nonlinear optical properties of these structures. Already therguences of the spatial distribution of any underlying absorp-
have been studies of nonlinear effects by numerical simulation or nonlinearity. For the realistic description of nonlinear
tions of the full nonlinear Maxwell equatioh,2]. While for ~ propagation in actual photonic crystals, a better approach is
special problems this may remain the theoretical approach aquired.
choice, it is limited in that the underlying physics is not Once again earlier work on one-dimensional structures
immediately apparent from the results of the simulation. Asindicates a way to proceed. Some years afd| it was
well, the loss of superposition in nonlinear optics means thashown how effective field equations could be derived even in
any such simulation yields only limited insight into the gen-the presence of strong refractive index variations. Employing
eral character of nonlinear propagation. the exact Bloch functions of the corresponding linear prob-
A different approach has been common for many years inem in the absence of any material dispersion, nonlinearity,
the study of the nonlinear optical properties of one-or gain or loss, a multiple-scales approach that treats these
dimensional photonic crystals, or “gratings.” In the pres- latter effects as “small”—in a sense that can be made
ence of a weak nonlinearity, effective field equations thatprecise—leads to the derivation of effective field equations.
describe the dynamics of envelope functions are derivedhe derivation yields parameters involving sums over pho-
from the nonlinear Maxwell equation8]. At frequencies tonic bands of various coefficients; their physical signifi-
near and within the band gap these can take the form afance is identified using results from a photoki@ theory
coupled mode equations, while at mid-band frequencies it ithat parallels such a theory for electrons. Recently this ap-
a nonlinear Schidinger equation that describes the evolutionproach has been generalized to one-dimensional birefringent
of the appropriate envelope function. In fact, a nonlinearstructureq13].
Schralinger equation treatment can be applied even at a Itis such an attack that is the subject of this paper, where
band edge, or within a band gap, if a pulse is not too shortve address higher-dimensional photonic crystals. We begin
[4]. Properties such as the group velocity and group velocityith the exact Bloch functions of the photonic crystal, which
dispersion, and the strength and spatial distribution of theve assume have been found with the neglect of any material
nonlinearity, appear as parameters of these effective fieldispersion, gain or loss, or nonlinearity. This defines what is
equations. Once they are derived, a body of mathematicassentially our “unperturbed” system. Our goal here is to
work devoted to the characterization of their solutions can béreat the in-band propagation problem, at frequencies re-
called on to obtain insight into the general nature of nonlin-moved from a possible photonic band gap, and where any
ear light propagation. This approach has led to the predictioband degeneracies can be neglected. We seek a solution of
and description of gap and Bragg solitdris6], the under-  the full nonlinear problem by modulating a Bloch function
standing of various scenarios for all-optical switchif®],  with an envelope function and deriving the dynamical equa-
the description of the appearance of modulational instabilitytion for that envelope function. We only consider a Kerr
[8], as well as the prediction of bistability and chaotic behav-nonlinearity, linear loss or gain, and small material disper-
ior in certain structuref9]. sion, but various generalizations would follow immediately.
Work along these lines for higher-dimensional photonicA multiple-scales approach identifies the relative size of the
crystals has already appeargtl0], where coupled mode different perturbing effects, and using it we derive a gener-
equations were applied to study nonlinear field structures imlized nonlinear Schabnger equation. From this we can im-
two-dimensional structures. But those equations were demediately identify much of the physics of light propagation
rived in a heuristic way analogous to that usually used foithrough the structure, such as an effectivenonlinear co-
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efficient and an effective loss or gain coefficient, as well as a D=V XH,
group velocity and group velocity dispersion. All of these
depend crucially on how the underlying Bloch function
“samples” the appropriate perturbing effect in the photonic

crystal. The nonlinear Schidinger equation itself can be \yhich must be solved subject to initial constraiftsand the
used for a more detailed treatment of pulse propagation.  anhropriate constitutive relations. In this section we take
The analysis here is qualitatively more difficult than thatiygge to be

in the one-dimensional case because of the need to respect

: @)
B=-VXE,

the divergence Maxwell equations, B(r,t)= uoH(r,t), (3)
V-D=0, D(r,t)=gon*(r)E(r,t), (4)
1
V.B=0 @ whereuy ande are, respectively, the permeability and per-

mittivity of free space, and the local index of refractiofr)
is assumed real. For stationary solutions of the f&n,t)

that the full displacement fiel® and magnetic field must —E(r)exp(—iat), etc.,(1),(2) then reduce to

satisfy. It has already been pointed ¢W4] that these con-

straints make thé&- p theory more complicated for photonic —iwegn?(NE(r)=VxH(r),
crystals than it is for electronic crystals. As well, to ensure 5)
that these equations are exactly satisfied by the inevitably iwuoH(r) =V XE(r),

approximate multiple-scales results, it is convenient not to
work with the electromagnetic fields themselves as the basiand
fields of the theory, but rather with two vector potentials. As

is usual in multiple-scales treatments, much of the effort is V-[n*(r)E(r)]=0,
devoted to setting up the problem in a formalism that leads to (6)
the easy application of a multiple-scales approach. In Sec. II V-H(r)=0.

we identify the Bloch functions of the linear, nondispersive divide th luti ¢ d(6) |
Maxwell equations, and cast those equations in a matriy/e divide the solutions of Eqs5) and (6) into two types,

form that considerably simplifies the p treatment, the re- YP€P1 With »#0 and typeP; with »=0. .
sults of which play an essential role in the multiple-scales For P, solutions we need only require that the equations

analysis. In Sec. Il we introduce the vector potentials and set?) P€ satisfied, since the divergence equati@shen fol-

up the full Maxwell equations for our problem. The multiple '0W immediately. From Egs.(5 it is clear that if
scales derivation is presented in Sec. IV, and in Sec. V WéHL(r),E,,Er)) is a solution with frequencyw,, then
explicitly consider nonlinearity, material dispersion and gain(Hi (").Ej’ (r)) is a solution with frequency- v, , a result of

or loss at one particular level of scaling. In Sec. VI ourlime reversal symmetry. This has important consequences
envelope function equation is derived, and the physical sigfor the nature of stationary solutions for photonic crystals,
nificance of the different parameters is identified. In Sec. viiwheren(r)=n(r+R) for any lattice vectoR, that we iden-

we calculate these for a well-studied photonic crystal andify below. _

illustrate how they can vary through a band. The road to For a photonic crystal, Bloch's theorem guarantees that
various generalizations is indicated in Sec. VIII, as well asthe stationary solutions can be chosen to be of the form

our conclusions. .
Hmk(r) = hmk(r)eIk "

7
II. BLOCH FUNCTIONS Emk(r)=emk(r)e‘k" @)

Bloch functions of photonic crystals are most often found

by identifying the stationary solutions of the so-called mas'zone, mis a band index, andh (r)=h(r+R), €(r)

ter equation,” which is second order in time. However, for —e (r+R) for any lattice vectoR. Using Eq.(7) in the

our purposes it is more convenient to work with equations . ) . X
that are first order in time. In this section we describe thecomplex conjugate of Eq5) it follows that, associated with

Bloch functions of the first order Maxwell equations, con- ?haCh .SOIUU?Q (Hmkl(rt).’Em"rEI)) W|Eri1k':‘re3uencyi£)rmk>_?h,
necting them with the Bloch functions of the master equa- ere is another solutio@hy,(rje Em(r)e ) wi

tion. Next, we introduce a matrix formulation of Maxwell’'s the same frequgncy; it'is therefore proportional to one of the
equations that will be convenient for later analytic manipu-s_tatlonary solutions W't.h crystal wave vecterk. We can
lations. Finally, we extend thk-p expansion of solid state I|nk.these two by adoEtlng a standard phasei convention and
physics to this formalism. putting hm(—(r)=—hf(r) and em(o(r) =€m(r). Then
(Hm(=)(r), Em(—19(r))=(=H}(r),Efi(r)) is the solution
associated with crystal wave vecterk and frequencyo .
Finally, adopting another phase convention by defining
The macroscopic electromagnetic fields satisfy two dy-hy(r)=—h(r) and eq(r) =en(r), and where we put
namical equations, (Hik(r), Emic (1) = (i (N €€ " em(nNEX ™), we see that

where the crystal wave vectdr lies in the first Brillouin

A. Maxwell equations
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Kk
m( k)? m( k) ( )

= Hmk,]?zy/\(l-lmk,Emk )

k
m< k)’ NAE— )
mk’ ( Hmk’E )

FIG. 1. Schematic diagram of the relationship between solutions

at + w and £ k.

(Hii(r), Eqic(r) = (H5 1 (1), Efy (1)) is the solution of
Eq. (5) corresponding to crystal wave vectorand
frequency— wp, , which we define as -

In summary, if H,Emx) IS @ solution of Eqs(5) with
crystal wave vector k and frequency wn, then:
(Hini s Emid) = (Hiy— 1y »Em(—19) = (—Hrmi,Emi) is the corre-
sponding solution with crystal wave vectok and
frequency wmi=— (Hm(—1) :Em(-k)) = (H5 . E5)
- ( Hmk '
wave vector —k and frequency om—i=wmk;
(Him(=k) »Em(=k)) = (—Hm(=k) »Em(-k)) = (Hp .Emi) is the
corresponding solution with crystal wave vectok and fre-
quency wa(,k)= Wk -
matically in Fig. 1.

Since we can find () from H,(r) and o using the
first of Egs.(5), the specification oH,(r) ask ranges over
a half of the Brillouin zone that does not includek if it
includesk (such as the regiok,=0) is sufficient to identify
both the solutions associated with thg,, and thew,, over
the entire Brillouin zone. ThosH ., (r) are often found by
solving for the eigenfunctions of the master equation,

Wmk

~«) is the corresponding solution with crystal

These relations are indicated sche-
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f —n2<r)E (1) Emrir(1)= Sy S, (10)

and that theE, (r) are dimensionless.

Turning to typeP,, solutions, we have botN -H=0 and,
from the first of Egs(5), VXH=0. The only solutions of
these equations subject to periodic boundary conditions over
our normalization volume are those of unifoth From the
remaining equationgs) and (6) we find

V XE(r)=0,

(11)
V-[n*(NE(r)]=

Typically there are only solutions of these equationsk at
=0. But in any case the conditions d#(r) and E(r) de-
couple for typeP, solutions. Arbitrary solutions of typP,
can be written as linear combinations of tyPg solutions
with E=0 and typeP, solutions withH=0. We return to
these in the next section.

B. Matrix eigenvalue equation

While the master equatiof8) is the eigenvalue equation
that is probably most often used to find the photonic Bloch
functions, for analytic manipulations it is easier to work with
a matrix eigenvalue equation. The two equati@Bscan be
written as

MX ®= wnd, (12)

where we have introduced the column of complex vector

fields
—\/ DE(N) + = \/ M?r)H(r)
[ Mo '
zvn(f)E(f)—z\lson(r)H(r)

the matrixn is just the unit matrix times the index of refrac-
tion,

(13

1 2 ( niry 0 )
Vx| w0 = 200, ® "o nmn) 19
n c
and the Hermitian matrix operatdf is given by

which follows immediately from Eq(5).

It follows from Eq. (8) that two eigenfunctions with dif- cvn(r)
ferent eigenvalues are orthogonal, as are of course two eigen- cv T 2n(r)
functions with different crystal wave vectors. We choose de- M= (15)
generate eigenfunctions at the same wave vector so that they cvn(r)
are mutually orthogonal, and normalize the eigenfunctions 2n(r)

according to

d3

)72
°| 5 Hi(D) Hoo (0= 8 S (@)

€0

where() is the normalization volume. It then follows from

Egs.(5) that

Here and in equations below the combination of vector cross
product and matrix multiplication is handled in the obvious
way; for example, writing

B ¢+(r))
‘(cb(r) ' (18
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we have

cvn(r)

cVXap'(r)— ()

X (r)

MX b= (17)

cvn(r)
2n(r)

X (r)—cV X (r)

We divide the solutions of Eq12) into those of typeT, for
which w# 0, and typeL for which w=0.
For a photonic crystal, the case of interdgt,andn in-

herit the periodicity of the index of refraction, and hence we

can seek solutions of E412) in Bloch form

D, =U,e* ", (18
where « labels the different solutions at a givén
Ugk(T)
Jek” ( u;k<r>) | 19

andu,,(r)=u,(r+R) for any lattice constariR. Since the
equation(12) is equivalent to equation®), there is a one-
to-one relation betweel®; solutions andT solutions. We
thus haveT solutions®,,, 1, of Eq. (12) with o= w,, andT
solutions®p,7, of Eq. (12) with o= wy,, where

1 i

I E(0) + 5\ S i)

1 i ’
ZVN(Nendr) -5 J;%hﬁnk(f)

here and below we us®a to indicate eithem or m, and we
use the subscript to distinguish between the type solu-
tions and the type. solutions, denoted;, , that we dis-
cuss below. Note thabjr =@y, Where for everyd
of the form(16) we define

(20

mTk=

(g on ) @
The typeL solutions satisfyM X ®=0, or
VXH=0,
VXE=0. (22

Hence, as forP, solutions, we can separately consider
solutions for whichE=0 and those for whichtH=0. But
while there will be ®;,  solutions that correspond tB,
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struct these unphysical solutions. But it will be important to
identify their form and, at least in principle, enumerate them.
We now turn to theL solutions. There are a host of these
solutions characterized by any given crystal momentym
which all satisfy equatiori1l2) with eigenvalue zero. None-
theless, to maintain a consistent notation below, we label
these by subscripts Lk, wherem simply labels the different
L solutions with crystal momenturk. Consider first theL
solutions for which the associat&d= 0, which we denote by
@/ .. We can form a complete set of these solutions by
taking

(23

i 1
(I)mLk: f—zn(r) Lmk(r)( _1),

where for each crystal wave vectérand each reciprocal
lattice vectorG,, we have a longitudinal field

Li(1) = v(k+ Gy e k* Gm)1 (24)
where for a general vectdf we have set
v(V)=VI/|V|. (25

As k ranges over the first Brillouin zone a®@}, ranges over
the reciprocal latticek+ G, ranges over all of reciprocal
space; thus thé ., (r) form a basis set for expanding all
longitudinal functions. Uniform solutionsk& G,=0) are a
special case; these are both longitudinal and transverse, and
instead of one basis function we in fact have three. We can
take these to be, for example,(x)oo(r)=§<, L(y)oo(r)=§/,
and L(Z)Oo(r)zi. The <I>('i)5|_0 columns associated with the
fields L (j)oo(r) correspond tdP, solutions; typically the re-
mainingL solutions with vanishinde are not solutions of the
full set of Maxwell equations.

To construct thel solutions for which the associatédl

=0, we take
" n(r) 1
mLk — \/ T‘Jmk(r)(l),

where, at a giverk, we assemble thd,,(r) by including
first the electric fields of any typE, solutions, orthogonal-
ized and normalized according to E40). We add to these

a set of solutions at each crystal wave vedtahat can be
obtained by starting with ah,,(r), Gram-Schmidt orthogo-
nalizing according to Eq10) to any of the typeP, solutions

at thatk, and to any other irrotational solutions at tHat
already so identified. Carrying this procedure to the exhaus-

(26)

solutions, there will be others as well, since the electric andion of the L (r), a complete set of irrotational solutions
magnetic fields associated withsolutions need not satisfy orthogonalized according to E¢10) can, in principle, be
Eq. (6) while those ofP, solutions must. The presence of identified. Of these, only thé.(r) of the P, solutions are
such extra, unphysical solutions of eigenvalue equations asolutions to the full Maxwell equation®) and (6).

sociated with photonic crystal problems is not unusual; for

Instead of the solution®/,,, and ®;,,, for which E

example, the master equati@®) has unphysical solutions at =0 and H=0, respectively, it is more convenient to work

w=0 that do not satisfiW - H=0 [14]. As in the analysis of

with columns that, likebg,1,, have both an associat&dand

that equation, we will typically not need to explicitly con- H field. We therefore introduce
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1
P k= E((Dr,nLk—’_ D),
_ (27)
Py k=P (-k) -

All the columns®;,g, thus identified, wheren is anmor an
m, andSis T or L, are orthonormalized using as a metric

d¥
f E(I)FT']SK. n(I)ﬁ']rsrkr = 5;{15»'! 553! 5kk’ y (28)
and we have defined the row
DL = (i) (drg)®), (29

etc. The orthonormalization conditio(28) is easily con-
firmed using the orthogonality conditior{9) and (10), the
fact that the integral of the dot product of(aonuniform)
longitudinal field and anonuniforn) transverse field van-
ishes, and the conditions given after E6).

For convenience we will denotenS) by «. Likewise, if
m=m and S=T we let w, indicate o, , while if m=m
and S=T we let w, indicate wy; if S=L we put w
=0. Finally, fork’ =k the condition(28) leads to an ortho-
normality condition for theJ .,

d’r
f Uak-nUarkzzsaa: y (30)
CEHchII

whered,, = dmm 0sg» Qce IS the volume of the unit cell,
and the integral ranges over the unit cell.

Finally, we note from(13) and (18) and the following
equations we have, f@#=T,

Do)+ (1)
vn(r)

gon(r)
Mo

Ea(r)=

31)

Ha(r)=—i [ b(r) = Pil(r)],

where the function€;1(r) and Hyr(r) are simply the
functions Ex,(r) and Hyy(r) identified by Eq.(7) and the
following discussion. FoiS=L we take Eq.(31) to be the
definitions ofE(r) andH,.(r). Then from Eqs(5) for S
=T, and Eq.(22) for S=L, we have

— 1@ kEoN?(NE k(1) =V X H (1),
(32
10 i poH k(1) =V XE (1),

for both types of solutions. Further, the conditio® and
(10) that hold forE,(r) andH(r) also hold, by construc-
tion, for all theEgg(r) andH;g(r). That is, we have

po

0 Q sz(r)'Hark/(r)zﬁaa/akk/

(33

PHSICAL REVIEW E 64 056604

d’r
f En (r)Eak(r)'Ea/k/(r)=5aa/5kk,.

C. k-p equations

An advantage of working with the matrix eigenvalue
equation(12) is that thek- p expansion takes a much simpler
form than if, say, one works with the master equati@n
[14]. Using the Bloch form(18) in the matrix eigenvalue
equation, we find the equation that the periodic p#yt of
that Bloch function must satisfy,

H(k)xuak:waknuak’ (34)
whereH(k)=M+v(k), and
B ick 0 )
v(k)=< 0 —ick/" (35

We now expand in the usual way about a given wave vector
Ko»

[H(kO)+V(K)]XUakzwaknuakv (36)

wherexk=k—Kk,. Although generalization is easily done, for
simplicity we here choose anxk) such that the indicated
band is nondegenerate; this of course requires 8l .
Then we can expana ,, aboutkg,

W k= Wkt Kiwicsi};-}— Kina)Eﬁi)-i- O(K%),

(37)
where thew';) andw{?) are expansion coefficients, and the
superscripts indicate Cartesian components that are summed

over when repeated. We use tbgko as a basis for expand-
ing U,

uak=uak0+x'§ﬁ‘, a'ﬁ(l)uﬁkoJrK'KJ}B) DU,

+0(K%), (39

where thea{") andaj}® are expansion coefficients, and we
only sum over the bands as indicated; the prime denotes that
the a band is omitted from the sum. This will simplify the
following derivation, at the cost of foregoing normalization
(30) of the U, ; that can always be done later and, since our
main interest is in extracting the;’ andw}{2), it will not

be a concern. We do assume that Uh/ﬁo satisfy the nor-
malization condition(30).

Inserting Eqgs.(37) and (38) into Eq. (36), we collect
terms according to their order ir. The zeroth order terms
give Eq.(34) with k replaced byky. The first order terms,
when simplified using the eigenvalue equati4) for Upky:

yield
03 =0(Ko) (39)

when dotted inthLko and integrated over a unit cell using
Eq. (30), and
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As in the corresponding expression for the group velocity
(40 dispersion that can be derived from the master equd8pn
[14], the part of that sum involving unphysical states can be
written in terms of physical states, yielding an expression
involving a sum over only physical states. We do not present

dm:__ﬂzﬁﬂ_

@ ko™ Wak,

when dotted into one of thkdgk , with B8+# «, and integrated
0

over a unit cell. Here we have defined that here because it will not be of use to us. Of course, in
& most practical applications of thke-p method it is only
Vo o(K)=—i f _UZ’kXVUak (41  bandsp that are close in frequency to the bamcf interest
cellcell that will make a significant contribution to the su#b).

H !
for arbitrarya’, «, andk, and Il DYNAMICAL EQUATIONS

VE(C 0 ) (42) We now set up the full dynamical field equations. Instead

0 —-c of the simple constitutive relatiofd) for the displacement

o ) field, we now consider the more general form
Similarly, the second order terms yield

, : D(r,t)=gon?(r)E(r,t)+P(r 4

s talkotk) (7o NEEO TR, 9

oG w0k, where the additional polarizatioR(r,t) describes the non-
linear response as well as material dispersion and gain or loss

when dotted intdJ{, and integrated over a unit cell using in the media. We will turn to the expression #(r,t) in the

Eq. (30), after substituting Eq(40) in the result. From Eq. following section. Using the constitutive relatiori8) and

(37) and its derivatives about=0, we can use Eq¢39) and ~ (48) in the Maxwell curl equations2), we find
(43) to identify the general expressions

w

gon(NE(r,t)=V XH(r,t)—P(r,t),

0(1)ak i . (49)
K =V aa(K), (44) woH(r,t)=—VXE(r,t)
and as the dynamical equations that the fiele(s,t) andH(r,t)
satisfy. But these equations must be solved subject to the
P gy ,viag(k)nga(k) initial conditions (1). Particularly in the context of the
= —22 —_ (45) multiple-scales analysis that we will introduce, these initial
LS B Wk @ak conditions are not easy to implement; it is generally easier to

work with dynamical equations that are not so restricted. We
can do this by introducing potentials that automatically guar-
antee Eq(1) in the following way. For any reasonable, non-
uniform initial fields B and D satisfying Eq.(1), we can

for a banda that is nondegenerate kf these are the main
results of this section. Working out the expressidd) in
terms of the photonic band functio31), we find

1 d3r introduce potentialé andN,
va,ak=—f ——[E*, . (1) X H (1) + E g (r
(0= 55- | @ (BN X Har) + Eair) B vxA
XHY, (D], (46)

D=—-VxN (50)

The velocity matrix element between tvostates vanishes,
since both the electric and magnetic fields in those states
longitudinal. Quite generally the matrix elements betwee
two T states, and betweenTastate and ar state, will be
nonzero. The diagonal matrix element

afhat so describe those fields. Then it is easy to confirm that,
nfor fields B andD given by Eq.(50) at later times, the Max-
well equations(2) are satisfied, along with the constitutive
relations(3) and (49), if the potentialsA and N satisfy the
dynamical equations

1 d3r _
vmxm=;;ch%wRquu>Xkun (47) gon2(NA(r, )=V XN(r,t)+P(r,1),
is proportional to the time average of the Poynting vector woN(r,t)=—VXA(r,t). (51

averaged over the Bloch state, as might be expected since it

is the group velocity(44) associated with that Bloch state. These we will take as our basic dynamical equations; clearly
However, this simple relation between the group velocitythere are no subsidiary conditions that initial value®\aind
and the average Poynting vector in a photonic crystal doebl must satisfy. Once the potentials are found at later times
not seem to have been realized before. Finally, we note thdtom Eqgs.(51), the electromagnetic fields themselves can be
the sum in the expressiddb) for the group velocity disper- obtained from Eqs(50) and the constitutive relation8) and
sion involves both physical states and unphysicalstates. (48).
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It is convenient to write the dynamical equatiofa) in
matrix form as

A
IHW—MX\I"H,_,, (52

where the columnP of complex vector fields is given by

—\/n(r YA(r t)+— ( ) N(r,t)
= (53

—\/ rA rt)——\/ ( )N(rt)

and the column

1
E=§(r,t)(1>, (54

where

(59

is purely real. Note that not any arbitrary column of complex

vector fields,
gr(r,t)
P (r.1)

will represent real potential&(r,t) andN(r,t) according to
Eq. (53); however, given an arbitrary columit we can con-

(56)

PHSICAL REVIEW E 64 056604

we see that the physical conjugate oWf is —£W_
Hence, if we likewise hav&=E, + & _ and satisfy

£‘I’+:iE+ 1 (59)

then the dynamical equatioriS2) will be satisfied. It is this
last equation that we will reduce by a multiple-scales
analysis.

IV. MULTIPLE SCALES

In order to reduce E(q59) to a simpler form, we use the
asymptotic method of multiple scales. We seek to scale the
physical parameters in E¢9) to a small parameten, then
keep terms in Eq59) up to a given order iry. By satisfying
Eqg. (59) to successively higher orders i, we will better
capture the dynamics of the exact solution, in an asymptotic
sense.

A. Fields

In the absence of nonlinearity, material dispersion, and
gain or loss, the general the solution of E§9) is of the
form

W, =a, fadye e, (60)
B.k

wheref 5, are dimensionless coefficients used to expand ar-
bitrary initial conditions in terms of the complete set of
eigencolumnsbBK, and wherea carries the units o, . By
construction, the subsequent dynamics are linear, so that in

struct a column¥+W representing real potentials, where e presence of nonlinearity, it is not possible to form an

the physical conjugatd’ of a column vecto56) is defined
according to

\Fz( [¢ (r.0)] ) 57

[ (r,n]*

(cf. the corresponding expressié®l) for eigenfunctions of
M). Typically we will write a column(53) asW¥, +W_,

where\I'_Eﬁ+ . Defining the operator

J
=in——MX,
£= m&t M (58

f(r)=FOGCnX, 72X ... YoV, %Y . . . 2.2, m°Z . . .

exact solution using Eq60). One way of proceeding is to
solve the nonlinear eigenproblef2]; however, this ap-
proach does not give propagating pulse solutions, and the
loss of linear superposition precludes a general solution of
the form(60). Even in the absence of nonlinearity an expan-
sion (60) may not be the best way to identify the nature of
the solution. So we construct approximate solutions of Eq.
(59) by replacing the constant coefficientg, in Eq. (60)

with functionsf g (r,t) that vary slowly in space and time.
Furthermore, to keep track of the “slowness,” we explicitly
separate different length and time scales in the problem, by
introducing a small parameter and writing functions as

t 7]t 77 ) F(ro rl,rz,...;to,tl,tz,...), (61)

whereF is assumed to vary equally significantly as each oftiple scales of the problem. Derivatives are given by, for

its arguments varies over a randeor a periodr. These are

example,

chosen to be the shortest length and time scales in the prob-
lem; d, for example, is taken as the size of a lattice constant

and 7 will be identified below. Then the ranges and periods

dP=d/%P and 7P)= 7/ %P for p=0,1,2-- define the mul-

oAt) oF  GF  oF
. atg Moty " ”at

(62
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We will be looking at situations in which one of the where
fa(r,t) will be larger than the rest. This will be called the
principal component, and we take to identify one of the 8(r,t)=iwakaFgOk)Eak(r)JrO(n) (68)
physical G=T) solutions® of the matrix equatiori12) dis-

cussed in Sec. II; we further identify the shortest time scale.iains no dependence 6 Here we have used the rela-

‘if the problem to be the period associated Wiy, 7 fiong (32 that the fieldsE(r) and H,.(r) satisfy. From
=27l w . Other components, labeled [syand called com-  yiq result we see thab,,a is a characteristic size of the
panion components, will have amplitudes smaller by a factog, o tric field: we henceforth denote it by

of 7. The case of two principal components has been con-
sidered in one dimensidri 2], but for our purposes here one

principal component will suffice. Then we seek an approxi- 0= @@ (69
mate solution of the formW=w¥_ +W_, where W_ ) )
- We can also identify
=w¥,, and
, A sy aFQ )
v,=a fak(rat)q)ak+% foi(r,t)®py | @' aklo, g €7 ot Eak(r)+0(7%),
(63 (70)
2
where the prime denotes exclusion of the principal,aor 9°E(rY =0(7?)

band. To capture the amplitude scaling of the principal ( at?
and companion 8+ «) components, we take

fak(rat):FgOk)(rlerv ot expressions that will be used in a following section.

(64) _ .
fa(r,t)= nF(Blk)(rl,rz, R T PO | B. Multiple-scales expansion
. We now construct an expansion ofl£_ in powers ofz,
+772F,(82k)(r11r21---1t11t21"')' p p Y

_ (0) (1) 2 )4 ...
Note that these slowly varying quantities have no depen- =¥+~ (B )T n(EW )T+ (R W, )P0+

dence onrg or ty, and that the amplitudes of companion
components are smaller than that of the principal compone
by a factor of . Hereafter the arguments of thewill be
kept implicit. To identify , we look at the range\ over
which f . (r,t=0) varies, and set

(71)

t . .
r}or the W, given above Eq(63). To construct this we need
the corresponding expansions of the terms that appear in £
(58). These are simply

g 65 a_a+a+2a+ 72
=1 (65 ooty T Tt (72)

whereg is a factor of order unity that we will set later to 4
guarantee consistency. This identification pfmeans that
the first variation o, through space, above and beyond its

=M (1) M@ ...
dependence over a distand¢éhrough the Bloch function, is M=MTT M M (73
through its dependence an.
From the dependence & on N andA (53), we see that Where
this W, leads to an 0
v _ cVOn(r)
N(r0 =8| FQH (1) + S [7F R+ 72F ) YOR 2ntro) (74
B | ev©@n(ry)
M SRS ()
i 2n(rgp)
+- - JHg(r) |e”'@alotc.c., (66)
and, forj>0,

where we have used E1) for the photonic band functions

associated with theb,, . We can now determiné(r,t) ‘
from its expressiort50) in terms of the potential(r,t), and M(”=(
then use the constitutive relatigd8) to identify E(r,t). In

doing so we anticipate a result of the following section that _ ) ]
P(r,t) will be of order 2 we then find where V() denotes the gradient with respectrto Collect-

‘ ing all the terms and using the fact that t#e, are eigen-
E(r,t)=E_(r,t)+c.c=&(r,t)e '®alotcc., (670  functions of the operatav(?), we find (¥, )©=0 while

cvd o

= ()
0 —cVU)) =V 79
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© etc., but usel w to denote the Fourier transform variable of
n n®,, +Vd,, X V(l)FES() &(r,t). UsingD, . (r,t) to denote the portion dD (r,t) ob-
1 tained by using onhE, (r,t) in Eq. (79), taking the Fourier
transform yields

a telvado(£r ) (D=j

+2 (W~ wﬁk)F%lk)n‘I)gk,
A DL+ (1wt Aw)=e(r, 0+ Aw)E(r,Aw). (8]

(76)
Now since &(r,t) only contains time dependence through
and variablest; for j>0, the Fourier componentSw that are
©) important in&(r,A ) satisfy|A w|<w,. Hence we are led
a el a0 (EW, ) D= — i, + VD, X VAR to expand
2
1
, 8F§3lk) e(roytAw)=e(r, oy +(Aw)e' (r)+ =(Aw)?e"(r)
+ 2 I D et Vg, 2
p ! + ., (82)
1 1 4
XVIORGR|+2." (@ wheres' (1) =ds(r, o)l 0w, 8"(1)=0s(r o)l d0?,,
etc. We now introduce a nominal real refractive indgx)
—wg)FnDg . (770 by putting
In the absence of any nonlinearity, dispersion, or gain or e(r,wu)=gon?(r)+ec(r), (83

loss, our equatiort59) would simply require that (%)™

and (8%, )@ vanish. The results for this special case can bevhere the “correction” permittivitye c(r) is given by
extracted from the more general analysis we present below to

take into account a nonvanishit ec(N)=Rd&(r,w.)]—eon’(r) +ilm{e(r,wu)]. -

V. NONLINEARITY, MATERIAL DISPERSION,

AND GAIN OR LOSS The obvious choice forn(r) is to set Ree(r,wq)]

—gon?(r)=0, but to describe electro-optic modifications of
We now turn to the general form of the constitutive rela-the dielectric constant it may be convenient to choose a dif-
tions that we adopt, and identify tHe(r,t) that appears in ferent nominal index(r). Using Egs.(82)—(84) in the ex-
the relation(48) betweenD(r,t) and E(r,t) that we have pression81) for D, ,(r,®), we inverse Fourier transform to
assumed above. Instead of the constitutive relati@hsnd  identify D, . (r,t), partially integrating to eliminate the pow-

(4) we adopt the relations ers of Aw; adding in the complex conjugate leads to the
result
B(r,t):,lLoH(r,t),
(79) Dy (r,t)=£qn(r)E(r,t) +PL(r 1), (85
D(r,t) =Dy (r,t) +Pyy(r,t),
where

wherePy (r,t) is a nonlinear contribution to the polarization

that we will discuss shortly, and the linear response is taken _ gt it it PED)
to be of the form P (r,t)=ec(r)&(r,t)e "at+ig’(r)e K =
t 1 oo FPE(TY)
DL(r,t)zf e(r,t—t")E(r,t")dt’. (79 —Es”(r)e 19 ak ) +...+c.cC. (86)

The form of the linear response is general enough to include
material dispersion and gain or loss, and could be easily
extended to include material birefringence; in photonic crys- Turning to the nonlinear response, we assume the nonlin-
tals, e(r,t) = e(r +R,t) for any lattice vectoRR. earity is weak and due to a third-order response that, at fre-
quencies of interest, is far off resonance. Then an appropriate
model for the nonlinear polarizatid®y (r,t) is

B. Nonlinear response

A. Linear response
We introduce Fourier transforms of our fields in the usual PLL(r D =g (NEI(r,HEXT,HE'(r,t), (87
way,
where the third-order susceptibility is purely real, is un-
_ Md_“’ —iot changed under any permutation of the Cartesian components,
E(r,t) E(r,o)e ', (80) L o . Hkl
—w 27T and exhibits the periodicity of the photonic crystgl'(r)
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— I (r +R), whereR is any lattice vector. Using the ex- Whereeoy"¥!(r) has units of permittivity and is assumed to
pression(67) for the electric fieldE(r,t), this expression be on the order of the largest linear media permittivity, or

reduces to smaller. Using Eq(93) in our result(88) for Py (r,t), we
' ) find that the expansion for that term also begins with order
N D =30 d (NN DEXT DI (T DT et 7,
+c.c, (89 Pau(r,t)=7?P@(r,H+---, (94)

when we neglect third harmonic generation terms. Theswhere
Fourier components oPy (r,t), centered at &, and . - .
. i ¢ (2) _a (0)] = (021 jjkI k
—3w,, are typically non-phase-matched and, in any case, PNL(F:1)=3i®@z0F o] o]y (NEL (1) Egy(r)
are usually at frequencies high enough where absorption is [ * a—iwpt
- o . : X[E (r)]* e '®ak+C.cC. 95
sufficient that significant fields at these frequencies are not [Eadlr)] (95)

generated. Exceptions to this have been considered in 0ng-ompining the linear92) and nonlinear95) contributions
dimensional structureld 5], but will not be considered here. 4 P(r,t) Eq. (89), we see thaE (54) is indeed of the form

=,.+E2_, whereE_=E,, with

C. Scaling
We can now identify thé>(r,t) in our posited expression — —_
a8 s fy the>(r,t) p p =, = ?ED 1. = p2£2 AR (96)
P(r,t)=P_(r,t)+Py.(r,1), 89  and
with the linear and nonlinear contributions given by Egs. _ . 7, éc(r)Ei (1)
(86) and (88), respectively. In order to writ€(r,t) in pow- a lelvalg (D= 5 “FO :
ers of 5, we need to scale the magnitudes of go n(r)

ec(r), €'(r), €"(r), andxJ¥'(r) to powers ofz. For the

©) 21 ¢\ g
linear response we assume 1 dFuk &' (NEq(N)

X

3
b0 F QO

ec(n)=7nec(r),

)= e'(r) 90 2
(=7 O XYijkl(T)ELk(r)EI;k(r)[Elak(r)]*
érr(r) n(r)
g"(r=n—p—, (97)
W ok

~ ~ A . . . VI. ENVELOPE FUNCTION EQUATIONS
whereec(r), &'(r), ande”(r) have dimensions of permit- Q

tivity and are assumed to be on the order of the largest linear We are now in a position to implement the dynamical
media permittivity, or smaller. Using these expressions inequationg59) to orderz?. SinceE&l)=O, the orderp equa-
our result(86) for P (r,t), along with the expression®8)  tions are simply (&,)")=0. Returning to the expression
and (70) for &(r,t) and its derivatives, we find that our ex- (76) for (EW, ), we first dot the ordew; equation intod|,

pansion forP,(r,t) begins with order;?, and integrate over, to find
PUrO= 7P+ (oD oFQ oY
ol (k) — =0, (98)
where & ar
£(0) while dotting that equation intd);k, for B+ a, yields
P =i 0maFRec(r) —a—%" (1) [Eg(ne o . .
1 v, (k) gFY
Fl=— = y (99)
+c.c. (92) (0= @pK) or}

Turning to the nonlinear polarization, theuksl,tren%th of theHere we have used the orthogonality conditi¢@®) as well
nonlinear polarization is characterized byf*'(r)ej, and as the expressiori41) for the velocity matrix element

here we will assume the scaling Vg o(K).
) ) The ordery? equations, (&,)@=i=?® can be dealt
ijkl /a2 2 ikl N T
x3° (r)eg= 7"y (r), (93 with in the same way. Dotting intab}, , for 4#a, and
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integrating yields the equations fBi) for 8+ «, which we
will not write down here. Dotting inteb!

[e3

« and integrating,

PHSICAL REVIEW E 64 056604

for arbitraryi andj. Like the requirement103), this is most
easily satisfied if all bands other thanare “remote.” Of

we obtain an equation that can be readily simplified. UsingfOUrse, these requirements must be satisfied while still main-

the expressioii99) for F%lk) , we find the resulting expression
involves a sum that can be identified as the group velocity

dispersion(45). We can also use Eq98) to write JF )/ at,
in terms of thegF }/ar'; . Our efforts yield

aFQ) FQ i Pou PFR

ol (k) — s — s —
aty ary 2 okigkl arior]

iwakaFgf() i ﬁFflok) iae(z)
S e
Y

7? n dty

where we have defined coefficients w, and« in terms of
our original physical quantities,

1 d®r ec(r)
-3l 3 EalDI?
cell S%cell €0

d3r &'(r)

o Eanl?
=5 W, n ak(l ’
H 2k cell Qcenl &0 k

(101

_ E d3r ijkl i * =l k
a= 5w,k X3 (r)[Eak(r)] Eak(r)Eak(r)
2 cell Qeenn

XEL(NT*.

taining

n<l. (105

In fact, the requirement§102—(104) are overly conserva-
tive, because in equatio65) we implicitly took f,(r,t
=0) to vary over a single lengtiA in all Cartesian direc-
tions; by setting out separate lengthg, A, andA, over
which f . (r,t=0) varies in the indicated directions, the
above conditions can be made less restrictive for some
pulses. We do not write out those more general conditions
here.

Recalling the definition ofA and » [see Eq.(65)], we
refer to the requiremen{d02—(105 askinematical consis-
tency conditionsGiven the pulse specification &0, and
the photonic band structure, it is easy to check whether or
not they are satisfied. Typically, the more remote in fre-
quency a band is from the other bands, the shorter the pulse
can be while still satisfying these conditions. If they hold at
t=0, then the dynamical equatiori88) and (100) can be
considered a good approximate description of the initial dy-
namics fort>0. But ast increases we also require that the
solution of Eqs(98) and(100) leads to an evolving'} that
remains of order unity or less. This much more stringent
dynamical consistency conditias discussed in Sec. VIII.
For the rest of this section we assume that all these consis-
tency conditions are satisfied.

We can amalgamate our dynamical equations at orders

Each of Eqs(98), (99), and (100 must be consistent with
our scaling assumptions. That is, tRg) andF ) must all be
of order unity(or lessg, and vary equally significantly as each
of its spatial and temporal arguments vary owkand 7,
respectively. A simple analysis here follows such an exami-
nation in the one-dimensional cag&2]. In particular, we and likewise for the gradients &9 - we combine Eqs(99)
must  satisfy  the two derivative conditions and(100) to find, to ordern? ake

|F O aty|, [oF Doty <|F Q7] = w4 FQ)/(2) and the ' G
condition that |[F§)| be of order unity or less. Since JF O _ FO
|oF Qror |=|FQ|/gd and |a2FQ/arior!|=|FQ|/g?d? T (1= m)v g (k) —
Eq. (65), the first of the derivative conditions, together with J

7°, 7%, and 5? by using

0 0
aFgQ: aF Q)
a7,

0
2[?':5“24_...

o, : (106)

+7n

2 (0
1. (92(J)ak Jd FElk)

ri 2 gkigkl ariori

Eq. (98), requires that we set —iwyoF QD —iae2F QFQ2=0. (107
g= 2m vm(k)’. (102 Making a change of variables to a moving frame witht
ok and r=r—(1—u)Vv,.(k)t and dropping the overbars, we
The third condition, together with E@99), requires that obtain
e 1. Powy 0°f
vgalk) 1 e e P oot prv=- ST S LY
g; ma (103) ot 2 oki gk ﬂrlﬁrJ ak ak 0 ak| akl

(108
for B+ «; this condition is clearly best satisfied if all bands
B are remote in frequency from the band associated with th
principal componentt(%). Finally, the second derivative
condition, together with Eq(100), requires that

8 nonlinear Schidinger equation for the envelope function
of the principal component.

We now consider the physics associated with this equa-
tion. It describes a wave packet moving at a velocity (1
— 1)V, (K) relative to the lab frame, so from EQLOY) it is
clear thatu characterizes the change in group velocity, due
to material dispersion, from that of the band structure char-

1 &Zwak

2= —
9T o Jkigkd

(104
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acterized by a nondispersive refractive indgx). We can  Where o/, = *w/d(k?? is the group velocity dispersion.
confirm the nature of the coefficiept, as well as the other This result is in agreement with earlier wofk2], but ex-
coefficients we consider below, by looking at the limit of a tended to include the effective index modification term in-
uniform medium. In that limin(r) is uniform,n(r)=n, and volving o, which is discussed below. In the higher-
the Bloch functions reduce to plane waves that we take to bdimensional equatior§108), the group velocity dispersion
linearly polarized. Recalling the normalization conditiggs  term actually includes effects due to both group velocity dis-
and(10), the fields are persion and diffraction. In a uniform medium for whieh

=c|k|/n only diffraction in fact survives; if we choose a
ik-r

£ e,e wave packet centered &t=k,z, we find
ak ry= ’
n
1 &zwak &zfak ic &Zfak &zfak
_ 20 @ak 9 Tak ,

A ek 2 okl ok! ariarl 2nko\ gx2  gy?
Hok(r)= , (109 (112

Cuo

which will lead to the spreading in they plane of a wave

vyherek=|k|=[1w/c, ande,xh,=k=k/k. In -this limit we  packet propagating in the direction. For a true photonic
find v,,(k) =ck/n from the general expressiqa7), as ex-  crystal, of course, in generafw . /3(k?? will not vanish at

pected, and from Eq101) we find k=Kkoz, and that term will describe the group velocity dis-
persion that is absent in a uniform medium with no material
c ar dispersion. As well, of course, there is no guarantee that the
(1_“)Vaa(k)_>ﬁ< 1- §w80n2> k. (110 tensord’w . /dk'dk! has as one its principal axes the direc-
tion in which the pulse is propagating; hence effects involv-
The exactgroup velocity in a uniform medium is determined iNg group velocity dispersion and diffraction in a compli-

by the dispersion relatiom=ckyeo/e(w). For a uniform ~ cated way can easily arise. .
medium with ans(w) characterized by Eq82), we find a To consider the physical significance of the other terms in
group velocity magnitude dw/dll<=(c/n)(1 our nonlinear Schidinger equation, we note that for the

+&'wl/(2n%gg)) L. Our limit (110 agrees with this to low- form (66)~(68) assumed for our fields we have
est order in the dispersion coefficient’/sq, as would be
expected from our scaling®0). Of course, in a photonic
crystalv,, (k) will not be simply uniform in magnitude ds
varies, even neglecting material dispersion, anwill also

be a complicated function & as Bloch functions sample the 4 |g\est order, where the brackétsindicate both a spatial
underlying material dispersion differently at differdatac- average over a unit cell and a time average over the period

cording to Eq.(101). Nonetheless, since in a uniform me- ;qsociated with the frequenay,, ; here we have defined
dium w is typically much less than unity and represents a

small correction to the group velocity, and because it is (1 W (r,t)=eoVeqv oa(K)FY, (114
—w) that appears as a multiplicative correctionwvtg,(k),

for typical photonic crystals material dispersion should repyyhile » (k) denotes the magnitude of, (k) ands its di-
resent a small correction as well. Of course, material dispetzaction. In terms of this new fieldlf(r,?) our nonlinear
sion will enter to higher orders thap? if the derivation Schrainger equation is

leading to Eq.(108 is extended to a higher order; or, if

(E(r,t) X H(r, 1) = 2e0€)| F'Q|2V,0(K) = 2| W (1,1)[S

=I(r,t)s (113

material dispersion is physically more important for a givenﬁq,(r ) Ut 1 P, V(T
problem than the scalin(@0) identifies, a more appropriate : - i’ =i : = i :
scaling would have to be adopted. In either case a correction 7t ar 2 oK'kl grior]

to the group velocity dispersion term—the term involving
w4 19K 9K in Eq. (108—due to material dispersion will
arise.

+iwoW(r,t)

. o

But we pass over these matters for now and neglect ma- +1 m‘l'(r,t)|‘lf(r,t)|2,
terial dispersion for the rest of our discussion in this section, 0¥ aa

settinge’ (r)=0. In the limit of a one-dimensional photonic (119

crystal, where we take to be both the direction of propaga-
tion and the direction of crystal periodicity, equati@D8)
reduces to

where as mentioned above we have put 0.

To concentrate on the effect of the nonlinear term in this
equation, for the moment we neglect both théerm, which
results from a perturbation of the linear optical properties,
and the group velocity dispersion term. Then, considering
propagation in thes direction, for a field¥ (r,t) that is in-
(111 dependent of time we find that equatitiil5) reduces to

e 1. 0°f

o n

gt 2' ¥k 2

: : 2 2__
—I waka-fak_ I aeofak| fak| =0,
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JV(s) B
s

i— __w(s)|W(s)|%

Uaa(k) Sovaa(k)

(116

The assumption tha¥ (r,t) is independent of time implies

that the full electric field is oscillating at the Bloch frequency
w4, - Now we write the solution of Eq116) in terms of an
effective nonlinear refractive index coefficiemy,
V(s)=¥(0)exdi(nsl)(wS/c)], (117
where
_ 1 a c 2 118
N2 260C ok | Uaa(K)] (118
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The effects of the photonic crystal structure are apparent

here. First, the coefficien&x characterizes how the Bloch
function modulated by the envelope functiok(r,t) is

FIG. 2. Band structure of a close-packed fcc photonic crystal
consisting of air spheres in PMMA, plotted along high symmetry

“samples” the underlying nonlinearity. Second, there arelines. The frequency ig, anda is the distance between the centers

two factors offv,,(k)/c] L. The first can be traced back to
the form (115 of the nonlinear Schiinger equation that
arises if the amplitude of the energy flugr,t) [essentially

W(r,t)]is used as the fundamental field. It arises because the

nonlinear coefficientn, is referenced to the energy flux

while the nonlinearity itself depends on the electric field
strength; for a given energy flux, the electric field strength is
greater the smaller the group velocity. The second factor of

[v..(K)/c]™* appears through the solution of E4.16), and

of neighboring spheres. For clarity, bands 1 through 4 between
andL are labeled.

eeee

3x3
4g,cn?’

n2—>

(122
€c
- 280n !

n

arises physically because the smaller the group velocity th@here we have taken bof£®®®, the indicated component of

more time fields spend experiencing a nonlinearity while_jjki

propagating over a fixed length
Only the second of these factors appears if we consid

propagation of light. Returning to Eq115 and now ne-

glecting the group velocity dispersion and the nonlinearity,

in place of Eq.(116) we find

I (s)
s

U aa(K) =iwoV(s), (119

and introducing the modification to the effective index
[c/v 4(K)] by writing the solution of this equation as

W(s)=¥(0)exgin(wyus/c)], (120

we identify

n= 0( (121

o)
VaalK))”

Note thato andn can both be complex if the modification

ec(r) to the linear dielectric constant is complex; the real
part of n is associated with a change in effective phase ve

locity, while the imaginary part oh describes the effect of
gain or loss on propagation.

Y4¥! associated with only the directia®,, andec, the lin-
ear modification of the dielectric constant, to be uniform.

the effect of a modified linear dielectric constant on thee{-he first of Eq.(122) is the well-known relation betweem,

and y3 in a uniform medium, and the second is, faf/eg
<1 [see equatiorf90)], the expected correction to the index
of refraction n?+ec/eg~n+ecl2eon due to a linear
modification in the dielectric constant.

VIl. NUMERICAL EXAMPLES

In this section, we calculate and interpret the effective
nonlinearity, and gain or loss coefficients, of a typical pho-
tonic crystal. While the above expressions can be applied to
crystals of any dimensionality, here we consider the three
dimensional example of an fcc close-packed folgthyl
methacrylatg (hereafter PMMA inverse opal. PMMA has a
refractive index of 1.49 and is taken to haveranonlinear
susceptibility tensor characteristic of an isotropic material.
The band structure and photonic Bloch modes for the non-
dispersive, linear, lossless limit were calculated using a fre-
guency domain eigensolvét6], with results shown in Fig.

2. We consider a pulse propagating in tfiel1) direction,

which in practice often corresponds to coupling at normal
incidence. Care must be taken since the high symmetry of
the (111 direction leads to degenerate bands. Although we

We close this section by confirming that our expressiongjid not treat degenerate bands in the formalism, a generali-
(118 and (121) for n, and n, respectively, reduce to the zation of the argument leading to E¢P9) shows that if
correct results in the limit of a uniform, nondispersive me-v,z(k)-Vf, is sufficiently small everywhere for all bands
dium. Recalling thaw ,,(k)=c/n in this limit, using the B degenerate with band, then the nonlinear Schdinger
Bloch functions(109) appropriate here, and evaluatingand  dynamics of equatiori115 will be valid for banda. One
o from their definitions(101), we find way of satisfying this condition is to consider systems for
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FIG. 3. Effective Kerr coefficientr vs wave vector alongl11) FIG. 5. Effective gain or loss inder vs wave vector along
direction for close-packed air spheres in PMMA fcc crystal, plotted(111) direction for close-packed air spheres in PMMA fcc crystal,
in units of «”MMA the Kerr coefficient of uniform bulk PMMA. plotted in units ofPMMA. the value for bulk PMMA.

which bothVf , xXv,,(K) is sufficiently small everywhere

gndva@(F) avaa(:() s Zero Lor .?"'ﬁ' The first condi.'iijorr: c?nh locities from those due to the concentration of the fields
e satisfied at least initially It the transverse width of the, ;i high nonlinearity, or high gain or loss media, we plot

pulse is sufficiently large; we assume we are dealing wit - .-
such pulses. The second can be satisfied if the modes withr}?loth t'he mode samp!mg coeff|C|errtsand~a (101), and the
ctive index coefficient, (118 and n (121). Due to

the degenerate eigenspace are suitably chosen; the modes &lls ; . -
be so chosen in the examples that follow. The general derSYMMetry, bands 1 and 2 have identical such coefficients, as
vation of pulse dynamics with a degenerate principal com9° lbant_js 3 and 4. In Fig. 3, we s‘;ae the dlgerence between a
ponent requires a more thorough treatment, which we plan tgi€!ectric band and an air band. Asnears the band edge at
include in a future publication. L, in t_he Iowe_:r ban_ds the_z energy is concentrated more and
In the calculations below, we consider a pulse character0re in the dielectric, while in the upper bands the energy is
ized by a principal component associated with one of theoncentrated more and more in the air. As a result, the ef-
lowest four bands. These consist of a doubly degenerate diective Kerr c_oefflClentr of the dielectric _b_and increases and
electric band and a doubly degenerate air band. We note thftat of the air band decreases. In addition, at wave vectors
the crystal has a reflection symmetry plane that contains th@here the bands flatten out, the Bloch functions acquire the
L point and thez axis [17]; for the sake of specificity we nature of standllng waves rather than traveling waves, leading
choose the eigenstates of this reflection as bases within ealfyan increase in the integral of the fourth power of the Bloch
of the degenerate eigenspaces, and refer to the states witf’ction for a fixed normalization; this results in a slight
reflection eigenvalues 1 as the evenlike and oddlike states, '€COVery in thea coefficient of the upper band before it
respectively. This choice of states ensures thag(k) reaches th& point. Note that as the upper band approaches
-v,,(k) is zero for all B. In fact, the lowest four bands I it becomes both degenerate with higher bands and near to
eXOéTT]plify a special case for whic;mﬁ(k)-v (k) vanishes  €Ven higher bands; here the kinematic consistency conditions

for any choice of orthogonal modes within the degeneratdV0uld require a longer and longer pulse to justify the scaling
eigenspaces. introduced in our derivation to be appropriate. In Fig. 4 we

observe somewhat similar qualitative features doras we
0.65] might expect. In Fig. 5, we plat. The factorc/v (k) leads
to divergences im as the bands flatten out, reflecting the
enhancement of the accumulation of phase and of gain or
loss as light propagates more slowly through the crystal. In
Fig. 6 we plot the nonlinear indem,. Here theczlvfm(k)
factor characterizing both the propagation time and field en-
hancement effects due to “slow light” completely dominates
the behavior ofh, as the bands flatten out.

In order to separate the effects due to reduced group ve-

0.60

0455-.
0450—- bands 3,4

0.454

PMMA

0.40

o/c

0.35

030 bands 1,2

1 VIIl. CONCLUSIONS
0.25

L We have described pulse envelope function dynamics in
photonic crystals, considering; nonlinearities, as well as
FIG. 4. Effective gain or loss coefficientvs wave vector along  linear material dispersion, gain and loss. The main results are
(111) direction for close-packed air spheres in PMMA fcc crystal, equations(108) and (115). Equation(108) is a dynamical
plotted in units ofo"MMA  the value for bulk uniform PMMA. nonlinear Schidinger equation for the pulse envelope func-

r wave vector
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4.0 crystals, providing a qualitative departure from the more fa-
miliar dynamics of one-dimensional Bragg gratings. Further-
more, while we have restricted our analysis in this work to
the case of a single principal component, a study of the case
of two principal components—that of two excited pulses
with different carrier modes—uwill also yield characteristi-
cally higher-dimensional dynamics. The study of two pulses
at the same frequency with either identical or differing wave
vectors, and the study of two pulses at the same wave vector
but with slightly different frequencies, promise new physics.
] In one dimension, the latter case is used to describe coupling
0.0 , between modes at the upper and lower band ed@gethe
wave vector L coupled mode equations, which yield gap soliton solutions.
FIG. 6. Effective nonlinear indem, vs wave vector alongl11) We plan to treat the generalization to three dimensions in a

direction for close-packed air spheres in PMMA fcc crystal, plotteduture publication.

3.5 1

3.0

PMMA
n/n,
n
o
1

054 bands 1,2

in units of n"SMMA the value for bulk PMMA. We see tha, is Further generalizations will involve the inclusion of other
greatly enhanced near band edges, where group velocity effecllysical effects and scalings, such as underlying material
dominate. birefringence, defect modes of the photonic crystal, nearly

degenerate modeg, phenomena, and higher-order disper-

tion. Th tion is derived using a multiple-scale anal ision and nonlinearity. The latter two effects will inevitably
on. 1he equation IS derived using a muttiple-scale analysis lay a crucial role in the nonlinear optics of higher-

in which the pulse is approximated by an envelope functio imensional photonic crystals, even if the single principal

m°d“'?‘“”9 a Bloqh function as the carrier wave. D'ﬁerentcomponent assumption made in this paper is valid. For while
terms in the equation clearly represent different physical phe-

nomena such as group velocity, group velocity dispersionwe can expect that over some Iengt_h_ and time scale_zs—as
diffraction, self-phase modulatio'n carrier frequency shift rden_t_lfl_ed by the_ consistency condltlons—t_he_ nonlme_ar

Y . ' . ’Schrainger equation will provide a good description of typi-
anddgam ﬁr IOSZ' 'Il'h_e COﬁfflCle_ntS of thle rc};llfferehn_t termsl de; al nonlinear propagation and even gap soliton phenomena,
pend on the underlying photonic crystal through integrals of, general there is no analog of the stability of soliton solu-
powers of the modulated Bloch function over the unit cell Oftions of the one-dimensional Schiinger equation in higher
the crystal in the linear, lossless, nondispersive limit. Thu

identifv the d 10 which hvsical effect modi imensions. In such photonic crystals unchecked self-
we can iden ify € degree to which a physical efiect mo I'focusing can lead to the inevitable breakdown of the nonlin-
fies the propagation of a pulse by calculating the way the

carrier photonic Bloch function spatially samples the appronear Schrdinger equation, and the consequent necessity of

: . . - including higher dispersion and nonlinearity to properly de-
priate property of the underlying crystall constituents. ThlsScribe the physics. The approach developed here provides a
approach leverages the ease of calculation of the band stru

ture of the simplified crystal, for the Bloch functions in the gﬁ?ﬁgﬁgg&gn\ﬁy to identify the higher-order terms of
absence of nonlinearity, loss and dispersion can then be used In summary, we have presented a general approach for the

to I(ieeterrrgw;e ;?gnc?{:z(ﬁqugn;is sz pree(r:::eg/ctggtste;]:f;ecnt; (?:{_?erivation of nonlinear dynamical equations that describe the
pulse propagation. xample, w v y ropagation of optical pulses in nonlinear photonic crystals.
cal equation(108 into equation(119) for the energy flux As an example we have considered the nonlinear ‘Schro
amplitude, allowing us to identify and interpret an effectlvedinger equation limit appropriate for the envelope function

nonlinear |ndex|12, as well as an effective complex shift of modulating a single, nondegenerate photonic Bloch function.
the linear indexn, which could account for gain or loss as Byt the approach is much more general than that, and typi-
well as electro-optic shifts in the linear index. The effectiveca"y will allow the determination of coefficients that char-
indices can vary significantly as one considers different caracterize the nonlinearity, dispersion, and gain or loss of the
rier Bloch functions even within the same band. We haveffective field or fields identified in terms of the sampling of
identified and described the roles played by the varyinghe underlying physical properties of the photonic crystal
group velocity, field concentration, and standing wave natur@omponents by the modulated Bloch function or functions.
of the Bloch function as one scans through the BrillouinThys, even before a detailed solution of the appropriate non-
zone. Additionally, we have identified kinematical and dy-|inear dynamical equations is addressed, much of the physics
namical consistency conditions that serve as quantitativef the nonlinear propagation, and its dependence on photonic

measures of the applicability of the nonlinear Sciinger  crystal properties, can be immediately identified.
dynamics, suggest when new physics warrants inclusion in

the analysis and indicate when different scalings are re-
quired.

A number of important generalizations will proceed from
this work. Immediate generalization to the case of a principal This work was supported by the National Science and
component from a degenerate band will yield dynamics thaEngineering Research Council of Canada, the Government
are characteristic of the crossover to higher-dimensionabf Ontario, and the Walter C. Sumner Foundation.
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