PHYSICAL REVIEW E, VOLUME 64, 056502
Quantum effects in high-gain free-electron lasers
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A many-particle fully quantized theory for a free-electron laser which is valid in the high-gain regime is
presented. We examine quantum corrections for the high-gain single-pass free-electron laser. It is shown that
quantum effects become significant when the photon energy becomes comparable to the gain bandwidth. The
initiation of the free-electron laser process from quantum fluctuations in the position and momentum of the
electrons is considered, and the parameter regime for enhanced start-up is identified. Photon statistics of the
free-electron laser radiation are discussed, and the photon number statistics for the self-amplified spontaneous
emission are calculated.
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[. INTRODUCTION tering [4] of a comparatively low-energy electron beam, ef-
fectively replacing the conventional magnetostatic undulator
The free-electron laseiFEL) holds great potential as a with a counterpropagating high-intensity laser pusshort-
source of intense coherent short-wavelength radiation. Avavelength electromagnetic undulgtdglectrostatic undula-
single-pass high-gain FEL operating in the self-amplifiedtors may also be considered for radiation generation, e.g., the
spontaneous emissid®ASE) mode[1] has received much interaction of a relativistic electron beam propagating
attention recently as a candidate for the next generation lightrough a plasmés].
sources producing coherent x rays. Coherent x-rays have a The first description of the gain mechanism of the FEL
wide range of applications such as x-ray spectroscopy, medfelied on quantum recoil corrections to the frequencies of the
cal and biological imagery, holography, and analysis of ul-emitted and absorbed photons, for which there is no classical
trafast processes. Presently there are major proposals in tB@alog. In the limit of small recoil, the main features of the
United Stateg2] and Europd3] to construct a SASE FEL FEL process are well described in terms of classical quanti-
operating in the x-ray regime. ties (e.g., wave electric field amplitugleand, at present, the
A conventional FEL amplifies coherent radiation by majority of calculations that deal with existing or proposed
means of a relativistic electron beam passing through a pergeL devices use classical equations of motion. As experi-
odic static magnetic fieldmagnetostatic undulator The  ments move toward the generation of shorter wavelength ra-
FEL process can be understood as the scattering of virtugjiation, with shorter undulator wavelengths, corrections to
undulator photons by the electron beam into photons of théne classical approximation for the FEL will become signifi-
radiation field, i.e., an exchange of photons between the urcgnt.
dulator and the radiation, with the electrons providing the Previous quantum mechanical treatme[ﬁs_]_o] of the
necessary momentum. This is a resonant process which emig&L. have been successful in describing the weak-field non-

radiation at the resonant wavelength collective regime. Made}s] first described the small-signal
FEL gain by calculating quantum mechanical transition rates
Ay using the Weizszker-Williams method. Boscet al.[7] cal-
)\r=2y2(1+ K2), (1)  culated relativistic electron wave functions using quantum

electrodynamics in the weak-field regime. An extensive re-
view of solving the single-electron Scliimger equation
where), is the undulator wavelengthy, is the electron beam  through perturbation in the electron recoil was presented in
Lorentz factor, anK is the undulator strength parameter the work by Dattoli and Renierfl0]. These results were
(normalized vector potential of the undulator magnetic field derived assuming a small electron recoil due to emission and
In the limit of an ultrarelativistic ¢>1) electron beam, the absorption of discrete photons, and focused on corrections in
FEL process is analogous to Compton backscattefith  the small-signal noncollective regime of FEL operation.
Mu=M\o/2, wherel is the incident photon wavelength In this paper we present a fully quantizéahatter and
As Eq. (1) indicates, production of short wavelength ra- radiation field$ many-particle theory of the FEL which is
diation requires either high-energy electron beams or shotipplicable in the high-gain collective regime. The paper is
undulator wavelengths. In addition to x-ray production byorganized as follows. In Sec. Il we present the Hamiltonian
conventional FEL's, there have been proposals and experfor the coupled electron-radiation field system. The details of
mental work to generate x rays by stimulated Compton scatthe derivation of the Hamiltonian operator are presented in
the Appendix. The theory is developed in a moving frame
where the electron motion can be treated using nonrelativis-
*Correspondence address: Stanford Linear Accelerator Centetic mechanics. In Sec. Il we calculate the evolution of the
MS 99, P.O. Box 20450, Stanford, CA 943009. expectation value of the photon number operator by solving
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the Heisenberg equations. In Sec. Ill B we calculate quantum The total(electron and photgrmomentum operator com-
corrections to the stimulated emission. Start-up of SASE isnutes with the Hamiltonian,

initiated by noise in the electron beam. Therefore, in Sec.
Il C, we consider quantum fluctuations in the position and
momentum of the electrons as an effective source of noise
for initiation of the FEL process. In Sec. IV the statistical
properties of the FEL radiation are examined, and the photon
number statistics for the SASE FEL radiation are calculatedand is a constant of motion. The emission of photons is bal-
A summary and some discussion of the results are offered ianced by the recoil of the electrons.

Sec. V.

=0, 4

Ne M
(2 krpj+2 kxa;[ah), H
=1 r=1

Ill. HEISENBERG EQUATIONS
Il. FEL HAMILTONIAN

) o To study the FEL process we will use the Heisenberg
The N-electronM-mode quantized Hamiltonian operator nictyre and evolve the quantum mechanical operators. The

describing the FEL interaction in the frame moving at thetime evolution of the operators is given by the Heisenberg
mean velocity of the electron beam can be written as

equations
M Ne p? _
H=> fiw,alay+=|+> A0 = de,, 1 Ky —
21 O DIT S ;1 2 — = 16, ,HI==0Qp,, (5)
) ) dt’ % K,
+ hgk(aIaUE e hi+H.c.l. ) _ v o—
=1 =1 dp, 1 — < K to aify * aify
WZE[pj,H]:lglfgx(axaue N—ayag; e,
The parameteﬂ=h§f/ m determines the electron recoil, and ' (6)
the parameter
N
2re? da, 1 — . S e
g)\zL (3 —,=m[a)\,H]=—lw)\a>\—lg}\auE e . %
mcWWk, k, dt =1

determines the strength of the coupling between the undulan analogy to classical FEL theofyl], it is convenient to

tor and radiation field, wherm=my(1+K?)?is the renor-  define operators representing the observables of the collec-
malized electron mass,=2#/\,, and k,=2x/\,. The tive motion of the electron beam. Consider a bunching op-
Hilbert space operators in Eq2) satisfy the commutation erator

relatio_ns[e}\i ,pj]=i(k>\/k,)§j and[a_}\,aL]=5M, where

0\j=k\zj is the FEL phasep;=p;/(#k;) is the normalized 1
(to the recoil provided by a photon exchange between the bx:,\,—.
undulator and the resonant radiation fjeddectron axial mo- e
mentum, andh, (a{) are the photon annihilatiotcreation

operators of the radiation field. Helg =k, +k/, and w,
=w,— /. The primes indicate quantities in the electron N )
beam rest frame. 1 Ee g Pi 9

The details of the derivation of the time-independent Her- ™7 N, =1 € ]ﬁR’ ©
mitian Hamiltonian operator describing the FEL procdss.

(2)] are presented in the Appendix. In particular we havewhich is the normalized axial momentum averaged over the

a;sgmeq that J;[he undl#Iator field is much larger than the r"j\fEL phase. Note that the collective operators satisfy the fol-
diation field(a a,)>(a,a,), and that the number of undu- lowing commutation relations{b, ,b1]=0, Ngb, 7]

lator photons is very largéala,)>1, such that we may treat 1 N, . A
the undulator field classically and replace the undulator cre= 1 Ne{?x 177)\,£|I_N,e 2j-1 exp(—2|.0M-), and NE[WN'”N]
ation and annihilation operators with numbers. This is =11 Ne 2j-1"¢2p;/(%k,). The Heisenberg equations for
well-satisfied for undulators with~1. It should also be the time evolution of the collective operators are

noted that Eq.2) is a one-dimensional model. This one-

Ne
=1 e ®

and a collective momentum operator

1/2

dimensional model will be valid provided the electron beam da, . [N\ 7% a,

phase space is smaller than the phase space occupied by the ar aa a0 mbw (10
photon beani.e., 4me,<\,y, whereg, is the normalized

transverse emittance of the electron b¢amd the Rayleigh

range of the radiation is larger than the characteristic gain %_. %b . (11)
length of the radiation field, i.e., diffraction effects are small. dr 2 7D
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dm, N ol |2 =(afla )N '=;_ Veexp(— 2i(6,;(0)))=0 for an initially
d—=i 5T |qu E e 10y P unbunched electron beam. The linearized Heisenberg equa-
T ﬁkx tions for a single modédropping the mode label) take the
M 1/2 forms
1 aj
—i a, @ (06— 0,))
2 (qV Jau[ " Ne E dB g
—=izB—iP, (17)
a 1 Ne dT 2
e |(9}\J+0vj) 12
ay| VN 2 12 dP q_ .
dT—|§P—|a, (18
Herer=pk,ct’=4mpN, is the normalized number of undu-
lator periodsN,, 6= (k,—Kk)/(2k,p) is the normalized fre- da
quency detuning, and P ida—iB. (19
y = hwy 1 (13) Note that these equations may be derived from the linearized
pymMeC? Hamiltonian operator

wherep is the dimensionless FEL parameféi:
H=—-da'a+a'B+aB'- g(PTBJr B'P)+P'P,

(14) (20

with momentum conservation expressed as

1/3
me?N K2y

p:
meVyj w,z

We shall refer toqg, , defined in Eq.(13), as the quantum-
recoil parameter. As we will show, the quantum-recoil pa-
rameterg, Is a cr|t|cql parameter for_characterlzmg the quan- The Heisenberg equations for the linear collective opera-
tum effects. For existing FEL devices, the quantum-recaoil
. . tors can be combined to yield the following equation for the
parameter is typically smally,<1. The parameter can be
evolution of the annihilation operator:

interpreted as the ratio of the axial displacement due to the
emission or absorption of a discrete photon to the radiation d q\2

— —j=

( dr 2)

wavelength. In classical FEL theorq,,_1=pymeczl(hmr) is
which has the general solution

[B'"P+P'B+a'a, H,]=0. (21)

d

E—I& —ila=0, (22

approximately the number of resonant photons emitted per
electron at saturation.

A multimode radiation field is explicitly considered in the
derivgtion of the Heisenberg equations. The_ _multimode a(7)=g,(7)a(0)+go(7)B(0)+gs(1)P(0). (23
Hamiltonian is necessary to study mode competition and the
development of temporal coherence. We will now considerrhe coefficients in Eq(23) are
the simpler case of single-mode operation in the linear re-
gime of amplification. (o= 6)(pz— 8)eM7T  (uy—8)(ug— S)e'r2’

=
. . 91(7) (p1=p2) (1= p3) (o= p3) (2= p1)
A. Linear regime i
_ _ gt
The Heisenberg equatiofi§qgs.(10)—(12)] can be solved (r2= 9)(pa~ )€ , (24)
in the linear regime of amplification, which will be valid (3= p2)(pz—p)
before the FEL process reaches saturation. For simplicity we o o
will also consider an initially cold unbunched electron beam. 0y(7) = [(a/2)— pnq]e'r2 [(a/2) — pnop]e'”2
Consider the linearized renormalized collective operators 2 (1= o) (pr—p3) (o= p3)(po— mq)
N a, i | [(a/2) - sl
= (6,j(0) + , 25
B\= ay |ay] Ne 2 e TNTY(611(0)) = 63y). (3= p2) (3= p1) @9
(15) eip.lr ei,u.27'
’ gs(7)= +
a, 1 (1= pm2)(pwr—p3) (2= p3) (2= p1)
P = JNog, % 2 o-itay ) P Pj (16 M1 M2 Hl M3 Moo= m3)(m2— g
| ay| N ﬁk)\ gluat
— —, (26)
where we have assumed an initially colgh; (0))=0, un- (g™ p2) (3= p)

1 —i(0,;(0)) —
bunched,N; 'S Ne . (2 =0, electron beam. The com- whereu; (for j=1,2,3) satisfies the dispersion relation
mutation relatlons for the linearized collective operators are

[B\.B{1=0, [P),P{]=0, [B,,P{]=1, and [B,,P,] p=(+q)u+(8q+ 0?4 pu+1-569°/4=0. (27)
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In the classical limiti.e., img—0), Eq.(27) reduces to the 12
characteristic cubic equation of classical FEL thety. v L, /Ly,
Note that this linear solutiofEgs. (23)—(27)] preserves the 3
commutation relation for the annihilation and creation opera-
tors,[a,a']=|g|?+ 95 g3+ 95 9,=1, for all 7.

The time evolution of the number of laser photons is
given by the expectation value of the number operater:

(a'a)=1g;|Xa’(0)a(0))+|g,|%(B"(0)B(0))
+|93%(PT(0)P(0)) + g5 g3(B'(0)P(0))

+939,(P'(0)B(0)). (29 030 02 04 06 08 ‘117 12 14 16 18 2

Here we have assumed that initially there are no correlations

FIG. 1. Th in length d th i fficienf
between the electrons and photons gl (0))=(B(0)) © Power gain fengt, and mn® gaim toetcie

. / normalized to the classical valugk y.s= (2v/3k,p) "t and A
:<PT(O,)>:<P(0)>:O_' Note that _the _f'rSt term on t_he right- =1/9] as functions of the quantﬁn?-arséccgil \;/)—ar;[r)r)leter for rcel?ssgnant
hand side of Eq(28) is the contribution due to stimulated radiationg,

emission, while the last four terms are due to spontaneous
emission. A solution of this formiEq. (28)] was originally
studied by Bonifacio and Casagrandd], although in their
work the noncommutativity of the collective operators was
neglected in the Heisenberg equations; therefore, they found

end at saturation, which will occur when the beam becomes
modulated at the resonant radiation wavelendth,)~1.

only the classical FEL dynamics. C. Spontaneous radiation
In the SASE mode of operation the spontaneous emission
B. Stimulated radiation emitted in the undulator is coherently amplified by the FEL

The solution to the Heisenberg equations in the regime ogr%%(izﬁéguvgaséfcr%%?;g ?1 bc)ngﬁgya?fzggdmtl)Z ttr?:t tS:ntum

linear amplification has an unstable solution, leading to exi‘lﬁctuations of the electron beam. To evaluateythe sqontane-

ponential growth in the mean number of photons. A stability o ) L ponta
ous emission it is necessary to know the initial expectation

analysis of the dispersion relatigieqg. (27)] indicates that values of the collective operators in EG8), which requires

instability is achieved for frequency detuning satisfyiAg L )
: -2 e knowledge of the initial wave function of the electron beam.
/ 13
<(3/ZD[1+4/(54""]. The discrete electron recoil shifts As an example, we may consider the case where the initial

the regime of stability. . ;
. : . . state of the electron beam is described by the product of
In the high-gain regime#>1), at resonance, the gain due N, minimum-uncertainty wave packetfl1], such that

E(;?s)tgr;ulated radiation can be expressed using E2f8.and the conjugate operators for each electpqnand 0; satisfy

the equality Heisenberg uncertainty relation
@"(na(m)s ., ([A6(0)13([Ap’(0)]?)=(%k,)?/4, where the variance op-
m— |94l =A(q)exdL/Ly4(a)], (29) erators for the position and momentum for each electron are
A6yj=6\;—(6,;) andAp;=p;—(pj). For this case the ini-
whereL=N_\, is the distance along the undulator in the tial expectation values of the resonant linearized collective
laboratory frame,A is the gain coefficient, and is the operators in Eq(28), assuming an initially cold unbunched
power gain length. The dependencefofindL 4 on the reso- electron beam, are
nant quantum-recoil parametegris shown in Fig. 1. This 1
figure shows the deviatiorj from the classically predi_cted val- (BT(O)B(O)):—[NE| bc(0)|2+((A 9(0))2>], (30)
ues as the quantum-recoil paramejeapproaches unity and q
the FEL process moves from the classical to the quantum

regime. In particular the figure shows the increase in the T ot L 1

power gain length ag increases. This reduction in gain is (B'(0)P(0))=(P'(0)B(0))= 2’ (31)
due to the strong recoil of the electrons in the parameter

regime whereqg~1. The strong recoil moves the electrons (PT(O)P(O))=q<(AE(O))2) (32

off resonance after the emission of a photon, thereby de-

creasing the probability of emitting additional photons and . .
reducing the gain. To lowest order in the quantum-recoilIn Eq. (30), we have interpreted the centroid of the quantum

parametex, the gain coefficient and power gain length sat.vave packet as the classical position for each electron such

isfy A=(1/9[1-q/3+---] and Lg=(2\/§kup)‘1[1 that the classical bunching parameter is
+02/36+ - - -]. In the limit q—0, these quantities reduce to

the classical one-dimensional resufts]: Agase=1/9 and b
L iase= (21/3kyp) ~ 1. The exponential growth in EG29) will ¢

=z

1 ¢ _
N_szl ex;{—le}]. (33
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For an initially random longitudinal distribution of electron
wave packet centroids in phasee., classical shot noige
Ne|bc(0)|2: 1.

With Egs.(30)—(33), the expectation value of the photon
number operator E(28) for the spontaneous radiation can
be expressed as

Log,( g<afa>)

q
sp— Nel[BDc 2 2l 7 5\U2U3T Uz Y2
a(a'a)sy=Nel be|?|gz >+ (4 0))]g2|*~ 5 (95 92+ g5 92)

+9X(Ap)D)|gsl2 (34)

4npN

The first term on the right hand side of E@4) represents
classical bunching, while the remaining terms represent the FIG. 2. The amplification of the normalized spontaneous radia-
effective bunching due to quantum fluctuations in the position intensityq(a'a)s, vs the normalized undulator lengthréN,,,

tion and momentum of the electrons. With no initial classicalfor quantum-recoil parameterg=2 (solid curve, g=0.5 (dashed
bunching|b.(0)|>=0 (e.g., an ideal periodic or crystalline curve, andg=0 (dotted curve

beam and no initial input radiation/a’(0)a(0))=0, Eq.

(34) gives the number of laser photons radiated starting from The photon number expectation vallqg. (36)] can be
only quantum fluctuations in the electron beam. This is thesolved explicitly using Eq924)—(27). The expectation value
minimum spontaneous radiation produced by any beam pasgr the photon number operator, assuming an electron beam

ing through the undulator. with initial bunching due to classical shot noisk|b.(0)|?

In the classical limit[i.e., in the limit ((A§)?)=0, =1 and no initial radiation(a’(0)a(0))=0, is shown in
<(AE)2>:0' and limg— 0], the spontaneous emissipfiq.  Fig.- 2. In Fig. 2 the dotted curve is the classical solution
(34)] reduces to (g=0), the dashed curve is the solution for a resonant

quantum-recoil parameter @f=0.5, and the solid curve is

1 the solution for a resonant quantum-recoil parameteq of
ﬁw<aTa>=§e(zv3pk“L)meeCZNe| b.(0)|?>, (35  =2. The figure shows the initial enhancement of the radia-
tion due to the effective bunching from quantum fluctuations
in the high-gain regime, which is the well-known result for ain the eleptron beam. The figure also s_hows t_he reduction i_n
classical SASE FEI[1] ' power gain Iength, compared to what is preo_llqted by classi-
) A - cal theory, owing to the strong electron recoil in the param-
We can also consider the case where the initial minimum- .
: . . eter regimeg~1.
uncertainty wave packet for each electron is localized such

that the initial variance in position is((A#)?(0))

=2mNypQq. This initial state will minimize the expectation IV. PHOTON STATISTICS
value of the variance in position over the length of the un-

Fjulator of a free-space Ga;us,smn wavezpacket, V‘;@hzeVOIV%EL radiation. A description of the photon statistics of the
mn- time , 35 ((A0)°(t)=((A0)(0)) + (A7t )/ yadiation requires a fully quantizetmatter and radiation
[4m*((A6)(0))]. With this near-classical initial condition, fie|qg) treatment of the FEL interaction. If the electron mo-
the expectation value for the number of phot¢Bs|. (34)]  mentum operator is treated as a classicalimber, the prob-
can be expressed as lem reduces to that of a classical current interacting with a
quantized radiation field. It is well known that the photon
field emitted by a classical current into a single mode is
described by a coherent Glauber stais], which obeys
T Poisson statistics. A comprehensive analysis of the statistical
+(47Nyp) *|gsl?]. (36)  properties of the SASE FEL radiation based on classical ra-
) ) ) _ ) _diation theory was presented in Rgf4]. While photon sta-
In the high-gain regime to first order in the quantum-recoiltistics can be analyzed within the context of classical theory
parameter|g,|*=(1+a/2)|ga/? |gs|*=(1+a/3)|g1|?>, and  in terms of the statistical fluctuations in the coordinates and
059>+ 959s=—|g1|%, where|gy|? is given by Eq.(29). For  number of the radiating particles, the results are not gener-
a FEL designed to reach saturatidw,p~1; therefore we ally consistent with the predictions of the fully quantized
may expect an enhanced start-up from quantum fluctuationgeory[15].

if q~Ng|be|?. For the case of an electron beam initially ~ The departure from Poisson statistics of the stimulated

In this section we discuss the statistical properties of the

q
a(a’a)sg=Nelbel ?| 92|+ 5 [ (47Nup)|921° (95 93+ 95 02)

seeded with classical shot noisé{b.|?=1), Eq.(36) indi-  emission can be calculated using E2Q):

cates that the relative increase in start-up due to the effective

bunching produced by the quantum fluctuations in the elec- [((a'a)2)—(ata)2]—(a'a)

tron beam will be of the order of the quantum-recoil o s st

parameter. =1g:|*((a™(0)a%(0))—(a'(0)a(0))*). (37

056502-5



C. B. SCHROEDER, C. PELLEGRINI, AND P. CHEN PHYSICAL REVIEW & 056502

Depending on the quantum state of the initial seeding radia- M |y (7)]2

tion, the photon statistics of the stimulated radiation may be d(at)=11 T ;{ v 1 (41
super- or sub-Poissonida.g., if the radiation is initially in a \=1 m(aay) (ayay)

Fock state, then the stimulated FEL radiation will be sub- ) o
Poissoniah If the initial radiation seeding the FEL amplifier Where{a}={a1,a, ... ,ay} is the set of annihilation op-

is in a coherent Glauber state of single modgs)|a) erator eigenvalues for each mode. Note that the SASE FEL
= a(7)|a), then the field will remain in a coherent Glauber radiation with statistics defined by the positive-definite

state, and the stimulated emission will have Poisson statis3!auber quasiprobability functiofEq. (41)] will exhibit

tics; the probability of occupation of the photon number statePly bunching of photoelectric detections. If the field is ini-
In) is a Poisson distribution tially in a vacuum state, then the probability of occupation of

a set of photon number statds})=11,|n,) is
(a'a)

[(nl@)[?="—"exi] —(a'a), (39

M

[(ny{oh>=T1

=11+ (ala)

—ny

(42)

T
(ayay)

with the number operator variancé(a'a)?)q—(a'a)? _ _

=(a'a)s=|g:/%(a’(0)a(0)). We define th?/ltOtal‘r occupation nump_er as the sum over all
The spontaneous radiation in the FEL process is due to 310des(n)=2,",(a,a,). The probability of the total occu-

large number of independent sourdetectrons. This has Pation n_umbem is the sum over all possible sets of mode

profound effects on the photon statistics. The Glauber qua@ccupation numbergn, } summing ton,

siprobability function[13] (i.e., the diagonal coherent-state

representationfor the spontaneous radiatiops @) is a |<n|{0}>|2=2 1({n"H{O}) |28
convolution of the Glauber quasiprobability functions of the "}

radiation emitted by each individual electra)(«a;). Pro- M 5 5 on
vided there is a sufficiently large number of independent :f d®a, ex —|ay| ﬁ_e,ﬁz
sources, the Glauber quasiprobability function for the spon- r=1| m(ala,) (ala,) n! '
taneous radiation will be a negative exponential distribution
[13] (43
N, Ne where g2=3M |, |2. This is the general solution for the
a)= 5(2)(a_ w) (a)d2a total photon number expectati¢f8].
Porl ) f 121 ) jﬂl dila)d7e If we neglect the spectral distribution of the SASE radia-

5 tion and assume the occupation number expectation values
1 ex;{ _a(7)] (39  Of all M modes are equal, i.gn)~M(ala,) for any\, then
7r<aTa)Sp <a‘ra>sp ' Eq. (43) can be evaluated analytically. With this equal occu-
pation nhumber assumption, the probability of occupation of
This is a quantum optical analog to the central limit theoremthe total photon number state), given an initial vacuum
The probability of occupation of the photon number staje ~ State, is a negative binomial distribution
is then a thermalchaotig distribution F(n+M)  [1+MKny] "

2_
-n |<n|{0}>| F(M)F(n—l) [1+<n>/M]M ’ (44)
[(n[0y|?=— ( . ) T
1+(a'a)sp (a'a)sp with joint photon number state occupation variang)
—(ny?=(n)2/M+(n). For a typical SASE FEL,(n)
with number operator variance((a'a)®)q,—(a'a)s, ==M (ala,)>M>1. The negative binomial distribution

:_<aT3>sg(<_aTa>sp+ 1). As a result, the spontaneous emis-[Eq. (44)] was suggested previously by several autfjagj

sion exhibits only first-order coherence. The thermal statisas an adequate description of the SASE FEL radiation. We
tics of the spontaneous FEL radiatipBq. (40)] was first  expect this approximation will be valid in the asymptotic
shown by Becker and Mclv¢(6]. The total quasiprobability |imit ¢,— 0.

distribution of the FEL radiation for a Single mode is a con- The equa] Occupation approximation used to derive Eq
volution of the stimulated and spontaneous radiation qua¢44) does not take into consideration the spectral distribution
siprobability distributions. of the FEL radiation. The spectral distribution of the FEL

In general, the radiation produced by a SASE FEL will radiation, determined by the dispersion relati&q. (27)], is
consist of many modes provided the FEL bandwidth isgpproximately Gaussian

greater than the Fourier limited bandwidif)> 1/, where

o, is the FEL bandwidth and, is the pulse duration. The alay=a'a, exf—(w,— o) (20%)]. (45)
number of modes present in the spectral distribution will be

approximatelyM ~ oo [17]. The multimode spontaneous Although the general probability distributiofEq. (43)] is
radiation Glauber quasiprobability function may be ex-difficult to evaluate analytically for arbitrary spectral distri-
pressed afl3] bution, we may use Eq@43) to calculate the normalized
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moments ofn. The factorial moments of the photon number magnetic undulator device with comparable efficiensy
statistics (N(M)=(n(n—1)---(n—m+1)) can be calcu- ~10 %, then the quantum-recoil parametergis-1. In this
lated using a simple relatidr20] between the photon count- regime we can expect deviations from the predictions of
ing correlations and counting momenrsxp(¢))=(exd (e  classical theory owing to the discrete electron recoil and the
—1)=\ | [?]). With this relation, and assuming a Gaussianquantum fluctuations of the electron beam, as discussed in
spectral distributiodEq. (45)], the expectation values of the Secs. lll B and Il C. Specifically, the theory presented in
first few factorial moments of the total photon occupationthis paper predicts a reduction in the gain, given in §),

numbern for the SASE radiation are and enhanced start-up due to the effective bunching pro-
duced by quantum fluctuations, given by E86).

(n(z)) 1 In this paper we have presented a many-particle quantum

(n)2 =1+ M’ (46) theory of the FEL. The Heisenberg equations were solved for

a single-mode radiation field before saturation. The stimu-

(3) lated amplification of the radiation was computed in the

(n >_ 3 4‘/§ high-gain collective regime. For FEL parameters satisfying
+ (47)

(n)® M 3m2’ g~1, the gain was shown to decrease compared to the clas-
sically predicted value, owing to the strong electron recoil.
(n(“)) 6 (9+16\/§) 6\/5 The_ |n|t|e_1t|on of sp_o_ntaneous radiation due to quantum fluc-
= M+ T —; (48 tuations in the position and momentum of the electron beam
(n) 3M M was examined. The minimum spontaneous radiation emitted

) ) by the beam passing through the undulator was calculated.
for M>1. The higher-order photon number counting mo-For an initial electron beam wave function in the near-
ments, e.g., Eq$47) and(48), deviate from those generated c|assical regime, the effective bunching of the beam due to
by the negative binomial probability distributidieq. (44)],  jnitial quantum fluctuations was shown to increase by a fac-
which predicts tor of ~q from the classical shot noise value. The photon

statistics of the FEL radiation was also examined, and the
(n™M)  T(m+M) 49  Photon counting statistics of the SASE radiation was calcu-
(nym o M™ (M) ' (49 lated including the effects of the FEL spectral distribution.

As expected, in the limitr,,o— o the expectation values of ACKNOWLEDGMENTS
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ments for the Gaussian spectral distribution of the SASEsupported by the U. S. Department of Energy, under Grant
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V. DISCUSSION AND SUMMARY APPENDIX

In this paper we have shown that quantum effects mani- In this appendix we derive the Hermitian Hamiltonian op-
fest themselves in a FEL when the quantum-recoil paramerator for the FEL[Eq. (2)]. The classical Hamiltonian de-
eter, defined in Eq(13), approaches unity, i.e., when the scribing the matter-radiation interaction is
photon energy is comparable to the gain bandwitith
~pymeC2. In this parameter regime the axial displacement Ne
due to the emission or absorption of a single photon is com- H=>, \/m§c4+(cl5j+e,3\)2, (A1)
parable to the radiation wavelength. =1

Proposed x-ray SASE FEL'’s based on conventional mag-
netostatic undulators, e.g., Ref®,3], will typically have  whereP; is the canonical momenturd is the field vector
undulators withh,~1 cm andK~1. Production of 1-A  potential,N, is the number of electrons in the beam, is
radiation will then require an electron beam energyjof the mass of the electron; e is the charge of the electron,
~10* These conventional x-ray sources will have efficien-andc is the speed of light in vacuum. We will assume that
cies of the order op~10"*, where the FEL parametéde-  the electron beam is sufficiently dilute such that space charge
vice efficiency is given by Eq.(14). For these parameters, effects are negligible.
g~10 3, and we expect the conventional FEL x-ray sources, The Coulomb gaug® - A=0 is chosen, and we assume

to a good approximation, to b? in the cIaSS|_caI regime. the radiation fields propagate along theirection. The vec-
X-ray production using a high-power optical laser pulse , Z LT

such as an electromagnetic undulator, with, for example, $r Potential may be decomposed such that A +A,,

laser wavelength ohy=1 um, and a normalized vector WhereA, is the vector potential describing the undulator and

potential of K~1 (i.e., a peak laser intensity of ,&L is the vector potential describing the laser field which

~10'"® W cm~2), would require an electron beam energy of may consist oM modes. The vector potentials of the laser

y~10? to produce 1-A radiation. If we consider an electro- and undulator may be written as
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M where the primes indicate coordinates in the frame moving at
- 2mch
A= \/—aee®zicc], (A2) By, and
=1 k\V
i omch ky= Ky +k,=vi[ky+ k= Bi(ky —wy/c)]
A=\ Gy [a,ee (o) 4 ¢ c], (A3) a K —K
u :kr+kr’( }\k d , (A8)
where w, =k, is the frequency of the radiation mode with '
index \. If the undulator is magnetostatic thég=2m/\ — _ 4 o
and w,=0, where\, is the undulator wavelength. If the @), = )~ o= yi[ck\ (1~ Bf) — wy—ckyBi]
undulator is electromagneti@.g., optical laser pulgethen ky — ki
w,=k,c=2mc/\,. Herea, anda, are the complex ampli- :w;(k—) (A9)
r

tudes of the fields, which are contained in the voluvhé&or

definiteness, both the laser and undulator fields are assum - N ey
to be circularly polarizedi.e., helical undulatorsuch that Here Kr = (K; +Ku)/y)= 2k (ky+ w,/c). Note that, for a

o= (x+i9)/12 il hat diffracti & conventional magnetostatic undulatas,=0, and for an
e=(x+iy)/y2. We will assume that diffraction effects are electromagnetic undulatas,=k,c.

small, and therefore, the fields can be described by plane
wave solutions.
We consider an electron beam that is initially injected into

the undulator in the axia direction. The transverse canoni-  We will consider the case where the number of undulator
cal momentun® . - is a constant of motion: therefofd - A photons is much greater than the number of laser photons. In
L] ' |

2. Strong undulator regime

=0, and the HamiltoniafiEq. (A1)] reduces to particular we assume that
Ne eZ|AL|2< e2 |A ||A |<62|Au|2 K2 . (Alo)
H:,Zl \/m§c4+ prc+e?(A,+A)?, (A4) mZct  mict LIAY mZc? = ,
wherep; is the axial electron momentum. where K is the undulator strength parameter. Operational
FEL’s based on conventional magnetostatic undulators will
1. Electron beam rest frame typically have undulator strength parameters of onderl.

L _ Present high-intensity laser pulses have the capability to pro-
In the laboratory frame, the relativistic electron beam sy ce even larger normalized vector potenti&ls; 1. There-

moving along the direction of propagation of the radiationfore' Eq.(A10) will be satisfied for most FEL devices being
field, with axial velocityc. The equivalence between mag- considered.

netostatic undulators and electromagnetic undulators can The Hamiltonian[Eq. (A4)] may be expressed as
easily be seen in the frame moving with the electron beam.

For an ultrarelativistic electron beang(=1), both the mag- Ne

netostatic and electromagnetic undulators appear as counter-H= >, [m’c*+ p?c?+eX(A - A+ A, A ) +?A%]Y2,
propagating electromagnetic waves in the electron beam rest =1

frame. (A1)

We consider a Lorentz transformation to a frame movinqN . .
. . herem is the renormalized mass:
with velocity

k,| 1 m=meV1+K?=m.y, . (A12)
1+ - (A5)
r

w
Bi= ( 1-—

©r Here y, = J1+K? is the Lorentz factor associated with the
quiver motion of the electrons due to the transverse undula-
tor field, and the total beam energy fis.c?y=mcC?y|y,
=m02y”. With the assumption of Eq/A10), we may ne-
glect the term quadratic in the laser vector potential. Substi-

tuting the vector potentialEgs. (A2) and (A3)] into the
w,=2(ck,+ o) Yﬁ, (AB) Hamiltonian yields

in the z direction with respect to the laboratory frame. We
will assumek, >k, in the laboratory frame. The resonant
frequencyw, =k,c is defined with respect to the energy of
the electron beam such that

where ;= (1-gf) "2 is the Lorentz factor owing to the p?

Ne
axial velocity of the electron beam. With the definition of the H= mCZJZl 1+ m2c2
resonant frequendyeq. (A6)], the frame moving aB; is the

electron beam rest frame. M 2hg, . 12
In this frame, the FEL phase becomes +> 2 (ayatelltarkiz—(ox—eltly ¢ c)
A=1m
(kytk)Z— (0, — 0 )t=kz] —w,t’, (A7) (A13)
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where the strength of the coupling between the undulator antime since the Hamiltonian is Hermitian. In EGA17) we
radiation field is determined by the parameter assume that the number of undulator photons is large
(ala,)>1, and we treat the undulator field classicalle.,
g, = 2me there exists an infinite reservoir of undulator photons to scat-
N ter into laser photons This approximation is justified pro-
mewkok, vided the number of undulator photons is nearly unaffected
In the electron beam rest frame and assuming(gq()), by the interactior(photon exchangewhich is satisfied for
the interaction Hamiltonian becomes (ala,)>(aja,). Equation(A17) is the Hamiltonian operator
used in the main body of this work.
29 i 2 (o]~ ot In this work it is also assumed that the wave functions of
2 2— hg\| anad 2 A rJ+c.c. the electrons no not overlap and they may be treated as dis-
(A15) tinguishable particles, i.e., the number of available states is
much larger than the number of electrons, and therefore there
Note that the conditi0|[1e2|AL||A |/(m c*)]<1 may be ex- Will be no degeneracy in the electron beam wave function.
pressed aka, |2/N,<1/(p*q,), whereq, andp are given by ~ This will be valid provided the phase space volume of the
Egs. (13 and (14), respectively. This condition will always €lectrons is sufficiently dilute, i.ege? >N\, whereg
be well satisfied prowdeyd<1 since the FEL process satu- ande, are the normalized longitudinal and transverse emit-
rates afa, |2 ~|\|qu ] tance of the electron beam, respectively, apds the Comp-
In addition, we can consider a canonical transformation tdon wavelength. The effects of electron beam wave function
remove the time dependency in the Hamiltonian. Using arflegeneracy on the FEL process were considered by Kim
action-angle generating function the Hamiltonian becomes [21]-

2
(A14)

12 M Ne

M
pj? .
H= E hw)\ 5 (aYa,+aay)+ 2 L 3. Weak undulator regime

2m

For the case of a weak undulator field, the laser and un-

M dulator fields satisfye?|A |?/mic*<1 and e?|A,|?/m3c*
+ >, hgy(ayale 0n+c.c.)}, (A16) =K?<1. In this regime we cannot approximate the number
A=1 of undulator photons as constant. In the electron beam rest

frame, the Hermitian Hamiltonian operator describing the

where the phase i8,;=kz; . o multimode FEL process in the weak undulator regime is
We will construct a quantum Hamiltonian operator from

the classical Hamiltonian through the Dirac prescription for

Ne 12
quantization: the quantum Hamiltonian is assumed to haved = 2

1
2m ——+hg{¥| ala,+ +2 i(wy+gM)

the form of the classical Hamiltonian according to the corre- N
spondence principle, and the canonical dynamical variables 1 Ne
are associated with Hilbert space operators. The Hermitian a}\ax + E hg(‘”) aAauN E e "%+ H.c.
Hamiltonian describing the multimode FEL process is

. A +Z > hg| a\al i§ e~ %)+H.c

ZE w)\ a)\ax-i- +27LQJ =1 v>\ A Nejl
A=1
" N (A20)
+> #hg,lala, >, e ihi+Hec|. (AL7
le g)\( » “121 (A1D) The coupling between the fields is determined by the param-
eter
Here QO =7k?/m determines the strength of the electron re-
coil, andp;=p;/(#k,) is the electron axial momentum nor- w2
malized to the recoil provided by a photon exchange between g(‘"’)— LI (A21)
the undulator and the resonant laser. The operators satisfy 2cvkyk,
the commutation relations
_ wherew§=4rr(Ne/V)e2/me is the plasma frequency of the
[0, ] P Ky s (A18) electron beam. Here we have quantized the undulator field,
APy P and the undulator creatiom and annihilatiora, operators

i
obey the usual commutation relatipa, ,a’]=1. In addition

[a, ,aL]:5M (A19) to the laser-undulator interaction, the Hamiltonian operator
also describes the interaction between laser modes through
for the phase and momentum operators and the northe last term on the right-hand side of E&20).
Hermitian photon annihilatioa, and creatiora{ operators. The Hamiltonian contains the following conservation
Note that these commutation relations are satisfied for allaws: the totakundulator and lasgiphoton number operator
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M

ala,+ >, ala,, H[=0, (A22)
A=1

and the total lineafphoton and electrormomentum opera-
tor

Ne M
{2 p/+ > fik.ala,, H|=0. (A23)
=1 A=1

Equations(A22) and(A23) can be combined to yield

PHYSICAL REVIEW & 056502

Ne M
21 pf—hk[,aﬂaﬁ?l hklala,, H|=0. (A24)
= =

The physical interpretation of Eq8A22)—(A24) is clear; the
FEL interaction consists of the annihilatigareation) of an
undulator photon and the creatigannihilation of a laser
photon, with the necessary momentum provided by the recoil
of the electrons.
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