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Self-similar fluctuation and large deviation statistics in the shell model of turbulence
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Both static and dynamic multiscalings of fluctuations of energy flux and energy dissipation rate in the
Gledzer-Ohkitani-Yamad&GQY) shell model of turbulence are numerically investigated. We compute the
large deviation rate function of energy flux not only in the inertial rafig® but also around the crossover
between the inertial range and the dissipation raif®). The rate function in IR exists to be concave, which
assures the applicability of the Legendre transformation with the anomalous scaling exponents that have been
investigated so far, and turns out to be independent of the Reynolds number. On the contrary, near the
crossover scale, an intermediate dissipation raHg®R) scaling is observed with the rate function in IMDR,
which is accounted with the argument on dissipation scale fluctuation dominated by the energy flux fluctuation
in the inertial range. Furthermore, to study the difference between IR intermittency and DR intermittency, we
compute finite time-averaged quantities of energy flux and energy dissipation rate and investigate their multi-
scaling behavior. The difference observed in terms of their dynamic multiscaling is discussed.
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[. INTRODUCTION rate was treated as the constant parameter in K41 theory, and
is expressed as the constant energy dissipationefatéhe
One of the most important problems in fully developedfluctuating energy-transfer rate can give the correction to the
turbulence is the small-scale statistics of the energy transfeK41 scaling.
The energy injected at the large-schlransfers down to the It is important to know the nature of energy-transfer fluc-
dissipation scale; where the energy is dissipated into mo- tuation at scal_d to study the intermittency problem. One
lecular motion due to viscosity. Universal statistics free from'€/evant quantity is the energy flux. The energy flux at scale
the viscous effect as well as mechanisms of energy injectioh "€Presents the rate of nonlinear energy transfer from large
is expected to hold in the range of length scal€l <L, the to STall ﬁcales per L:jn't time thrOcFug_h th_e sdal@hysmalkl)y,
so-called inertial range, provided that the Reynolds numbeme Ohctat ybaveragel etnter%%/ |55|pat|gn rzlaetetrr]na% | e
is sufficiently large. In the inertial range, moments of suit- ought to be equivaient to the energy Tlux. In the Koimog
able observables defined over the sdakhow power-law orov 1962 theoryK62), the fluctuations o, and the energy
dependence oh In particular, the two quantities , the longi- qux_ ata scald_ were assumeq to be_ fqnd_amentally th_e same
tudinal velocity differenceso, =[v(x+1)—v(x)]- I/l and the [3] in connection with the refined similarity hypothesis

Iocally averaged energy dissipation raeaveraged over a 6u,~|1’3e,1’3. (1.2
region of scald, are mainly measured. These quantities are

characterized by the scaling expone#(s)) and r(q) de- The combination of Eqs(1.1) and (1.2) thus immediately
fined as leads to

REC) {(q)=0a/3+7(a/3). 1.3
[) , (LY

Theqth intermittency exponent(q) defined in Eq(1.1) has
been extensively investigated both numerically and experi-
where(-) is the ensemble average , aNg and eo(=€.)  mentally [4—6]. The energy flux and the locally averaged
represent the characteristic velocity and energy dissipatiosnergy dissipation rate are almost equal on the average,
rate at scalé, respectively, which are assumed to exhibit nowhereas it is no priori known that their fluctuation natures
relevant fluctuation. From the definitidd.1), one finds that  are rigorously the same.
£(q) and 7(q) are convex functions dd. In this paper, we will discuss the intermittent fluctuation
In the Kolmogorov 1941K41) theory[1] it was supposed of the energy-transfer process of the Gledzer-Ohkitani-
that relevant parameter on the small-scale statistics in fullfyamada (GOY) shell model [7] by use of the large
developed turbulence is the energy-transfer rate and that theviation-rate function, discussing overall statistics of expo-
scaling exponenty4:(q) =0q/3 was predicted via dimen- nent fluctuation relevant to the similarity characteristics of
sional argument. Howevet,(q) by experimental measure- the energy-transfer process. We numerically solve the GOY
ment deviates from the K41 law, especially for lagé2].  shell model of the dynamical energy-cascade model of tur-
This is called the anomalous scaling. The origin of thebulence and compute the rate function of the energy flux.
anomalous scaling is believed to be a strong intermittenMoreover, we compare the fluctuations of the inertial range
fluctuation of the energy-transfer rate. To determiiig) is  energy flux and the energy dissipation rate about their dy-
thus called the intermittency problem. The energy-transfenamic scaling.

(a)
SIRGI:

(J6v)|H~Vg
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In Sec. I, we develop the rate-function formalism to char-that these functions are universal characterizing the energy-
acterize the intermittency utilizing the large deviation theory.cascade statistics in the inertial range in fully developed tur-
In Sec. lll, we determine the rate function of the energy fluxbulence.
of the GOY model, numerically solving the dynamical equa- Next, the moments of,, are obtained as
tion for shell variables. It will turn out that in the inertial
range, the rate function characterizes the energy-flux inter- a_ [7 q *
mittency and near the dissipation scale it obeys different <6n>=f0 P, (e)dex fﬁmepr[—n(S(z)—qz)]dz.
scaling than the inertial range by the effect of viscosity. In 2.3
Sec. IV, we propose an approach to characterize the temporal
fluctuation of the energy flux and energy dissipation rate byrhe integral is evaluated by the steepest descent method for
observing the statistics of their finite time averages. It will belargen by supposings’(z)>0, which lead to
found that the moments of their finite time averages obey
power-law scaling, and then we discuss the difference be- 7(q)=min[S(z)—qz]. (2.4
tween energy flux and energy dissipation observed in the 2
scaling-exponent fluctuation. In Sec. V, one finds concluding
remarks. Thus 7(q) is related to the rate functio§(z) via the Leg-

endre transformation. Equatid@.4) yields
Il. RATE-FUNCTION FORMALISM OF INTERMITTENCY

In this section, we review the rate-function formalism to 7(q)=S(z(9)) - az(a), 2.9
characterize the intermittent statistics of energy transfer. The
basic ideas ar€l) the self-similarity hypothesis on fluctua- _ dS(z(9)) (2.6)
tions of different scales introduced first in the Kolmogorov q dz '
1962 (K62) theory [3], (2) the treatment of intermittent
strong fluctuation by the large deviation thedyDT) ap- d=(q)
plied to the fluctuation of exponents of energy transfer z(q)=— . 2.7
[8-10,13. dq

For the locally averaged energy dissipation raf €l For the characterization of intermittent energy-transfer statis-

_ 3 i —I\— . . . .

=<1, €(x+r)dr/I7, with the scald,=LA™", (\>1),the  {ics theqth order moment o, gives the information of the
local scaling exponeng, is introduced throughe,,,/€e,  fluctuation ofz. Small z describes a weak fluctuation and
=\"n. The fluctuation ofe,, is expressed using the the finite strong intermittency is characterized by largeThe func-

average ofz,,, ;n:EJn:_é'Zj /n tiona_l form _ofS(z) is directly related to_probabilities of vari-
ous intermittent events of turbulent field and describes the
— L\ % overall features of intermittent fluctuation.
€n=€eg\"= ¢, I_) (2.9 Let us here add a comment on estimating the maximum
n

degree of order of momentg}) using the rate function. One
One may assume tha is constant since the fluctuation of always has a finite amount of data. This fact causes the prob-

the energy-dissipation rate at the largest stafeay be neg- |em of statistical convergence of momerts;). The mo-
ligible compared to that at small scales. The self similarity of eNts with largey are determined mainly by the right tail of
the fluctuation ofe,, at each scale implys that the statistics of PDF P (€) where the statistical accuracy is not sufficient
z, is independent oh. For n sufficiently larger than the enough. This implies that there exists a characteristic value
correlation step ofz;, LDT [8,11] may be applied to the Omax of q, for qsmaller tharqmax_th_e statistic_al_ convergence
probability density function (PDP of z,, Qu(2) of the moments is enough, put it is not sufficient éplarger
=<5(?n—2)>, that its asymptotic form takesQ,(2) thangnay. The characteristic valug,,,, may be evaluated

~ Jnexp[~S2)n], where exp(x) denotes\*. Here, the as follows. Letg*_ be the boundary that separates the accu-
functionS(z), being independent of, is called the rate func- racy of the statistical convergence of PDF, i.e., PDF becomes

, . . i i . q
tion, Crame function [8], or the fluctuation spectruril], unresolved ak, as e is increased. The momens,) for

. . sufficiently largeq are approximately proportional te .
and characterizes the asymptotic form of PDFZofluctua- y largeq PP y prop by

tion. Ergodicity assumption of,, requires thatS(z) is con This means thatr(q) does linearly depends og. The
. n - " . .
cave and takes the minimum zero @. With the use of g-linear dependence af(q) thus results from the existence

il s of the cutoff €, . By defining the characteristic exponent
PDF Qn(2) for z,, PDF fore, is given by Zmax DY €, /€0=\"2max, .« IS evaluated by the solution of
. Z(Qmax = Zmax. Where the functiore(q) is the same as de-
P ()~ € exp, —S( log (i ) fined in Eqg.(2.7) for q<q,,2x. The present estimation of

“n dniny Linl €, Omay IS alternative to the conventional of®12] whereq .y
is estimated by checking that thé‘P/n(e) curve has a dis-

In the above consideratiof(z) is a fundamental function in cernible peak and decays sufficiently fasteas increased.
describing the self-similar energy cascade, and we expedthe rate function provides another way to estimatg,y.

. (2.2
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Calculatingq(z) using Eq.(2.6), one may conveniently find d
Omayx @S the converged maxima(z). This data processing is giE= —etRefuil, (3.9
achieved since the rate function directly describes the nature
of the large fluctuation. N

Let us turn to the discussion of the shapeS§f). The e=vY, k2 un| 2. (3.5
central limit theorem(CLT) states thatS(z) parabolically n=1

depends orz near its minimum az=(z)[ =z(0)], thus, the

K62 log-normal description may be correct near the mini- )
mum region ofS(z). However, beyond the range of the ap- In the K62 theory, the fluctuation of energy ﬂgx at a scale
I=1/k is assumed to be the same as tha¢,gfwhich corre-

plication of CLT, there is no reason f&(z) to have a para- !
bolic form that is a strong assumption used in K62 theory SPONdS, in the present case efp~|F,|. In the GOY model,

Then one’s interest goes to the determination of the shape &N€ May treat the energy-flk, at a scale ¥, one need
S(2) in the range of large deviation from meés), i.e., of no'F use the energy dissipation rateBy concerning the in-
2(q) for large|q|. ertial range mtermltt_ency of the energy cascabg,has a

Hereafter, to analyze the intermittent energy-transfer sta¢l€@r physical meaning rather than, therefore, hereafter
tistics, we use a shell model for energy cascade of turbulve investigate the rate function for the energy-fleix. In
lence. Various types of shell models are so-far proposef€ inertial range scale, we expect that the power-law
[14]. We take here the so-called GOY modi€] and directly (F | %~k " 3.6
calculateS(z) of energy flux by numerically integrating the n n ’
dynamical equation and compare the results with theories
far proposed.

The total energ)E is thus dissipated at the rate

Snd £(q)=0a/3+ 7(g/3) is established because of the scaling
relation|F | ~ky|up| 2.
Hereafter, the rate function for the energy-flex is cal-
lll. SELF-SIMILAR FLUCTUATIONS OF ENERGY-FLUX culated in two different rangegSec. 1l A) the inertial range,
STRUCTURE FUNCTIONS where the long-time average Bf, is almost constant(Sec.
The GOY mode[7] is written as Il B) the intermediate Qissipation range, vyhigh is near the
crossover between the inertial and the dissipation ranges, al-

du 1 1 though in the scale where the inertial range scaling gradually
d—tn=ikn Ur U, o— Zu:,luﬁ,‘ﬂ— gu:,lu;‘,z breaks, the multifractal phenomenology predicts that strong
singularity associated with highly intermittent behavior still
— vk2Up+ 8, 4f (3.1 holds the inertial range scalirig6].
Here, k,=ko\" (n=1, ... N) is the geometrically spaced A. Inertial range case

_1 -1 ;
wave numberko(=L %) being taken as the smallest, char- | this section, we consider the intermittent fluctuation of
acteristic wave number ang, is a single complex variable - yhe energy-flux, in the inertial range. Without loss of gen-
of the shell-numben corresponding to the wave-numbey; erality, we put\=2, and calculate the rate functi®fz) of

v is the kinematic viscosity anflis a constant forcing re- |F,|, which is numerically estimated from the PIF,(z) of
stricted on the fourth shell. For=f=0, the model con-

serves the total-energf=3)_,|u,|%/2. The parameters — |Fyl K

(»,N) are chosen in a way the inertial range is well resolved. anlow |°9k_02(|°9|':n| —log(|Fy[))/nlog2
As reported in Refs[7,14,15, the model displays intermit-

tent dynamics and the velocity structure-function exponenby

£(q) defined by(|u,|9~k, *@ in the inertial range shows

anomalous scaling, i.e., the scaling exponent is different _ 1 M
from the K41 scaling law. Sn(2)= n IogZIOg[Q”(Z)/Qn I @7
The energy equation in the GOY model takes the form
d uf? QY =maxQ(z). (3.9
u z
a Tn: - Vk§|un|2+ quu: 5n,4]+ Fn—l_ I:n )
(3.2 Qn(2) is normalized b>Qr'\1" in such a way tha$(z) has the
minimum zero. For sufficiently large, S,(z) tends toS(z),
where which is independent ofi, and the value ofz giving the
minimum of S(z) is equivalent to the long-time average
1 value(z) of z,. However, we expect that due to the finite-

Fn==kn 1M Unln s 3Un 2 ZUn-aUnlnes | B3 nocs o, the z value giving the maximum 0®,,(z) is not

equal to the mean valug). Thus, for large but finita, (z)
is the energy flux from theth shell to the 0+ 1)-th shell is numerically determined by assumikipg|F,|)=(z)nlog 2
that represents the nonlinear energy transfer on scélge 1/ +o(n). Then the functiors(z) is estimated by slightly shift-
Summing up Eq(3.2) in terms of shell indices gives ing S,(z) along the abscissa so that the zero point is located

056304-3



NAKAYAMA, WATANABE, AND FUJISAKA PHYSICAL REVIEW E 64 056304

T 1072 T T T T T
10 7
10? - 102 F 3 4
%K E X % % gk ¥ x %
| r nﬂﬁﬁgﬁmmggﬁmﬁﬁﬁwn
10t F . e @
*
107 -ﬁ * .
X
10° 7 * -
*
@ 107! 4 i +
5 R, 10°F a T
A N — X
102 | Runi + Tk LN . ~
Run2 x . 0
Run3  =* N - *
107 Rund o £ e 10¢r Runi |
1V for Rund ————- * A S '
" g Run3 *
107 | * .\iSl E Run4 5] a
107 | T
107 | . )
L 1 1 1 1 1 8
10~ | 1 1 1 1
1 4 10 15 20 25 5 10 15 20 25
n n

FIG. 1. Nonlinear time scales estimated & (n) FIG. 2. Time averages of the moduli of energy fluxes for differ-
=(un/(up)n]?) for different runs, whereu(,) . is the nonlinear  ent runs.
term in Eq.(3.1). The solid line shows the slope2/3. The dash-

dotted line shows the linear damping time scale for run 4. .
Ping with the total shell numbeN=19, »=10"% (run 1), N

=22, v=10"7 (run 2, N=24, v=10"8 (run 3 and N
=27, v=10"° (run 4.

In Fig. 2, we show the long-time average |&,|. One
may recognize the existence of the inertial range where
QY|F, |t In(|F ol /{|Fal)) (IF.|) is almost a constant irrespective uf In Fig. 3, we
\/:ex n/ko{ - (In(k—/k)” show typical time series df,(t) in the inertial range shells

In(kn/ko) ntho n=15,17,19 for run 4. One observes episodes of strong fluc-
tuations in quiescent laminar phases, which represent inter-
mittent energy-cascade transfer from large to small scales.

For the numerical integration of E3.1), the slaved-frog  Furthermore, one sees that the intensity of intermittent fluc-
second-order Adams-Bashforth schefté,17) is used. The tuation becomes stronger in high wave-number shells. This
time incrementAt is chosen as follows. First, we carried out figure suggests the existence of characteristics of the energy
a preliminary calculation of characteristic time scales associflux.
ated with shells of wave-numbeks’s using the fourth-order Figure 4 shows the rate function obtained by measuring
Runge-Kutta scheme. Next, we choose the time incremer®,(z) for the energy-flux fluctuation for shells correspond-
for the slaved scheme. The slaved scheme treats the linefg to the inertial range in run 4. One finds tHai(z) for
term exactly and discretizes the nonlinear term integrationdifferent shell numbers are on the same curve. The converg-
In the GOY model, there are two different characteristic timeing function is the rate functio8(z). It is expected tha$(z)
scales in each shell. One is the linear damping time scalg the universal function characterizing the intermittent
(vkﬁ)‘l and the other is due to the nonlinear term. For aenergy-cascade dynamics and is the same as ifZ=2). It
high shell-moden, the linear damping is dominant sim:kﬁ should be noted that the obsen®) is concave in its wide
is large. In the inertial range, on the contrary, the nonlinearegion. This concavity property guarantees the applicability
term dominates the dynamics and linear damping is weaklpf the Legendre transformation E¢R.4), which connects
contributed. To trace the dynamics of an inertial range shell$S(z) and thegth intermittency exponent(q).
one must choosAt at least smaller than the smallest inertial ~ Let us make a remark on the shapes6z) on the left side
range time scale. A nonlinear time scale numerically estiwhere S(z) approximately takes the forn8(z)=—a(z
mated is shown in Fig. 1. Figure 1 gives the guideline to—z,) with constantsa andz,,. Inserting this into Eq(3.9),
choose the integration time incremeit, which is chosen one finds that the PDF dfF,| is represented aB(|F,|)
sufficiently small in comparison with the smallest time scale~|F,|2~ ! in this region. The numerical result shows taas
among all shell modes. Thus, the energy-flux dynamics irabout unity, which implies that PDF df,| is finite near
the inertial range may be well traced as well as the energ{F,|=0. This fact may be due to the existence of the inverse
dissipation rate dynamics. The parameters for numerical caknergy-cascade process, which means fhamay become
culations are chosen dg=2"% and f=5.0(1+i)x 103 negative in some times. This nature is quite different from

at (z). One should note that in terms 8{z), the PDF for
|F,| is asymptotically given by

P(|Fn|):
(3.9
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0.20 FIG. 4. Rate functions of energy flux in shells in the inertial
range for run 4. The Legendre transformation of the Shebtee
2 o0 model (log-Poisson modegl[Eg. (3.13] with y=0.625 andd,
kT =1.48, and the Gaussian approximat|&y. (3.11)] are drawn for
0.00 comparison. The straight line shows slopd..
040 In Fig. 4, we also show the comparison with some theo-
’ retical results based on different theoretical models. The
1.20 CLT states thaB(z) around its minimum takes the parabolic
1.00 form
0.80
R S(2) [2-2(0) ] (3.12
Z)~———[2—2 . .
040 |27(0)|
0.20

0.00

This gives the Gaussian form near the minimumSgg).
Equivalently, we obtainr(q)=7'(0)q+1/27"(0)g?. This
o . ) ~_ approximation is valid only in the region where CLT is ap-
FIG. 3. Typical time evolutions of energy fluxes in the inertial plicable, i.e., for appropriately smal|. S(z) is well fitted
range(@) n=15, (b) 17, and in the intermediate dissipation rarige  p,, this approximation around(0), but generally deviates
n=19, and of the energy dissipation rath for run 4. from Eq. (3.1 for a large|z—(z)| region. This in general

S L . ... requires other statistics instead of the Gaussian statistics for
that of the energy dissipation rate which is a positive def'”'testrong, as well as weak fluctuations ofOnce one applies

variable. So we expect th&(z) for the energy dissipation "o Eq.(3.11 to the whole region of, the relation
rate takes different forms in its left branch than that of the 0)=7(0)/2 is required byr(1)=0 and th}s approxima-

present case. Let us consider the effect of this shape of PDion is identical to the K62 log-normal model. In the K62

near the originF,|=0 on moments 9an|'_The contribu- model, the intermittency exponent is given joy= — 7’(0)
tion from the rangg 0,5] to moments is estimated as = — 7(2), which is the only parameter characteriziég) as
s well as 7(q)=—(«/2)q(g—1). In general, there is no rea-
<||:n|q>5~f x3~ 1xddx, (3.10  son to connect(0) and —7"(0). Thelog-normal approxi-
0 mation can thus be applied to the fluctuation statistics
around z(0). Oneshould be cautious that when defining
for §< 1. This expression diverges fqrx —a and converges u=—7(2), not—7"(0), the K62log-normal model should
for g>—a in the limit 5—0, which means that moments of be fitted aroundz(2) but notz(0). The present numerical
|F,| exist forqg>—a and7(q) have its support ij>—a. study shown in Fig. 4 givesz(0)=(z)=-0.28 and
This fact is easily recognized by noticing E.6). The —77"(0)/2=1[2S"({z))]=0.30. The observed values are
lower bound of the derivative d§(z) is thusa= —Qqpu;n- apparently different from the prediction of K62. It should be
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noted that the log-normal approximation is valid for mo- 1.8 T T T T r r r
ments with q satisfying |z(q) —(z)|=<V|7'(0)|. In the

present case, this region is about§=<1. 16 .

Next, we compare the numerical results to the phenom-

enological model by She and v@ue(SL) [18]. This model 14+ .
is known to fit well the experimentdi(q) andr(q) for large Run1 (n=11) ——

g and so do the result of the GOY mod@,14,19. The 12 Run2 %ﬂ:]g; — .
random cascade mod@.1) with the specific Poisson statis- Rund (n=18) -

tics on z, yields the SL model, and the SL model is thus 1.0 1

~~
recognized as the log-Poisson mofi&0]. The qth intermit- %
tency exponent by the SL model and the rate function are 08
obtained as

06 [ E
oL@ =Y+ do(1- Y, do=g7, (312 el ]
Se(2)= 2~ |n(z_—7>—1 +dy, (313 %21 ]
InB doInB
0<y=3, y= do- 0'0-3.0 -2I.5 -2I.0 -1I.5 -20 -OI.5 0.0 0I.5 1.0
y andd, are the same ag() and §z(«)], respectively. FIG. 5. Rate functions of the energy flux in the inertial range for

The SL model is parametrized at the pai(— ) thatis of  different Reynolds numbers,=11 for run 1, 14 for run 2, 16 for
the strongest fluctuation, which means that the SL modelun 3, and 18 for run 4.

should be compared with(q) in largeq region or withS(z)

for z>(z) region. A largeq picks out the strong intermittent quantity characterizing intermittency. However, there is no
fluctuation statistics. For the intermittency of the GOY particular reason that has a special role from the LDT
model, these two parameters are numerically obtained byiewpoint. Insteadz(0) and7’(0) are more important than
Leveque and Sh¢19] as y=0.625 andd,=1.48 by using . to investigate the universal statistics of intermittency in
Eq. (3.12. The comparison 08¢, (z) with these parameter turbulence.

values with the present numerical result is made in Fig. 4. Concerning large fluctuation, the SL model yields a good
One may find a good agreement in the right regior5@),  approximation of the observe®{z). The SL model generally
where strong fluctuation is dominant, but not in the left re-contains two parameters, i.ey, and d, in Eq. (3.13. As

gion of weak fluctuation. One observes tizét]) of largeq  stated above, these parameters determine the asymptotics of
fluctuation coincides well with the SL model. This fact may S(z) near the largest, i.e., the right edge of th§(z) curve.

be seen as a natural result since the SL model is regarded @ney have great importance to characterize large fluctuation
the model explaining the strongest fluctuation and somehowtatistics. However, it is difficult to evaluate these parameters
extrapolates to the region neafq=0)=(z) point, which  from experimental data because the amount of experimental
was discussed in Ref21]. The SL model thus captures a data is always finite and the maximal value ofs just a
strong fluctuation nature of intermittency in turbulence and itmaximum of sample data. On the other hand, one may con-
cannot be applicable for weak fluctuation. This feature of thestruct a model of intermittency without the upper cutoffzof

SL model agrees with the result of direct numerical simula-The K62 log-normal model is an example of this kind. The
tion of the Navier-Stokes equatid6] and the data analysis possibility of the existence of andd, may be discussed as
of real turbulent flow[5]. follows. As far as concerning energy dissipation multifractal

The inertial range intermittency is considered to be uni-in real turbulence, the exponentis bounded, which is ar-
versal for turbulence at sufficiently large Reynolds numbergued by the Novikov inequalitj8,22]

Re. In Fig. 5, we show converged rate functions for different

runs in their inertial ranges. The results clearly show that r(q)=—-3q for (g=0), 7(q)<-—3q for (gq=0).

converged rate functions are independent of Re. (3.19
We discuss some important quantities characterizing the

universal statistics of intermittency in fully developed turbu- This may give the largg asymptotic ofr(q) as

lence from the LDT viewpointS(z) may be a universal

function for a sufficiently large Reynolds number. The shape 7(q)=—vyq+o(q), g—o°, (3.195

of S(z) around the minimum is characterized by the two

parameterz(0) and7”(0), which is an immediate result of thus, z(q)=—7'(q) is bounded byy [21]. For the GOY

the CLT. If S(2) is well defined for Re~»c, z(0) and7”(0) model, Leéque and Shg19] have done a detailed numerical

are important quantities concerning small fluctuation arounaneasurement on the inertial range statistics of the modulus

z(0), anddetermine smallq| behaviors ofz(q) or 7(q).  of IT,=(u,_1UpUns1) Y3 and found there exists a maximum

The intermittency exponent is well known as a universal for the fluctuation of ofll,,. These facts on real turbulence
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and the GOY model suggest that to kngnandd, is quite TABLE [I. Kolmogorov dissipation shell numbersng
important to treat large fluctuation on inertial range statisti057%|§gz(60/v3), D value in Eq.(3.20, and log Re. ¢, is order of
10 for all runs.

B. Intermediate dissipation range case

Run 1 Run 2 Run 3 Run 4
In this section, we focus on the self-similarity around the
crossover between the inertial and the dissipation ranges. In"d 125 14.9 174 19.9
this crossover range, a scaling law different from that in the D 0.94 0.97 0.97 0.96
inertial range is observed as is predicted by the multifractal 1092 Re 21.95 25.39 28.73 31.89

in the inertial range. This scale range is called as the inter=
mediate dissipation randé6].

The key idea of the intermediate dissipation range is the The prescription to estimat&,(z) is applied to shells
fluctuation of the viscous cut-off scale and to relate it withwith wave numbers higher than those of the inertial range. In
the inertial range scaling. In the K41 theory, the viscousFig. 6, we show the result for run 4. Compared with the
cutoff wave number is uniquely defined kg=(eo/v°)4 inertial rangeS(z), one finds theS,(z) curve coincides par-
so that the corresponding local Reynolds number is of ordetially with the inertial rangeS(z) in a largez region but
one. At this characteristic wave number, the dissipation startdiffers than that for smalt. This result agrees with the above
to dominate. For wave-numbkismaller tharky, the inertial ~ discussion based on the multifractal description. In this
range scaling holds. On the other hand, in the multifractafrossover range, the inertial range scaling holds for large
description, the viscous cutoff is a fluctuating quantity due tofluctuation ofF,, but not for smallF, because of the viscous
a fluctuating energy transf¢i6,23. If we define the local effect. This scaling is different from that of the inertial range
Reynolds number by the energy transfer quangtyat the and is characteristic of the intermediate dissipation range.
scale 1k, as The intermediate dissipation range scaling is qualitatively
characterized by observing ho#(z) depends on the shell
numbern. The left wing slope 0f5,(z) becomes looser as
Ren=k47, (3.16 is larger, which means the probability of laminar state be-

nV comes larger and the energy flux is more intermittent than in
the inertial range.

The zdependent cutofiky(z) is determined by Eq3.17).

We will estimate the inverse function d€y(z), denoting
Zx =27, utilizing the characteristic functio8,(z) in the in-

6#3

€, being characterized by the local scaling exponerts
en~eo(kn/ko)* [Eg. (2.2)], then one may estimate the
z-dependent viscous cutoky(z) from Eq. (3.16 with Re,

1as termediate dissipation range of the data of Fig. 6. By suppos-
13, ) 3/(4—2) ing z is distributed ovef zin,Zmaxl, the intermediate dissi-
kqy(2) ][ €0 E ~Re§’(4’z)= Re¥(4-2) pation range ranges oV&g(Znmin) <K<Kg4(Zmay - For k=k,
Ko kg v ' in this range, I, is a cutoff scale for, fluctuation andz, is
(3.17
In a fully developed turbulence (Rel), a largerz gives a ol 1
smaller cutoff scale k[(z). This implies that the width of :

the inertial range scaling of(q) fluctuation is wider for

largerz(q); a higher-order structure function holds the iner-
tial range scaling down to a smaller scale. In the language of 0.8 I
the rate functionS,(z) at those scales where the viscosity ‘\.\
begins to affect, the shape §f(z) starts to decline for small }

z For largez of strong fluctuation, the shape &,(z) is S 06 'il,,”_,, i
expected to still reserve as the inertial range shape. This g CARYN
scale range is the intermediate dissipation range. “

We are interested in how the characteristic func(z) 04k i

in this crossover range differs from the inertial range rate
function S(z), i.e., howS,(z) depends om in this range. In '
the GOY model, this crossover range is located around the
shell of the K41 viscous cutoff wave-numbles=1/7. The 02
shell number corresponding td&, is estimated ask,
=(eo/ ) Y*=ko2". Theny's for the present runs are sum-

marized in Table I. It is seen in Fig. 2 that thesgs are 0.0

approximately equal to the end of the inertial range. We 4 1
compute the rate functio§,(z) for shells aroundhy, which

should have then dependence and differ froi8(z) in the FIG. 6. Rate function$,(z) of energy flux in the intermediate
inertial range. dissipation range=18, . .. ,23 for run 4.
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FIG. 7. Viscous cutoff scale exponex for different runs. The
inertial range scaling of,, stops at the correspondimg Fitting line
[Eqg. (3.19] for each data is also shown.

identified with the smallest where S,(z) coincides with
S(z). The z, can be determined by comparir®,(z) and

S(z). In the intermediate dissipation range, the quantity

v(kp ko) 4~ 2)8= 12 from Eq. (3.17) should become the
same order irrespective of wherek,=ky2" and

4—1z,
3

(3.18

Cc,=n
We require that the exponent, is independent ofi in the

intermediate dissipation range. Timedependence og, is
determined from Eq(3.18 with c,=c as

3c

z,=4——. (3.19
n

How is the exponent determined? From Eq3.17), c is

determined by Re of the mean energy dissipation &gtas

c=D log, Re, (3.20

whereD is the coefficient of order one expected to be con-

stant for high Re.

We determinez,, from the data shown in Fig. 6, and then

plot z, in Fig. 7. In Fig. 7,z, is fitted to Eq.(3.19 by the
least mean-square method. The numerical valueg'sfare

PHYSICAL REVIEW E 64 056304

The coefficientD in Eq. (3.20 for different runs are cal-
culated with the fitting value ; and Re, and are summarized
in Table I. It turns out thab is almost constant for runs. The
values of logRe are also shown in Table | for reference.

The results show that in the GOY model, the intermediate
dissipation range scaling holds quite well. Thdependence
of the viscous cutofk,(z) is directly observed by use of
Sn(2). The inertial range multifractal leads to multicutoffs.
This is quite a nature of complexity of turbulence.

In a fully developed turbulence, the cutoff scale is deter-
mined by the balance between nonlinear and viscous terms.
In other words, this characteristic scale is determined by the
competition between the energy flux and the energy dissipa-
tion. Since the energy flux exhibits strong, intermittent fluc-
tuations, the cut-off scale also fluctuates. When the energy
flux is active and becomes large, the cutoff scalbecomes
smaller, and therefore, the inertial motion reaches a smaller
scale, but on the contrary and when the energy flux is inac-
tive and takes small value; becomes larger. This situation
may correspond to the case for real turbulent flow because
the fluctuation is nonuniform spatially and temporally. The
cutoff scale» thus will exhibit fluctuation according to the
local amplitude of the energy flux, and the intermediate dis-
sipation range scaling around the Kolmogorov scaleill
be examined by observing the rate function.

IV. SELF SIMILARITY OF TIME CORRELATORS

In this section, we compare the fluctuation characteristics
of the energy flux with those of the energy dissipation rate.
An energy flux represents nonlinear energy transfer at a cer-
tain scale. In a fully developed turbulence, its average in the
inertial range is almost constant irrespective of the wave
number and takes the same order as the average energy dis-
sipation rate. Thus, the K62 theory assumes that their fluc-
tuation statistics are fundamentally the same as each other.
However, the energy dissipation rate is the quantity charac-
terizing dissipation range dynamics, and its fluctuation na-
ture is not exactly the same as the energy flux fluctuation. To
compare their fluctuation natures in the GOY model, we will
consider their time averages and study their multiscaling
characteristics.

For the energy flu¥, on ak, shell and the energy dis-
sipation ratee we introduce their finite time averages over a
time sparnt,

t

1 [to+t
etZth e(s)ds. (4.1
0

1 [to+t
Fah=t | RS
0

Depending orty, |F,|; ande, are fluctuating quantities. For

determined from data as the points at which the differencéoth quantities, multiscaling behavior is expected to hold in

d(z)=S(z) — S,(z) crosses a given threshol®l We regard

S,(z) coincides withS(z) if d(z)< &8, and does not other-

wise. The form(3.19 with a single parametec=cg, Cs

being the value o€ for a givens, seems to fit the data well.

For reference, the value of; for §=0.001 for run 4 is 30.54.
The functional form(3.19 is valid with properly small
thresholds, the fitting parameterss's are insensitive to the
choice of § as far as it is properly small.

the sense that their moments obey

(Falfy~1@, () ~t7e, (4.2
with characteristic functions,,(q) and7.(q). This behavior

is recognized as the multifractal characteristic on the time
axis. The temporal fluctuation is statistically self similar in
the sense that temporally coarse-grained variables obey the
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power laws(4.2) and in general, the scaling exponentéq)

and'7.(q) are nonlinear functions of. The same kind of ws ™
analysis as the present section has applied to the time series
of a intermittent chaos in Ref24]. The time length where

the above scaling behavior is expected to be observed is

limited ast,;,<<t<T, wheret,;, and T are the smallest and 107 | wEi
largest characteristic times where the self similarity in the
above sense holds. Averaging ovdor t>T yields trivially
the long-time average, and no power-law time dependence ,
107

exists. The scaling laws as E@.2) thus hold fort less than
the correlation time scale where the scalifg(t)e(0))
~ €5t7<?) holds. One should notice that the exponent that
characterizes the correlation decay is identicat {@) given
in Eq. (4.2.

In addition to the scaling exponents in E¢.2), one may
consider the rate function of time scaling as follows. Let us

define the local exponer#, and its rate function for the 107 L L . . .

. e 8x10*  8x10®  8x107  8x107!  8x10°  8x10
coarse-grained energy dissipation rate by .

10—11 L

moments of local time averages

T\% . loge /e FIG. 8. The third and fourth moments of finite time average of
&= €| | » LT logT/t * (4.3 the energy flux in the inertial range and the energy dissipation rate
for run 4. The third moments are the upper lines and the fourth
~ moments are the lower lines.
§ (E)N _ |Og Pe,t(z) (4 4)
€ logT/t ’ '

quantities. For a smatf-region, the first and second deriva-
tives atq=0 are important parameters since they determine

Ithe parabolic shapes &, and'S, near their minima; one
may make a qualitative comparison with these parameters

(see Sec. Ill A. They are noted as,(0)=—7,,(0) (similar
to Eq. (2.7), and?;;(O), and thecorresponding numerical

whereP, ,(7) is the PDF ofz, andT is the largest time scale
of the system. By repeating a similar calculation in Sec. |

the concavity assumption d8.(z) leads to the relation be-
tween the time scaling exponent aSg(z) for t<T as

T.9)=minS.(2)—qz]. (4.5  values determined by the mean and the variance afe
o 05 T T T T T
Similarly, the rate functiors,(z) is defined for the coarse-
grained energy fluxF,|;. 00 '-'-'-. .
To numerically check the power-law scaling of £4.2), ;5 "‘q.
the third- and fourth-order moments are shown in Fig. 8 for -05 ¢ ] 1
several inertial range energy fluxes and the energy dissipa- !5
tion rate for illustration. Power-law behavid#.2) is ob- -1.0 £ !5 1
served over three decades. For higher shell, scaling regionsfs * 55
tend to be wider in small time scales because the dynamics & -15 - T
becomes faster and the inner cutoff time sdalg becomes ~ T Tdw
smaller. T 201 n=13 —— e ]
The time scaling exponents numerically determined are ® = §o

plotted in Fig. 9. It is difficult to obtain statistical conver- 25 I E%;!'
gence of momentg|F,|{) and (€f) for large q(>4). We ) ]
discuss the converged data fipr4 in Fig. 9. The data for 30 t
4<(g<6 in Fig. 9 are computed for another discussion made

L~ ~ . -35 | -
later. By definition,r,(q) andr.(q) vanish at botlg=0 and
1. Comparingr,(q) with 7.(q), one finds the difference of 40 : : . : -
statistics between the inertial range energy flux and the en- -1 0 1 2 3 4 5 6
ergy dissipation rate. In a smajl+egion, ther.(q) curves ¢
more loosely neag=0 thanr,(q)’s (Fig. 10, the magpnifi- FIG. 9. The time scaling exponents(q) for the energy flux in

cation of a small range of Fig. §, and in a largeg region the inertial rangen=13, 15, 17, 19, andr(q) for the energy

'7.(q) goes above,(q) (Fig. 9). To qualify these differences dissipation rate for run 4. Moment$|F,|%) and (ef), are con-
of temporal fluctuations, we calculated some characteristigerged forq<4.The error bars are given to the data.
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FIG. 10. Same data af,(q) and7.(q) as in Fig. 9 shown in a FIG. 11. Rate function§,(z) of the finite time-averaged energy
smaller range ofj values. Even in a smatj-range, the statistics of flux in the inertial rangen=13, 15, 17, 19, and the energy dissi-
the energy flux and the energy dissipation rate differ from eachpation rate for run 4.

other. . .
observed in each measurement where there is no relevant

~ event withz>vy. 7(q) in this range ofjy is not determined by
given in Table Il. Thez,(0)’'s for the energy fluxes take a larger fluctuation thary, but by the y-order fluctuation.
approximately same values and are larger th40) of the  This fact provides a way of estimating In this range of,
energy dissipation rate. Moreover, the (0)|'s take larger ~the scaling exponent(q) surely becomes linear o (Fig.

~n = ~n 9). Namely,y may be taken out from a linear fitting of the
l/alues than|7¢(0)]. The larger|z,(0)| and |7(0)] make scaling exponent(q) in g>q(vy) range. Although it may be

Tn(C]) more tightly curving aroun_q=0. This is a qualitative regarded meaningless to computéy) in this range ofq
difference of the small fluctuation between the energy fluxsince statistical convergence of moments is not guaranteed, it
and the energy dissipation rate fluctuations. contains the information on the fluctuation of v, i.e., the

The behavior of characteristic functiong and =, for q maximum fluctuation in measureme(uf. Sec. ).

— is dominated by the strongest fluctuation in sample data, /e compute they value Of;n and> denoting}n and
€

its corresponding exponeamtbeing denoted ag(=z,.xde- ~ ~ ~ . .
fined in SF()ac. . %} vaFI)ues for|Fn(ﬂ and e, ma)sl((be gggsibly v.. vn andvy, are the quantities that characterize large fluc-

determined as the intrinsic values of their fluctuations, or aduations of the energy flux and the energy dissipation rgte.
the maximum order of events in finite sample data. More-and y, are calculated as the slope o&%<6, whereq(y)
over,q(y) (=qmay defined in Sec. Nis the maximum value values for(|F,|{) and(€]) are about 4, which are estimated
of g of the convergence of moments. Whenever exponents diy the way described in Sec. Il with the time scaling rate
moments such as(q) are computed fog>q(y), one al-  functionsS, and'S,. The estimatedy, andy, are summa-
ways observes the linegrdependence of a scaling exponent ;.4 in Table II. The,’s of the energy fluxes are larger

in a largeg region(cf. Sec. I). In this q region, 7(q) relates ~ L
: than vy, of the energy dissipation rate. The energy flux ex-
with S(z) as =—vyq+9S(y), vy andS(y) are constants .~ ¢ X L2
(2) as7(q) Ya+S(). v (7) hibits stronger fluctuation than the energy dissipation rate.
h - for the ti ling of th This is a qualitative difference of the large fluctuation be-
TABLE Il. Characteristic parameters for the time scaling of the ;oo 'the energy flux and the energy dissipation rate.

energy flux in the inertial range and the energy dissipation rate for . =~
Figure 11 shows the rate functio®(z) for the energy

s flux andS_(z) for the energy dissipation rate for run 4. Con-

n 2,(0).2.(0) [72(0)],[72(0)| Vo Ve cerning their right half of regions, althougf$, of the en-

13 —0.46 1.40 0.73 ergy flux andS, of the energy dissipation rate similarly de-
15 —0.48 1.60 0.64 pend onz, the rightmost point o, is slightly smaller than

17 —-0.47 1.58 0.70 that of S,'s. The fluctuation of the energy flux is relatively
19 —-0.49 1.73 0.73 larger than that of the energy dissipation rate. The differ-
€ —041 1.24 0.68 ences of fluctuation natures between the energy flux and en-

ergy dissipation rate are thus observed through the time scal-
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ing exponents and the corresponding rate functions. 1 T T T T
What properties of energy transferring process do these
differences produce? The difference of temporal intermit-
tency between the energy flux and the energy dissipation is
observed in the time scaling exponents or the rate functions,
and is particularly qualified by the parametef$0), 7(0)
andy,. These differences of temporal intermittency are ex-
plained as follows. The energy dissipation rate is non-
negative and always dissipates the energy. On the otherm:
hand, the energy flux is not always positive and may take X
negative values, and negative energy flux represents the in-
verse energy cascade. Their long-time averages are almos
the same because of the stationarity of the energy cascad:
process. Therefore, the energy flux may take larger fluctua-
tions than the energy dissipation rate. This fact makgs
larger thany,. Furthermore, sincg7/(0)| and [7/(0)|
are related to the variances of scaling exponents and repre
sents the fluctuation around the mean values, it is understooc
that [7/(0)| is larger than77(0)|. The existence of the in-
verse energy cascade in the inertial range makes the inertia
range intermittency different from that in the dissipation _
range. FIG. 12.z,(q) of time scaling and comparison wit{q) of the
Next, we consider the interrelation between the inertiainertial range scaling by the relatids.11.
range scaling and the time scaling of the energy flux. On the
one hand, the inertial range scaling of the energy flux is 1 1

. _ _ - (23+23)
deﬂned as tn kn|un| k§/3|Fn|l/3 kn ! (41(»

s " 0%

B O ¥ X +

[Fal  (kn)® _ . -
qFay ko) (4.6)  where the relatiofiF ,| ~k,|u,|® has been used. This implies
" ° thatt, is a fluctuating time associated withFrom Eqs(4.9)

. . , and(4.10, one obtains a relation
with an instantaneous scaling exponen®n the other hand,

the time scaling is written as 3
~ z
anm, (411)

t
tfljF s)|ds ~
CIEER.

V4
D :(T) ; (4.7 which states thaB,(3z/2+2)=5(z). The minima$,=S
=0 coincides withS,=S'=0, thus forq=0,

with a local scaling exponemt, for t,<t<T, wheret,, is the
inner scale of the time scaling associated with nitie shell. ~ 3z(0)

. . ~ zy(0)= 57—+ (4.12
To discuss the connection betweerandz,, we taket=t, " 2+2(0)
and approximate the integral in E@t.7) as

holds. Forg,q—o of z,(q) andz(q), S,(v,)=S(y), and
therefore

1 (ta
SN ZCIEE X @8
~ 3y

with a timeu in between 0 antl,. Combining Eqs(4.7) and YnTor v 413
(4.8), and comparing it with Eq4.6) yield

~ Using the observed valueg0)= —0.28 andy=0.625, the
(I) Zn~<ﬁ)2 (4.9  coresponding time exponents are calculated Za60)
ko/ * .

ty =—0.48 andy,=0.714. These values are compared to the
observed data in Table Il. They show a good agreement with

We assume here that is estimated by the natural turn- each other except fop;s. The disagreement fog;s may be
over time due to the statistical inconvergence of data. Figure 12 shows
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Z,(q) with 3z(q)/[2+z(q)]. This ensures the validity of the range, in other words, to the fluctugtion.of viscous _cutoff
relation(4.11). The energy flux time scaling is thus linked to scale. Although, so far, several studies tried to to verify the

the multifractal behavior in the inertial range. existence of the IMDR scaling by analyzing structures func-
tions, they could not clearly observe it. In contast to this
V. CONCLUDING REMARKS preceding analysis, the rate function succeeds in quantifying

the IMDR scaling. Experimental study to clarify the exis-

In the present paper, we have discussed the characterizince of the functiors,(z) near the dissipation scale in real
tion of the anomalous scaling of turbulence using the largeurbulent flow is highly desired.
deviation rate function. Furthermore, we compared the intermittency statistics of

We have computed the rate functi®(z) of the energy- the energy flux with those of the energy dissipation rate with
flux fluctuation for the inertial range of the GOY model, and the time scaling exponents in order to compare the intermit-
found the existence of the concave functi®iz). The tency characteristics in the inertial range and the dissipation
anomalous exponents so far stud[@®] implied the distri-  range. This manner to characterize the intermittency is based
bution of scaling exponents. This concavity property of theon the long-time correlations of fluctuation. The result re-
rate function proves that the rate function and structureseals the difference of intermittency between the energy flux
function exponents, such &§q) and 7(q), are related with and the energy dissipation rate, which is not only for the
each other by the Legendre transformation. Moreover, thatrong fluctuation but for weak fluctuation. This difference
rate function is found to be independent of the Reynoldgeflects the difference of the inertial range and the dissipation
number. For small fluctuation, the rate function is well ap-range dynamics, i.e., the difference of the energy transferring
proximated by the parabolic form, that is, near the minimumdynamics.
position of S(z). On the other hand, for large fluctuation the  The self similarity of intermittent energy cascade is well
observedS(z) turns out to be in good agreement with that characterized by the rate-functid®(z), and moreover the
defined by the She-M&que model. intermediate dissipation range scaling is observed also by the

In the intermediate dissipation range, the viscous effectate function. The rate function is a direct measure of the
changes the form of the rate function, and we consideredistribution of the scaling exponent and fundamental to study
how the rate function is affected by the viscous effect in thethe intermittency problem. It is highly desired to apply the
intermediate dissipation ranggdMDR). The rate function present rate-function approach to clarify the overall statistics
Sn(2) partially coincides with the inertial rang®(z) in the  of turbulent flows in experiments and observations.
large fluctuation range of, which means that the inertial
range scaling partially holds even at the crossover scale
where viscous effect starts to affect. The cutoff exponent is
used to quantify the IMDR scaling and its cutoff scale de- This study was partially supported by Grant-in-Aide for
pendence was studied. This result confirms that the IMDRScientific Research N0.11837009 from the Ministry of Edu-
scaling is due to the multifractal characteristics in the inertialcation, Science, Sports and Culture of Japan.
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