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Quantum effects in high-gain free-electron lasers
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A many-particle fully quantized theory for a free-electron laser which is valid in the high-gain regime is
presented. We examine quantum corrections for the high-gain single-pass free-electron laser. It is shown that
quantum effects become significant when the photon energy becomes comparable to the gain bandwidth. The
initiation of the free-electron laser process from quantum fluctuations in the position and momentum of the
electrons is considered, and the parameter regime for enhanced start-up is identified. Photon statistics of the
free-electron laser radiation are discussed, and the photon number statistics for the self-amplified spontaneous
emission are calculated.
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I. INTRODUCTION

The free-electron laser~FEL! holds great potential as
source of intense coherent short-wavelength radiation
single-pass high-gain FEL operating in the self-amplifi
spontaneous emission~SASE! mode @1# has received much
attention recently as a candidate for the next generation l
sources producing coherent x rays. Coherent x-rays ha
wide range of applications such as x-ray spectroscopy, m
cal and biological imagery, holography, and analysis of
trafast processes. Presently there are major proposals i
United States@2# and Europe@3# to construct a SASE FEL
operating in the x-ray regime.

A conventional FEL amplifies coherent radiation b
means of a relativistic electron beam passing through a p
odic static magnetic field~magnetostatic undulator!. The
FEL process can be understood as the scattering of vir
undulator photons by the electron beam into photons of
radiation field, i.e., an exchange of photons between the
dulator and the radiation, with the electrons providing t
necessary momentum. This is a resonant process which e
radiation at the resonant wavelength

l r5
lu

2g2
~11K2!, ~1!

wherelu is the undulator wavelength,g is the electron beam
Lorentz factor, andK is the undulator strength paramet
~normalized vector potential of the undulator magnetic fiel!.
In the limit of an ultrarelativistic (g@1) electron beam, the
FEL process is analogous to Compton backscattering~with
lu.l0/2, wherel0 is the incident photon wavelength!.

As Eq. ~1! indicates, production of short wavelength r
diation requires either high-energy electron beams or s
undulator wavelengths. In addition to x-ray production
conventional FEL’s, there have been proposals and exp
mental work to generate x rays by stimulated Compton s
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tering @4# of a comparatively low-energy electron beam, e
fectively replacing the conventional magnetostatic undula
with a counterpropagating high-intensity laser pulse~a short-
wavelength electromagnetic undulator!. Electrostatic undula-
tors may also be considered for radiation generation, e.g.
interaction of a relativistic electron beam propagati
through a plasma@5#.

The first description of the gain mechanism of the FEL@6#
relied on quantum recoil corrections to the frequencies of
emitted and absorbed photons, for which there is no class
analog. In the limit of small recoil, the main features of t
FEL process are well described in terms of classical qua
ties ~e.g., wave electric field amplitude!, and, at present, the
majority of calculations that deal with existing or propos
FEL devices use classical equations of motion. As exp
ments move toward the generation of shorter wavelength
diation, with shorter undulator wavelengths, corrections
the classical approximation for the FEL will become signi
cant.

Previous quantum mechanical treatments@6–10# of the
FEL have been successful in describing the weak-field n
collective regime. Madey@6# first described the small-signa
FEL gain by calculating quantum mechanical transition ra
using the Weizsa¨cker-Williams method. Boscoet al. @7# cal-
culated relativistic electron wave functions using quant
electrodynamics in the weak-field regime. An extensive
view of solving the single-electron Schro¨dinger equation
through perturbation in the electron recoil was presented
the work by Dattoli and Renieri@10#. These results were
derived assuming a small electron recoil due to emission
absorption of discrete photons, and focused on correction
the small-signal noncollective regime of FEL operation.

In this paper we present a fully quantized~matter and
radiation fields! many-particle theory of the FEL which i
applicable in the high-gain collective regime. The paper
organized as follows. In Sec. II we present the Hamilton
for the coupled electron-radiation field system. The details
the derivation of the Hamiltonian operator are presented
the Appendix. The theory is developed in a moving fram
where the electron motion can be treated using nonrelati
tic mechanics. In Sec. III we calculate the evolution of t
expectation value of the photon number operator by solv

er,
©2001 The American Physical Society02-1
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the Heisenberg equations. In Sec. III B we calculate quan
corrections to the stimulated emission. Start-up of SASE
initiated by noise in the electron beam. Therefore, in S
III C, we consider quantum fluctuations in the position a
momentum of the electrons as an effective source of n
for initiation of the FEL process. In Sec. IV the statistic
properties of the FEL radiation are examined, and the pho
number statistics for the SASE FEL radiation are calculat
A summary and some discussion of the results are offere
Sec. V.

II. FEL HAMILTONIAN

The Ne-electronM-mode quantized Hamiltonian operat
describing the FEL interaction in the frame moving at t
mean velocity of the electron beam can be written as

H5 (
l51

M

\v̄lS al
†al1

1

2D1(
j 51

Ne

\V
p̄ j

2

2

1 (
l51

M

\glS al
†au(

j 51

Ne

e2 iul j1H.c.D . ~2!

The parameterV5\ k̄r
2/m determines the electron recoil, an

the parameter

gl5
2pe2

mcVAklku

~3!

determines the strength of the coupling between the und
tor and radiation field, wherem5me(11K2)1/2 is the renor-
malized electron mass,kr52p/l r , and ku52p/lu . The
Hilbert space operators in Eq.~2! satisfy the commutation
relations @ul i ,p̄ j #5 i ( k̄l / k̄r)d i j and @al ,am

† #5dlm , where

ul j5 k̄lzj8 is the FEL phase,p̄ j5pj8/(\ k̄r) is the normalized
~to the recoil provided by a photon exchange between
undulator and the resonant radiation field! electron axial mo-
mentum, andal (al

†) are the photon annihilation~creation!

operators of the radiation field. Herek̄l5kl81ku8 and v̄l

5vl82vu8 . The primes indicate quantities in the electr
beam rest frame.

The details of the derivation of the time-independent H
mitian Hamiltonian operator describing the FEL process@Eq.
~2!# are presented in the Appendix. In particular we ha
assumed that the undulator field is much larger than the
diation field ^au

†au&@^al
†al&, and that the number of undu

lator photons is very largêau
†au&@1, such that we may trea

the undulator field classically and replace the undulator c
ation and annihilation operators withc numbers. This is
well-satisfied for undulators withK;1. It should also be
noted that Eq.~2! is a one-dimensional model. This on
dimensional model will be valid provided the electron bea
phase space is smaller than the phase space occupied b
photon beam~i.e., 4p«n,l rg, where«n is the normalized
transverse emittance of the electron beam! and the Rayleigh
range of the radiation is larger than the characteristic g
length of the radiation field, i.e., diffraction effects are sma
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The total~electron and photon! momentum operator com
mutes with the Hamiltonian,

F S (
j 51

Ne

k̄r p̄ j1 (
l51

M

k̄lal
†alD , HG50, ~4!

and is a constant of motion. The emission of photons is b
anced by the recoil of the electrons.

III. HEISENBERG EQUATIONS

To study the FEL process we will use the Heisenbe
picture and evolve the quantum mechanical operators.
time evolution of the operators is given by the Heisenb
equations

dul j

dt8
5

1

i\
@ul j ,H#5

k̄l

k̄r

V p̄ j , ~5!

dp̄j

dt8
5

1

i\
@ p̄ j ,H#5 i (

l51

M
k̄l

k̄r

gl~al
†aue2 iul j2alau* eiul j !,

~6!

dal

dt8
5

1

i\
@al ,H#52 i v̄lal2 iglau(

j 51

Ne

e2 iul j . ~7!

In analogy to classical FEL theory@1#, it is convenient to
define operators representing the observables of the co
tive motion of the electron beam. Consider a bunching
erator

bl5
1

Ne
(
j 51

Ne

e2 iul j ~8!

and a collective momentum operator

pl5
1

Ne
(
j 51

Ne

e2 iul j
pj8

\ k̄l

, ~9!

which is the normalized axial momentum averaged over
FEL phase. Note that the collective operators satisfy the
lowing commutation relations:@bl ,bl

†#50, Ne@bl ,pl
†#

51, Ne@bl ,pl#5Ne
21( j 51

Neexp(22iulj), andNe@pl ,pl
†#

511Ne
21( j 51

Ne2pj8/(\ k̄l). The Heisenberg equations fo
the time evolution of the collective operators are

dal

dt
5 idlal2 i S Ne

ql
D 1/2 au

uauu
bl , ~10!

dbl

dt
5 i

ql

2
bl2 iqlpl , ~11!
2-2
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dpl

dt
5 i

ql

2
pl2 iql

1

Ne
(
j 51

Ne

e2 iul jS pj8

\ k̄l
D 2

2 i (
n51

M S 1

qnNe
D 1/2F au*

uauu
an

1

Ne
(
j 51

Ne

e2 i (ul j 2un j )

2
au

uauu
an

† 1

Ne
(
j 51

Ne

e2 i (ul j 1un j )G . ~12!

Heret5r k̄rct854prNu is the normalized number of undu
lator periodsNu , d5(kr2k)/(2krr) is the normalized fre-
quency detuning, and

ql5
\vl

rgmec
2

, ~13!

wherer is the dimensionless FEL parameter@1#:

r5S pe2NeK
2g

meVg'
4 v r

2 D 1/3

. ~14!

We shall refer toql , defined in Eq.~13!, as the quantum-
recoil parameter. As we will show, the quantum-recoil p
rameterql is a critical parameter for characterizing the qua
tum effects. For existing FEL devices, the quantum-rec
parameter is typically small:ql!1. The parameter can b
interpreted as the ratio of the axial displacement due to
emission or absorption of a discrete photon to the radia
wavelength. In classical FEL theory,qr

215rgmec
2/(\v r) is

approximately the number of resonant photons emitted
electron at saturation.

A multimode radiation field is explicitly considered in th
derivation of the Heisenberg equations. The multimo
Hamiltonian is necessary to study mode competition and
development of temporal coherence. We will now consi
the simpler case of single-mode operation in the linear
gime of amplification.

A. Linear regime

The Heisenberg equations@Eqs.~10!–~12!# can be solved
in the linear regime of amplification, which will be vali
before the FEL process reaches saturation. For simplicity
will also consider an initially cold unbunched electron bea
Consider the linearized renormalized collective operators

Bl5ANe

ql

au

uauu
i

Ne
(
j 51

Ne

e2 i ^ul j (0)&
„^ul j~0!&2ul j…,

~15!

Pl5ANeql

au

uauu
1

Ne
(
j 51

Ne

e2 i ^ul j (0)&
pj8

\ k̄l

, ~16!

where we have assumed an initially cold,^pj8(0)&50, un-
bunched,Ne

21( j 51
Ne e2 i ^ul j (0)&50, electron beam. The com

mutation relations for the linearized collective operators
@Bl ,Bl

†#50, @Pl ,Pl
†#50, @Bl ,Pl

†#51, and @Bl ,Pl#
05650
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5(au
2/uauu2)Ne

21(j51
Neexp„22i ^ul j (0)&…50 for an initially

unbunched electron beam. The linearized Heisenberg e
tions for a single mode~dropping the mode labell) take the
forms

dB

dt
5 i

q

2
B2 iP, ~17!

dP

dt
5 i

q

2
P2 ia, ~18!

da

dt
5 ida2 iB. ~19!

Note that these equations may be derived from the linear
Hamiltonian operator

Hl52da†a1a†B1aB†2
q

2
~P†B1B†P!1P†P,

~20!

with momentum conservation expressed as

@B†P1P†B1a†a, Hl #50. ~21!

The Heisenberg equations for the linear collective ope
tors can be combined to yield the following equation for t
evolution of the annihilation operator:

F S d

dt
2 i

q

2D 2S d

dt
2 id D2 i Ga50, ~22!

which has the general solution

a~t!5g1~t!a~0!1g2~t!B~0!1g3~t!P~0!. ~23!

The coefficients in Eq.~23! are

g1~t!5
~m22d!~m32d!eim1t

~m12m2!~m12m3!
1

~m12d!~m32d!eim2t

~m22m3!~m22m1!

1
~m22d!~m12d!eim3t

~m32m2!~m32m1!
, ~24!

g2~t!5
@~q/2!2m1#eim1t

~m12m2!~m12m3!
1

@~q/2!2m2#eim2t

~m22m3!~m22m1!

1
@~q/2!2m3#eim3t

~m32m2!~m32m1!
, ~25!

g3~t!5
eim1t

~m12m2!~m12m3!
1

eim2t

~m22m3!~m22m1!

1
eim3t

~m32m2!~m32m1!
, ~26!

wherem j ~for j 51,2,3) satisfies the dispersion relation

m32~d1q!m21~dq1q2/4!m112dq2/450. ~27!
2-3
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In the classical limit~i.e., limq→0), Eq.~27! reduces to the
characteristic cubic equation of classical FEL theory@1#.
Note that this linear solution@Eqs. ~23!–~27!# preserves the
commutation relation for the annihilation and creation ope
tors, @a,a†#5ug1u21g2* g31g3* g251, for all t.

The time evolution of the number of laser photons
given by the expectation value of the number operatora†a:

^a†a&5ug1u2^a†~0!a~0!&1ug2u2^B†~0!B~0!&

1ug3u2^P†~0!P~0!&1g2* g3^B
†~0!P~0!&

1g3* g2^P†~0!B~0!&. ~28!

Here we have assumed that initially there are no correlat
between the electrons and photons and^B†(0)&5^B(0)&
5^P†(0)&5^P(0)&50. Note that the first term on the righ
hand side of Eq.~28! is the contribution due to stimulate
emission, while the last four terms are due to spontane
emission. A solution of this form@Eq. ~28!# was originally
studied by Bonifacio and Casagrande@11#, although in their
work the noncommutativity of the collective operators w
neglected in the Heisenberg equations; therefore, they fo
only the classical FEL dynamics.

B. Stimulated radiation

The solution to the Heisenberg equations in the regime
linear amplification has an unstable solution, leading to
ponential growth in the mean number of photons. A stabi
analysis of the dispersion relation@Eq. ~27!# indicates that
instability is achieved for frequency detuning satisfyingd
,(3/22/3)@11q/(54)1/3#. The discrete electron recoil shift
the regime of stability.

In the high-gain regime (t.1), at resonance, the gain du
to stimulated radiation can be expressed using Eqs.~24! and
~27! as

^a†~t!a~t!&st

^a†~0!a~0!&
5ug1u2.A~q!exp@L/Lg~q!#, ~29!

where L5Nulu is the distance along the undulator in th
laboratory frame,A is the gain coefficient, andLg is the
power gain length. The dependence ofA andLg on the reso-
nant quantum-recoil parameterq is shown in Fig. 1. This
figure shows the deviation from the classically predicted v
ues as the quantum-recoil parameterq approaches unity and
the FEL process moves from the classical to the quan
regime. In particular the figure shows the increase in
power gain length asq increases. This reduction in gain
due to the strong recoil of the electrons in the parame
regime whereq;1. The strong recoil moves the electro
off resonance after the emission of a photon, thereby
creasing the probability of emitting additional photons a
reducing the gain. To lowest order in the quantum-rec
parameterq, the gain coefficient and power gain length s
isfy A5(1/9)@12q/31•••# and Lg5(2A3kur)21@1
1q2/361•••#. In the limit q→0, these quantities reduce t
the classical one-dimensional results@1#: Aclass51/9 and
Lclass5(2A3kur)21. The exponential growth in Eq.~29! will
05650
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end at saturation, which will occur when the beam becom
modulated at the resonant radiation wavelength^br

†br&;1.

C. Spontaneous radiation

In the SASE mode of operation the spontaneous emis
emitted in the undulator is coherently amplified by the FE
process. It was recognized by many authors@11,12# that the
spontaneous FEL radiation can be affected by the quan
fluctuations of the electron beam. To evaluate the sponta
ous emission it is necessary to know the initial expectat
values of the collective operators in Eq.~28!, which requires
knowledge of the initial wave function of the electron bea
As an example, we may consider the case where the in
state of the electron beam is described by the produc
Ne minimum-uncertainty wave packets@11#, such that
the conjugate operators for each electronpj8 and u j satisfy
the equality Heisenberg uncertainty relatio
^@Du(0)#2&^@Dp8(0)#2&5(\ k̄l)2/4, where the variance op
erators for the position and momentum for each electron
Dul j5ul j2^ul j& andDpj85pj82^pj8&. For this case the ini-
tial expectation values of the resonant linearized collect
operators in Eq.~28!, assuming an initially cold unbunche
electron beam, are

^B†~0!B~0!&5
1

q
@Neubc~0!u21^„Du~0!…2&#, ~30!

^B†~0!P~0!&5^P†~0!B~0!&52
1

2
, ~31!

^P†~0!P~0!&5q^„D p̄~0!…2&. ~32!

In Eq. ~30!, we have interpreted the centroid of the quantu
wave packet as the classical position for each electron s
that the classical bunching parameter is

bc5
1

Ne
(
j 51

Ne

exp@2 i ^u j&#. ~33!

FIG. 1. The power gain lengthLg and the gain coefficientA
normalized to the classical values@Lclass5(2A3kur)21 and Aclass

51/9# as functions of the quantum-recoil parameter for reson
radiationq.
2-4
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For an initially random longitudinal distribution of electro
wave packet centroids in phase~i.e., classical shot noise!,
Neubc(0)u251.

With Eqs.~30!–~33!, the expectation value of the photo
number operator Eq.~28! for the spontaneous radiation ca
be expressed as

q^a†a&sp5Neubcu2ug2u21^~Du!2&ug2u22
q

2
~g2* g31g3* g2!

1q2^~D p̄!2&ug3u2. ~34!

The first term on the right hand side of Eq.~34! represents
classical bunching, while the remaining terms represent
effective bunching due to quantum fluctuations in the po
tion and momentum of the electrons. With no initial classi
bunchingubc(0)u250 ~e.g., an ideal periodic or crystallin
beam! and no initial input radiation̂ a†(0)a(0)&50, Eq.
~34! gives the number of laser photons radiated starting fr
only quantum fluctuations in the electron beam. This is
minimum spontaneous radiation produced by any beam p
ing through the undulator.

In the classical limit @i.e., in the limit ^(Du)2&50,

^(D p̄)2&50, and limq→0#, the spontaneous emission@Eq.
~34!# reduces to

\v^a†a&5
1

9
e(2A3rkuL)rgmec

2Neubc~0!u2, ~35!

in the high-gain regime, which is the well-known result for
classical SASE FEL@1#.

We can also consider the case where the initial minimu
uncertainty wave packet for each electron is localized s
that the initial variance in position is^(Du)2(0)&
52pNurq. This initial state will minimize the expectatio
value of the variance in position over the length of the u
dulator of a free-space Gaussian wave packet, which evo
in time as ^(Du)2(t8)&5^(Du)2(0)&1(\2k̄r

4t82)/
@4m2^(Du)2(0)&#. With this near-classical initial condition
the expectation value for the number of photons@Eq. ~34!#
can be expressed as

q^a†a&sp.Neubcu2ug2u21
q

2
@~4pNur!ug2u22~g2* g31g3* g2!

1~4pNur!21ug3u2#. ~36!

In the high-gain regime to first order in the quantum-rec
parameter,ug2u2.(11q/2)ug1u2, ug3u2.(11q/3)ug1u2, and
g3* g21g2* g3.2ug1u2, whereug1u2 is given by Eq.~29!. For
a FEL designed to reach saturation,Nur;1; therefore we
may expect an enhanced start-up from quantum fluctuat
if q;Neubcu2. For the case of an electron beam initial
seeded with classical shot noise (Neubcu251), Eq.~36! indi-
cates that the relative increase in start-up due to the effec
bunching produced by the quantum fluctuations in the e
tron beam will be of the order of the quantum-rec
parameter.
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The photon number expectation value@Eq. ~36!# can be
solved explicitly using Eqs.~24!–~27!. The expectation value
for the photon number operator, assuming an electron b
with initial bunching due to classical shot noiseNeubc(0)u2

51 and no initial radiation̂ a†(0)a(0)&50, is shown in
Fig. 2. In Fig. 2 the dotted curve is the classical soluti
(q50), the dashed curve is the solution for a reson
quantum-recoil parameter ofq50.5, and the solid curve is
the solution for a resonant quantum-recoil parameter oq
52. The figure shows the initial enhancement of the rad
tion due to the effective bunching from quantum fluctuatio
in the electron beam. The figure also shows the reductio
power gain length, compared to what is predicted by cla
cal theory, owing to the strong electron recoil in the para
eter regimeq;1.

IV. PHOTON STATISTICS

In this section we discuss the statistical properties of
FEL radiation. A description of the photon statistics of t
radiation requires a fully quantized~matter and radiation
fields! treatment of the FEL interaction. If the electron m
mentum operator is treated as a classicalc number, the prob-
lem reduces to that of a classical current interacting wit
quantized radiation field. It is well known that the photo
field emitted by a classical current into a single mode
described by a coherent Glauber state@13#, which obeys
Poisson statistics. A comprehensive analysis of the statis
properties of the SASE FEL radiation based on classical
diation theory was presented in Ref.@14#. While photon sta-
tistics can be analyzed within the context of classical the
in terms of the statistical fluctuations in the coordinates a
number of the radiating particles, the results are not gen
ally consistent with the predictions of the fully quantize
theory @15#.

The departure from Poisson statistics of the stimula
emission can be calculated using Eq.~23!:

@^~a†a!2&st2^a†a&st
2#2^a†a&st

5ug1u4~^a†2~0!a2~0!&2^a†~0!a~0!&2!. ~37!

FIG. 2. The amplification of the normalized spontaneous rad
tion intensityq^a†a&sp vs the normalized undulator length 4prNu ,
for quantum-recoil parameters:q52 ~solid curve!, q50.5 ~dashed
curve!, andq50 ~dotted curve!.
2-5
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Depending on the quantum state of the initial seeding ra
tion, the photon statistics of the stimulated radiation may
super- or sub-Poissonian~e.g., if the radiation is initially in a
Fock state, then the stimulated FEL radiation will be su
Poissonian!. If the initial radiation seeding the FEL amplifie
is in a coherent Glauber state of single mode,a(t)ua&
5a(t)ua&, then the field will remain in a coherent Glaub
state, and the stimulated emission will have Poisson sta
tics; the probability of occupation of the photon number st
un& is a Poisson distribution,

u^nua&u25
^a†a&st

n!
exp@2^a†a&st#, ~38!

with the number operator variancê(a†a)2&st2^a†a&st
2

5^a†a&st5ug1u2^a†(0)a(0)&.
The spontaneous radiation in the FEL process is due

large number of independent sources~electrons!. This has
profound effects on the photon statistics. The Glauber q
siprobability function@13# ~i.e., the diagonal coherent-sta
representation! for the spontaneous radiationfsp(a) is a
convolution of the Glauber quasiprobability functions of t
radiation emitted by each individual electronf j (a j ). Pro-
vided there is a sufficiently large number of independ
sources, the Glauber quasiprobability function for the sp
taneous radiation will be a negative exponential distribut
@13#

fsp~a!5E d (2)S a2(
j 51

Ne

a j D )
j 51

Ne

f j~a j !d
2a j

5
1

p^a†a&sp

expF2
ua~t!u2

^a†a&sp
G . ~39!

This is a quantum optical analog to the central limit theore
The probability of occupation of the photon number stateun&
is then a thermal~chaotic! distribution

u^nu0&u25
1

11^a†a&sp
S 11

1

^a†a&sp
D 2n

, ~40!

with number operator variance^(a†a)2&sp2^a†a&sp
2

5^a†a&sp(^a
†a&sp11). As a result, the spontaneous em

sion exhibits only first-order coherence. The thermal sta
tics of the spontaneous FEL radiation@Eq. ~40!# was first
shown by Becker and McIver@16#. The total quasiprobability
distribution of the FEL radiation for a single mode is a co
volution of the stimulated and spontaneous radiation q
siprobability distributions.

In general, the radiation produced by a SASE FEL w
consist of many modes provided the FEL bandwidth
greater than the Fourier limited bandwidthsv.1/s t , where
sv is the FEL bandwidth ands t is the pulse duration. The
number of modes present in the spectral distribution will
approximatelyM;svs t @17#. The multimode spontaneou
radiation Glauber quasiprobability function may be e
pressed as@13#
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f~$a%!5 )
l51

M
1

p^al
†al&

expF2
ual~t!u2

^al
†al&

G , ~41!

where$a%5$a1 ,a2 , . . . ,aM% is the set of annihilation op-
erator eigenvalues for each mode. Note that the SASE F
radiation with statistics defined by the positive-defin
Glauber quasiprobability function@Eq. ~41!# will exhibit
only bunching of photoelectric detections. If the field is in
tially in a vacuum state, then the probability of occupation
a set of photon number statesu$n%&5)lunl& is

u^$n%u$0%&u25 )
l51

M
1

11^al
†al&

F11
1

^al
†al&

G2nl

. ~42!

We define the total occupation number as the sum over
modes^n&5(l51

M ^al
†al&. The probability of the total occu-

pation numbern is the sum over all possible sets of mod
occupation numbers$nl% summing ton,

u^nu$0%&u25(
$n8%

u^$n8%u$0%&u2dnn8

5E )
l51

M F d2al

p^al
†al&

expS 2ualu2

^al
†al&

D G S b2n

n!
e2b2D ,

~43!

whereb25(l51
M ualu2. This is the general solution for th

total photon number expectation@18#.
If we neglect the spectral distribution of the SASE rad

tion and assume the occupation number expectation va
of all M modes are equal, i.e.,^n&'M ^al

†al& for anyl, then
Eq. ~43! can be evaluated analytically. With this equal occ
pation number assumption, the probability of occupation
the total photon number stateun&, given an initial vacuum
state, is a negative binomial distribution

u^nu$0%&u25
G~n1M !

G~M !G~n21!

@11M /^n&#2n

@11^n&/M #M
, ~44!

with joint photon number state occupation variance^n2&
2^n&25^n&2/M1^n&. For a typical SASE FEL, ^n&
5(l51

M ^al
†al&@M.1. The negative binomial distribution

@Eq. ~44!# was suggested previously by several authors@19#
as an adequate description of the SASE FEL radiation.
expect this approximation will be valid in the asymptot
limit s t→`.

The equal occupation approximation used to derive
~44! does not take into consideration the spectral distribut
of the FEL radiation. The spectral distribution of the FE
radiation, determined by the dispersion relation@Eq. ~27!#, is
approximately Gaussian

al
†al5ar

†ar exp@2~vl2v r !
2/~2sv

2 !#. ~45!

Although the general probability distribution@Eq. ~43!# is
difficult to evaluate analytically for arbitrary spectral distr
bution, we may use Eq.~43! to calculate the normalized
2-6
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moments ofn. The factorial moments of the photon numb
statistics ^n(m)&5^n(n21)•••(n2m11)& can be calcu-
lated using a simple relation@20# between the photon coun
ing correlations and counting moments^exp(nj)&5^exp@(ej

21)(l51
M ualu2#&. With this relation, and assuming a Gaussi

spectral distribution@Eq. ~45!#, the expectation values of th
first few factorial moments of the total photon occupati
numbern for the SASE radiation are

^n(2)&

^n&2
511

1

M
, ~46!

^n(3)&

^n&3
511

3

M
1

4A3

3M2
, ~47!

^n(4)&

^n&4
511

6

M
1

~9116A3!

3M2
1

6A2

M3
~48!

for M@1. The higher-order photon number counting m
ments, e.g., Eqs.~47! and~48!, deviate from those generate
by the negative binomial probability distribution@Eq. ~44!#,
which predicts

^n(m)&

^n&m
5

G~m1M !

MmG~M !
. ~49!

As expected, in the limitsvs t→` the expectation values o
the photon number counting moments predicted by the ne
tive binomial distribution are a good approximation to t
expectation values of the exact photon number counting
ments for the Gaussian spectral distribution of the SA
FEL.

V. DISCUSSION AND SUMMARY

In this paper we have shown that quantum effects ma
fest themselves in a FEL when the quantum-recoil para
eter, defined in Eq.~13!, approaches unity, i.e., when th
photon energy is comparable to the gain bandwidth\v
;rgmec

2. In this parameter regime the axial displaceme
due to the emission or absorption of a single photon is co
parable to the radiation wavelength.

Proposed x-ray SASE FEL’s based on conventional m
netostatic undulators, e.g., Refs.@2,3#, will typically have
undulators withlu;1 cm andK;1. Production of 1-Å
radiation will then require an electron beam energy ofg
;104. These conventional x-ray sources will have efficie
cies of the order ofr;1024, where the FEL parameter~de-
vice efficiency! is given by Eq.~14!. For these parameters
q;1023, and we expect the conventional FEL x-ray sourc
to a good approximation, to be in the classical regime.

X-ray production using a high-power optical laser pu
such as an electromagnetic undulator, with, for example
laser wavelength ofl051 mm, and a normalized vecto
potential of K;1 ~i.e., a peak laser intensity ofI
;1018 W cm22), would require an electron beam energy
g;102 to produce 1-Å radiation. If we consider an electr
05650
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magnetic undulator device with comparable efficiencyr
;1024, then the quantum-recoil parameter isq;1. In this
regime we can expect deviations from the predictions
classical theory owing to the discrete electron recoil and
quantum fluctuations of the electron beam, as discusse
Secs. III B and III C. Specifically, the theory presented
this paper predicts a reduction in the gain, given in Eq.~29!,
and enhanced start-up due to the effective bunching p
duced by quantum fluctuations, given by Eq.~36!.

In this paper we have presented a many-particle quan
theory of the FEL. The Heisenberg equations were solved
a single-mode radiation field before saturation. The stim
lated amplification of the radiation was computed in t
high-gain collective regime. For FEL parameters satisfy
q;1, the gain was shown to decrease compared to the c
sically predicted value, owing to the strong electron rec
The initiation of spontaneous radiation due to quantum fl
tuations in the position and momentum of the electron be
was examined. The minimum spontaneous radiation emi
by the beam passing through the undulator was calcula
For an initial electron beam wave function in the nea
classical regime, the effective bunching of the beam due
initial quantum fluctuations was shown to increase by a f
tor of ;q from the classical shot noise value. The phot
statistics of the FEL radiation was also examined, and
photon counting statistics of the SASE radiation was cal
lated including the effects of the FEL spectral distribution
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APPENDIX

In this appendix we derive the Hermitian Hamiltonian o
erator for the FEL@Eq. ~2!#. The classical Hamiltonian de
scribing the matter-radiation interaction is

H5(
j 51

Ne

Ame
2c41~cPW j1eAW !2, ~A1!

wherePW j is the canonical momentum,AW is the field vector
potential,Ne is the number of electrons in the beam,me is
the mass of the electron,2e is the charge of the electron
andc is the speed of light in vacuum. We will assume th
the electron beam is sufficiently dilute such that space cha
effects are negligible.

The Coulomb gauge¹•AW 50 is chosen, and we assum
the radiation fields propagate along theẑ direction. The vec-
tor potential may be decomposed such thatAW 5AW L1AW u ,
whereAW u is the vector potential describing the undulator a
AW L is the vector potential describing the laser field whi
may consist ofM modes. The vector potentials of the las
and undulator may be written as
2-7
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AW L5 (
l51

M A2pc\

klV
@alêei (klz2vlt)1c.c.#, ~A2!

AW u5A2pc\

kuV
@auêe2 i (kuz1vut)1c.c.#, ~A3!

wherevl5klc is the frequency of the radiation mode wi
index l. If the undulator is magnetostatic thenku52p/lu
and vu50, wherelu is the undulator wavelength. If th
undulator is electromagnetic~e.g., optical laser pulse!, then
vu5kuc52pc/lu . Hereal andau are the complex ampli-
tudes of the fields, which are contained in the volumeV. For
definiteness, both the laser and undulator fields are assu
to be circularly polarized~i.e., helical undulator! such that
ê5( x̂1 i ŷ)/A2. We will assume that diffraction effects ar
small, and therefore, the fields can be described by p
wave solutions.

We consider an electron beam that is initially injected in
the undulator in the axialẑ direction. The transverse canon
cal momentumPW' j is a constant of motion; thereforePW j•AW
50, and the Hamiltonian@Eq. ~A1!# reduces to

H5(
j 51

Ne

Ame
2c41pj

2c21e2~AW u1AW L!2, ~A4!

wherepj is the axial electron momentum.

1. Electron beam rest frame

In the laboratory frame, the relativistic electron beam
moving along the direction of propagation of the radiati
field, with axial velocityb ic. The equivalence between ma
netostatic undulators and electromagnetic undulators
easily be seen in the frame moving with the electron be
For an ultrarelativistic electron beam (b i.1), both the mag-
netostatic and electromagnetic undulators appear as cou
propagating electromagnetic waves in the electron beam
frame.

We consider a Lorentz transformation to a frame mov
with velocity

b f5S 12
vu

v r
D S 11

ku

kr
D 21

~A5!

in the ẑ direction with respect to the laboratory frame. W
will assumekr@ku in the laboratory frame. The resona
frequencyv r5krc is defined with respect to the energy
the electron beam such that

v r52~cku1vu!g i
2 , ~A6!

where g i5(12b i
2)21/2 is the Lorentz factor owing to the

axial velocity of the electron beam. With the definition of th
resonant frequency@Eq. ~A6!#, the frame moving atb f is the
electron beam rest frame.

In this frame, the FEL phase becomes

~ku1kl!zj2~vl2vu!t5 k̄lzj82v̄lt8, ~A7!
05650
ed
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where the primes indicate coordinates in the frame movin
b f , and

k̄l5kl81ku85g f@ku1kl2b f~kl2vu /c!#

5 k̄r1kr8S kl2kr

kr
D , ~A8!

v̄l5vl82vu85g f@ckl~12b f !2vu2ckub f #

5v r8S kl2kr

kr
D . ~A9!

Here k̄r5(kr1ku)/g i.A2kr(ku1vu /c). Note that, for a
conventional magnetostatic undulator,vu50, and for an
electromagnetic undulatorvu5kuc.

2. Strong undulator regime

We will consider the case where the number of undula
photons is much greater than the number of laser photon
particular we assume that

e2uALu2

me
2c4

!
e2

me
2c4

uALuuAuu!
e2uAuu2

me
2c4

5K2;1, ~A10!

where K is the undulator strength parameter. Operatio
FEL’s based on conventional magnetostatic undulators
typically have undulator strength parameters of orderK;1.
Present high-intensity laser pulses have the capability to
duce even larger normalized vector potentials,K*1. There-
fore, Eq.~A10! will be satisfied for most FEL devices bein
considered.

The Hamiltonian@Eq. ~A4!# may be expressed as

H5(
j 51

Ne

@m2c41pj
2c21e2~AW L•AW u1AW u•AW L!1e2AW L

2#1/2,

~A11!

wherem is the renormalized mass:

m5meA11K25meg' . ~A12!

Hereg'5A11K2 is the Lorentz factor associated with th
quiver motion of the electrons due to the transverse und
tor field, and the total beam energy ismec

2g5mec
2g ig'

5mc2g i . With the assumption of Eq.~A10!, we may ne-
glect the term quadratic in the laser vector potential. Sub
tuting the vector potentials@Eqs. ~A2! and ~A3!# into the
Hamiltonian yields

H5mc2(
j 51

Ne F11
pj

2

m2c2

1 (
l51

M
2\gl

mc2
~alau* ei [(kl1ku)zj 2(vl2vu)t]1c.c.!G 1/2

,

~A13!
2-8
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where the strength of the coupling between the undulator
radiation field is determined by the parameter

gl5
2pe2

mcVAklku

. ~A14!

In the electron beam rest frame and assuming Eq.~A10!,
the interaction Hamiltonian becomes

H5(
j 51

Ne pj8
2

2m
1 (

l51

M

\glS alau* (
j 51

Ne

ei ( k̄lzj82v̄lt8)1c.c.D .

~A15!

Note that the condition@e2uALuuAuu/(me
2c4)#!1 may be ex-

pressed asualu2/Ne!1/(r4ql), whereql andr are given by
Eqs. ~13! and ~14!, respectively. This condition will always
be well satisfied providedr!1, since the FEL process satu
rates atualu2;Neql

21 .
In addition, we can consider a canonical transformation

remove the time dependency in the Hamiltonian. Using
action-angle generating function the Hamiltonian become

H5 (
l51

M

\v̄l

1

2
~al* al1alal* !1(

j 51

Ne Fpj8
2

2m

1 (
l51

M

\gl~alau* eiul j1c.c.!G , ~A16!

where the phase isul j5 k̄lzj8 .
We will construct a quantum Hamiltonian operator fro

the classical Hamiltonian through the Dirac prescription
quantization: the quantum Hamiltonian is assumed to h
the form of the classical Hamiltonian according to the cor
spondence principle, and the canonical dynamical varia
are associated with Hilbert space operators. The Hermi
Hamiltonian describing the multimode FEL process is

H5 (
l51

M

\v̄lS al
†al1

1

2D1(
j 51

Ne

\V
p̄ j

2

2

1 (
l51

M

\glS al
†au(

j 51

Ne

e2 iul j1H.c.D . ~A17!

Here V5\ k̄r
2/m determines the strength of the electron

coil, and p̄ j5pj8/(\ k̄r) is the electron axial momentum no
malized to the recoil provided by a photon exchange betw
the undulator and the resonant laser. The operators sa
the commutation relations

@ul i ,p̄ j #5 i
k̄l

k̄r

d i j , ~A18!

@al ,am
† #5dlm ~A19!

for the phase and momentum operators and the n
Hermitian photon annihilational and creational

† operators.
Note that these commutation relations are satisfied for
05650
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time since the Hamiltonian is Hermitian. In Eq.~A17! we
assume that the number of undulator photons is la
^au

†au&@1, and we treat the undulator field classically~i.e.,
there exists an infinite reservoir of undulator photons to sc
ter into laser photons!. This approximation is justified pro
vided the number of undulator photons is nearly unaffec
by the interaction~photon exchange!, which is satisfied for
^au

†au&@^al
†al&. Equation~A17! is the Hamiltonian operato

used in the main body of this work.
In this work it is also assumed that the wave functions

the electrons no not overlap and they may be treated as
tinguishable particles, i.e., the number of available state
much larger than the number of electrons, and therefore th
will be no degeneracy in the electron beam wave functi
This will be valid provided the phase space volume of t
electrons is sufficiently dilute, i.e.,« i«'

2 .Nelc
3 , where« i

and«' are the normalized longitudinal and transverse em
tance of the electron beam, respectively, andlc is the Comp-
ton wavelength. The effects of electron beam wave funct
degeneracy on the FEL process were considered by
@21#.

3. Weak undulator regime

For the case of a weak undulator field, the laser and
dulator fields satisfye2uALu2/me

2c4!1 and e2uAuu2/me
2c4

5K2!1. In this regime we cannot approximate the numb
of undulator photons as constant. In the electron beam
frame, the Hermitian Hamiltonian operator describing t
multimode FEL process in the weak undulator regime is

H5(
j 51

Ne pj8
2

2me
1\guu

(w)S au
†au1

1

2D1 (
l51

M

\~v̄l1gll
(w)!

3S al
†al1

1

2D1 (
l51

M

\glu
(w)S al

†au

1

Ne
(
j 51

Ne

e2 iul j1H.c.D
1 (

l51

M

(
n.l

\gln
(w)S alan

† 1

Ne
(
j 51

Ne

ei (ul j 2un j )1H.c.D .

~A20!

The coupling between the fields is determined by the par
eter

gln
(w)5

vp
2

2cAklkn

, ~A21!

wherevp
254p(Ne /V)e2/me is the plasma frequency of th

electron beam. Here we have quantized the undulator fi
and the undulator creationau

† and annihilationau operators
obey the usual commutation relation@au ,au

†#51. In addition
to the laser-undulator interaction, the Hamiltonian opera
also describes the interaction between laser modes thro
the last term on the right-hand side of Eq.~A20!.

The Hamiltonian contains the following conservatio
laws: the total~undulator and laser! photon number operato
2-9
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Fau
†au1 (

l51

M

al
†al , HG50, ~A22!

and the total linear~photon and electron! momentum opera-
tor

F (
j 51

Ne

pj81 (
l51

M

\ k̄lal
†al , HG50. ~A23!

Equations~A22! and ~A23! can be combined to yield
.
i,
.

1

a

ys
le,
.

.O

ett
T.

tum

05650
F (
j 51

Ne

pj82\ku8au
†au1 (

l51

M

\kl8al
†al , HG50. ~A24!

The physical interpretation of Eqs.~A22!–~A24! is clear; the
FEL interaction consists of the annihilation~creation! of an
undulator photon and the creation~annihilation! of a laser
photon, with the necessary momentum provided by the re
of the electrons.
.

ds
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