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Construction of exact solutions by spatial translations
in inhomogeneous nonlinear Schrdinger equations
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In this paper, we study a general nonlinear Sdiiger equation with a time-dependent harmonic potential.
Despite the lack of translational invariance, we find a symmetry trasformation that, up from any solution,
produces infinitely many others that are centered on classical trajectories. The results presented here imply that,
not only the center of mass of the wave packet satisfies the Ehrenfest theorem and is decoupled from the
dynamics of the wave packet, but also the shape of the solution is independent of the behavior of the center of
the wave. Our findings have implications on the dynamics of Bose-Einstein condensates in magnetic traps.
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I. INTRODUCTION Finally, the existence of symmetries and their associated
conservation laws helps us in the study of other properties. In
One of the most fruitful concepts of physics is that of particular, the invariance of Eql) under Galilean transfor-
symmetries. From high-energy physics to condensed mattemations allows us to rewrite our equations on an inertial
symmetries play a central role on our understanding of thérame of reference where the center of mass is still. This
world. means that the dynamics of the center of mass does not affect
As what concerns classical field theories, a symmetry is at all the dynamics of other properties of the wave packet.
transformation which preserves the form of the equations. In In this paper, we study a generalization of Ef) that
this case, the symmetry may help us in many different wayslacks translational invariance. Nevertheless, we will show a
First of all, we may build solutions that have the same sym-Galilean-like symmetry, that allows us to construct, from any
metry as the equation. Let us take the two-dimensional spasolution, a continuum of other ones that follow different
tially homogeneous nonlinear Scllinger (NLS) equation classical trajectories. We will show that this symmetry im-
plies a decoupling of the dynamics of the center of mass with
respect to all other properties of the wave packet. We will
(r.b). @) also point out some very relevant applications of our findings
to the dynamics of Bose-Einstein condensates and of several
This equation is invariant under spatial rotations, and thereeptical systems.
fore, we are able to search solutions with the given symme-
try, = (x> +y?) (x+iy)" Il. THE MODEL
Second and most important, Noether’s theorem ensures us ) ) ) ] .
that once we have found a certain symmetry in our model, it I this paper, we will consider the following family of
is possible to construct certain quantities, often with physicalonlinear Schrdinger (NLS) equations with a general non-
relevance, which will be conserved during the evolution. Fofinear termG(| )
instance, the invariance of E@l) under time translations, 1
spatial translations, and rotations, give us seven conserved ; _|_=
guantities, which are the energy a(r,) 2A+V(r,t)+G(|¢|) vlr.y. ®)

].A ’
—5A+]y

, 1, We will restrict our interest to the case of a quadratic poten-
Ery= [ 1Vl Il @ tarv(ry, ie.
the |i t of th ter of 1
e linear moment of the center of mass V(rt)= E[r,A(t)r], Aj= ()8, ©6)
d ] —
P°:&<r>:<_'v>zf —iyvy, 3 Equation(5) with potential (6) is an accurate model of
many physical phenomena. In particular, it describes the dy-
and the angular momentum of the wave packet namics of a Bose-Einstein condensate in the mean-field ap-
proximation[1], the propagation of optical beams in graded
L=(—irxVv). (4)  index fibers[2], and the propagation of solitary waves in

fiber trasmission lines with in-line phase modulatf@$
The nonlinear termG may adopt many different forms
*On leave from Institute for Radiophysics and Electronics,depending on the particular application of Ef). The most
Kharkov 61085, Ukraine. classical cases are the so-called power nonlinearities
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G(|¢]?) == |¢|P that arise in mean-field models with differ-  This is a set of partial differential equation for the un-

ent spatial dimensionalities. In nonlinear optics, we also fincknown function 6(r,t). Fortunately, it is possible to con-

many versions of the so-called saturable nonlinearities, e.gstruct solutions by choosing a linear phase,

G(|¢®) ==|y|?(1+ B|4|?) as well as their Taylor aproxi-

mations for small, G(|#|%) = *|4|?— a|y|*. But the non-

linearity need not be local, and in applications to Bose-

Einstein condensation, one finds nonlocal expansions of the

atom-atom interaction G(|]?)=[K(r—r")|y(r")|?dr’,  together with a trajectorR(t) determined by equations of

where the kernel is either radially symmetrdig([r—r’|)  Newton type

[1,4] or adopts more complex dependencies in the case of

dipole-dipole interactionf5]. These are only a few examples

of the many forms the nonlinear term may have.

The description of the dynamics involved in a NLS equa-

tion is of great interest for applications. However, except forgy applying the hydrodynamic interpretation of the NLS

the very specific one-dimensional case wih=+|#|*>,A  equation[9], the precise form of Eq(9) leads to a diver-

=0, in which the equation may be integrated by means ofenceless velocity field;= V §=R, which is responsible for

the inverse scattering method, nothing can be said about thfie global displacement of the solution.

structure of the solutions. There are other tools, such as the Finally, we need a global contribution to the phdge),

moment method, which give us information about the evoluwhich is determined uniquely from

tion of relevant integral quantities characterizing the solution

[2]. In some cases, these methods are connected to the con- df

formal invariance of some classes of nonlinear Sdimger dt

equationd 6], but have several limitationgi) They cannot

be used to build explicit solutions of the equations &  This contribution can be calculated for each trajectory,

they work exactly only on specific cases. To derive a proce-

dure that is valid for more general nonlinear problems, as the Ho) Jt
0

_( dR
o(r,t)= Sy +f(1), 9

'R +A(H)R=0 (10)
dt? '

dR dR
a,a) —(R,A(DR). (11

ones we consider here, one must use some nontrivial ap- dt. (12)

proximations[7].
In this paper, we will be able to exploit the behavior of Therefore, what we get from Eq€?), (9), (10), and(12)
Eg. (5) with harmonic potential6) under spatial traslations s a solution of Eq(5) that is displaced from the initial one.
to provide explicit information on a whole class of time- |t js remarkable that these explicit time-dependent solutions
dependent problems as will be shown below. are obtained by spatial translations in a system that is not
spatially homogeneous and the dynamics is defined by
simple, linear ordinary differential equations. This behavior
Iil. BUILDING SOLUTIONS OF THE NLS is exclusive of the harmonic-oscillatortype potential given by
BY SPATIAL TRANSLATIONS Eqg. (6) but it is not restricted to any specific form of the
A. General case nonlinear term or any dimensionality of the system.

dR dR)
(E’E —(R,A(H)R)

Let us consider a solutiork(r,t) of Egs.(5) and(6) sat-
isfying ¢(r,t=0)=£&(r). Our main result is that giveany
solution ¢(r,t), there exists a continuum of other solutions A relevant type of solutions of Eq5) are the so-called
that are of the form solitary waves or stationary solutions, which are of the form

Yr(r,t) = (r—R(t),1)e' ", ) P(r)=g,(r)e'n (13

The existence and number of these solutions depends on the
being R(t) and 6(r,t) appropriate functions to be deter- properties of the nonlinear term. In this paper, we will as-
mined later. sume that the nonlinear term is such that these solutions

To check this point, we proceed by inserting the ansatzxist, which is in fact the case for most choices @fof
Yr(r,t) given by Eq.(7) into Eq. (5). Using the fact that physical interes{4,8]. Then we may build from Eq(13)
Y(r,t) is a solution of Eq(5), we are able to cancel several solutions of the type
terms on both sides of the equation. If we impose that the _
function ¢ be also a solution of E¢(5), we reach a solv- bR (1 D= o, (r—R(t))e'lH+or0], (14

ability condition that is made up of all the remaining terms . ]
In this case, the whole of the wave packet moves following a

classical orbitwhile preserving the shap&his interesting

B. Evolution of stationary states

) dR 1 ) prediction may be confirmed both experimentally and nu-
|<V0—H,V<//)=§[3t9—|A9+(V6’)2 merically.
In Fig. 1, we show the evolution of two of such wave
+@2r—R,A(t)R)] . (8)  packets, first in the symmetric tragolid line) and in the
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FIG. 1. Trajectories of a solution that is initially stationary, and
is suddenly displaced and imparted an initial velocity. We plot the
closed trajectories of the center of mass in the symmetric confine-
ment[solid line, w,=w,=1, R(0)=(1,0), R(0)=(0,1)] and in the
asymmetric trap[dashed line, w,=1.2, w,=1, R(0)=(1,0),
R(O)=(O,1)]. The trajectories have been obtained integrating Eq.
(5) numerically.

asymmetric tragdashed ling Such solutions were obtained
by solving Eq.(5) using a split-step method on a Fourier
basis with 12& 128 modes. As our analysis predicts, the

shape of the wave function is preserved up to the numerical -2 -1 0 1 2
precision of the computer. z
FIG. 2. Trajectories of the center of a solution placed initially at
C. Addition of rotational terms x(0)=1,y(0)=1, with R(0)=0 in two different situationsia)

The proof presented in Sec. Il A is also valid when the @x=@y=1, @=1/2,(0) 0,=1,0,=3/20=3/2.

matrix A(t) is nondiagonal. A specific case of physical in- . _ _
terest arises in Bose-Einstein condensation when the trap that By repez;tlng the same calculations, one arrves o a clas-
confines the atoms rotates. In that case, it is customary [(:_al equation for the Wave-p.acket ceni(t), with an ad-
study the system on the frame of reference that moves wit itional term due to the centrifugal force
the trap, at angular spedd(t). On these coordinates, the &R dR
NLS equation reads 01 L AR=O. (18)
L dt? dt

i 2A+VU)+G(|¢/|)+QLZ} v, (9 These equations form a linear system whose solutions are
easy to obtain. Specifically, for a two-dimensional oscillator
wherel, is the Hermitian operator that represents the pro-and constant frequencies,, w,, and(}, the solutions are
jection of the angular momentum along the rotation axis andjuasiperiodic with characteristic frequencies given by
is given by

wi=|V(0i+ 05+ Q0%+ 2(wi+ o) |+ 0l - 02— o],

L= —i(r,dV ). (16) (19
The antisymmetric matrix is the generator of the rotations w3=[Q%+ w’—w’+ (wi+w)?+ 02 0%+2(wi+ w))].
around thez axis (20
0O 1 0 Typical solutions are plotted in Fig. 2, where the trajec-
10 0 tory of the wave packet has been integrated numerically up
J=\ - ' 17 from Eqg. (18). It is important to stress the stability of these
0O 0O solutions: even in the case of overcritical rotatiof (
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>wy,), When the centrifugal force exceeds the restoring 5
force of the harmonic potential, the motion is made of Rc(o):f r|&(r)[*d"r, (28
bounded oscillations.
Incidentally, there is a formal equivalence between a NLS dR, .
equation with a rotating tragl5) with o,=w,=€ and a at =—if EVEATT, (29
t=0

Ginzburg-Landau equation

1 where&(r) = ¢(r,0) is the initial data of Eq(5).
i&t¢=§(—iV+A)zl/I+|l//|2¢/, (21) This means that the center of mass already satisfies the

equations for a valid displacement in our symmetry transfor-

with uniform magnetic fieldA'=Q(y, —x,0). Inthis model, ~mation (7). Hence we can define a second wave function

it is particularly intuitive that the wave packet should rotate #(r,t), which moves with the center of mass, and that is the

around the origin, due to the action of the uniform magneticsolution of Eq.(5) with initial data
field, just as the above-discussed symméil§) reveals. 4R
¢(r,0)=g(r+Rc)exp(—ir,—°). (30
IV. DECOUPLING THE DYNAMICS dt

OF THE CENTER OF MASS ) . .
This second wave functiot(r,t) is located on the center of

Up to now, we have shown that given a solutig(r,t),  mass
we can build many othersg(r,t), by spatial translations of

the initial data. The process may be reversed, so that given a flu(r ]2dr =0 (31)
wave packeip= ir(r,t), which is a solution of Eq(5), we ’ '

can extract the dynamics of the center of mR¢t) and the

internal dynamics of the wave packg(r,t). and it is the one that carries the dynamics of all

The practical process is as follows. Leir,t) be any observables—widths, angular momentum, circulation, etc—
solution of the NLS equation with a harmonic potentl. ~ completely free from the influence of the center of mass.
The center-of-mass position is defined as Summing up, what all these transformations tell us is that

if we displace the initial data, or impart some speed to its
center, we obtain the same solutjof(r,t), centered on dif-
Rc(t):<r>5f rl(r.nl2d. (22 ferent trajectories. ortr)
This result has been obtained with the help of the Erhen-
The dynamics of the center of mass, and of its associatefést theorem, which states that the center of mass should
momentum(3), is given by Ehrenfest's equations. Using the satisfy an equation of Newton type, and that was already
notation from quantum mechanics, the expected value of aRnown [10]. However, the result summarized in H§O) is

operatorA evolves according to much stronger since it states thiie wave packet is not
d affected by the dynamics of its centruas this dynamics can
&A:U[H(ll/):A]% (23) be integrated out of the equations.

V. APPLICATION TO THE DYNAMICS OF THE CENTER

whereH(y) is a nonlinear operator given by OF MASS IN BOSE-EINSTEIN CONDENSATES

H=— EA FV(r,H)+G(| ). (24) Ever since the first works with dilute Bose-Einstein con-

2 densates, there has been an amazingly precise agreement be-
tween theory and experiments. From the studies of normal
modes, to the nucleation of vortices, it is usual to obtain a
good quantitative matching between the predictifesit be
d collective frequencies or critical speedsd the actual mea-
—R,=(—iV)=P;, (25)  surements.
dt This is most intriguing in the case of experiments that

involve a mechanical perturbation of the condensate. We first
EP —(-VV)=—AR (26) focus on the study of the collective excitations of a conden-

c c . . PRRT .
dt sate. Such experiments consist of a periodic modulation of
) ] ) o ] ) the confinement of the condensate, and the subsequent study

With some manipulations, it is easy to rewrite this system ag the oscillations of the wave packet's widths. These ma-
a second-order differential equation nipulations have been shown to not only modulate the
widths, but to induce an exact, and extremely strong reso-

Applying Eq.(23) tor and to (~iV), we obtain the follow-
ing coupled-ordinary differential equations

2

Re _ nance of the center of magk0,11]. Nevertheless, both in the
+AR.=0, (27 . . .
dt? experimental results and in some rough models, the widths
and the center of mass seem to be decoupled, thus allowing
with initial conditions us to precisely characterize the normal modes of the conden-

056602-4



CONSTRUCTION OF EXACT SOLUTIONS BY SPATIA. .. PHYSICAL REVIEW E 64 056602

sate. That observed behavior is easy to understand in the In relation with the previous finding, we have shown that
framework of the dynamics of displaced solutions describedhe dynamics of the center of mass is decoupled from the
here. dynamics of all other properties of the wave packet. This
Another important application of E10) is the study of result stands on other work$0,11. However, the contribu-
the center of mass of the condensate in the regime of ovetion of this paper is different and stronger, since we show
critical rotation,(2>min{w,,w}. In this regime, the rotating that motion of the center of mass may never influence any
condensate that is ruled by EL5), suffers a centrifugal other properties of the wave packétdt it be a Bose-Einstein
force that is stronger than the restoring force due to the harondensate or, in a similar row, a solitary wave made of
monic potential. It is clear that in this regime the condensatdight. For all these systems, the evolution will be essentially
should be, and in fact it is found to h&2], untrapped. the same, no matter the initial position and initial velocity of
However, the analysis of the eigenvalues of E@®8), the atomic cloud or solitary wave.
which are given by Eq.19) proves that the equilibrium point Our calculations are valid for any type of nonlinearity that
atx=y=0 is a center, and thus, dynamically stable. Thereis symmetric under translations, and which depends only on
fore, the only source of instability for the condensate undethe density||. This includes the cubic nonlinearity for
overcritical rotations can be due to deformations of theBose-Einstein condensateéd=||?> and most reasonable
cloud. nonlocal termg$4]. This, and the fact that our calculations do
This result is a bit more general than the one[13], not depend on the dimensionality of the system, extends the
where it is proposed the existence of some configurations fovalidity of this paper to condensates with dipolar interac-
the condensate, which correspond to centered and ellipticallijons, charged condensates, light in Kerr media, and light in
deformed clouds that survive to the action of the centrifugakaturable media.
motion. These configurations are stable under dipolar pertur- The decoupling of the motion of the center of mass has
bations(displacements of the clou@nd under quadrupolar also practical consequences. The invariance of the wave-
excitations(certain type of deformationslt remains an open packet dynamics up to displacements and impulses on the
problem to show whether such states exist that are dynaminitial data, explains why it is actually possible to measure
cally stable undeany deformation. the frequencies of the normal modes of a condensate, even
As a side result that may be verified in experiments, avhen the center of mass of the condensate is known to be
perturbed condensate in a rotating trap suffers bounded osxponentially influenced by the changes on the trapping po-
cillations around the origin with two different frequencies, tential [10,11). This invariance also benefits experiments
w;, and w,. These frequencies bear a nontrivial dependencyvith rotating condensates, as we have shown above, and a
with respect to the angular speed of the t(ap), which can  simple analysis reveals an unexpected splitting of the dipolar
be used to better calibrate experiments. Finally, we musmode of a condensate.
remark that the existence of two different oscillation frequen- The situation is different when other type of potentials are
cies for the center of mass, andw, even in the symmetric considered such as stationary pinning potentials or any non-
trap (ws=wy) represents a splitting of the dipolar mode, harmonic trapping potential, such as some polynomial can-
which is intuitively similar to the splitting of the quadrupolar didatesV(x)=x* that are being considered in the context of

mode due to the presence of a vortex. all-optical condensation in very elongated traps. The pres-
ence of such potentials breaks our calculations, as the dy-
VI. CONCLUSIONS AND DISCUSSION namics of the center of mass couples to that of the widths by

) ) ] . ) means of these external agents. We wonder if this will imply
In this paper, we have built solutions by simple time-some puzzling dynamics in future experiments.
dependent translations in a system without translational sym-

metry. It is remarkable, and probably a special feature of the
harmonic potential that this procedure works. Specially strik-
ing is the case of translation of stationary solutions whose This paper has been supported by Grant No. BFM2000-
center moves harmonically without any distortion on the0521. V.V. is supported by Ministerio de Educaticultura
shape of the solution itse{bnly a simple phase appears y Deporte under Grant No. SB99-AH777133.
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