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Evolution of triangles in a two-dimensional turbulent flow
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As a turbulent flow advects a swarm of Lagrangian markers, the mutual separation between particles grows,
and the shape of the swarm gets distorted. By following three points in an experimental turbulent two-
dimensional flow with &% spectrum, we investigate the geometry of triangles, in a statistical sense. Two
well-characterized shape distributions are identified. At long times when the average size of the t(hgles
is larger than the integral scale, the distribution of shapes is Gaussian. When the size of the(iRangie
the inertial range and grows a&? (Richardson’s lay a plausibly self-similar, non-Gaussian probability
distribution is observed, where very elongated triangles have a much larger probability than in the Gaussian
regime. These results are discussed, and, in the latter case, compared with the predictions of a stochastic model
recently introducedA. Pumir et al, Phys. Rev. Lett85, 5324(2000].
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[. INTRODUCTION multipoint correlator evolution and responsible for the ap-
pearance of anomalous scaling in scalar turbulence in the
Passive scalar dispersion in a turbulent flow is a problenstatistically steady state probldm,13—14. Mathematically,
of both theoretical and practical relevance in many differentwhile the zero modeg,, are the solutions of the equation
fields of science and engineering like chemical engineering{Z,=0 where™ is the evolution operator, the self-similar
and geophysics. Some examples are provided by pollutarstatesSs; predicted in[17] satisfy HSg;= (d/dt)Ss¢. In the
density, temperature field, and concentration of chemical odispersion problem, the zero modes appear only as subdomi-
biological species in the atmosphere, in the ocean, or imant corrections to the self-similar behavior. However, it is
model systems in the laboratof¥]. intuitively very natural to expect that the evolution of the
One of the remarkable aspects of the process is the orgawarm should also provide important information on the
nization of the passive scalar in fronts of high gradi@t6). geometric structures observed in the flow. Actually, the for-
Also, a very strong intermittency of the scalar statistics hagnation of “fronts” is associated with transient domains of
been reported, even when the advecting velocity field is nobyperbolic flow which distort and “flatten” blobs of fluid
intermittent as in the case of two-dimensiorfaD) turbu-  due to volume preservation. The studymspoint cluster dis-
lence[7—10Q]. A recent study has shown how these two prop-tortion is thus expected to provide insight into the geometric
erties are related in the 2D case: the presence of fronts estructure of turbulent fluctuations.
fectively dominates the statistics of intense fluctuations, One may distinguish several intrinsically different re-
resulting in the saturation of the scalar structure functiongimes, according to the length scales in the flow. In the in-
exponentg 10]. ertial range of scaleséi.e., when the particle separation is
The structure of the full multipoint correlation function is smaller than the largest eddy sizaccording to Richard-
also sensitive to the coherent structures present in the flovgon’s prediction the dispersion of particle pairs in turbulent
This has been demonstrated in the case of the passive scalflows obeys the superdiffusive lafR?(t))~t3. This law has
in the presence of a mean gradiéhi]. The notion of zero been observed in 2D both experimentdly8] and numeri-
modes indeed provides an adequate framework to study thally [19—-21]. At larger scales, one expects the distance be-
multipoint correlators of the scalar field in the statistically tween particles to grow according to a diffusive law:
steady state. Their property are intrinsically related to thgR?)ot.
Lagrangian evolution operat¢f,12]. The relation between The dynamics of three- and four-particle configurations
the structure function of order and the Lagrangian evolu- advected by a turbulent flow was studied numerically in
tion of n point clusters has been exploited[®] and a link  three-dimension$3D) in [17]. By using direct numerical
between the geometrical properties of the turbulent scalasimulation of the Navier-Stokes equation at moderate Rey-
advection and the breakdown of the scale invariance relatedolds number, and a phenomenological model of the La-
to intermittency has been established numericallyl®] by  grangian kinematics, the authors predict the existence, within
studying the evolution of triangles in 2D forced scalar turbu-the inertial range of scales, of a self-similar state where the
lence. average size of the cluster increases, but the statistical distri-
An interesting question about the Lagrangian evolutionbution of shapes is stationary and nonuniform. For scales
consists in understanding the dispersion of a swarm of patarger than the integral size, the shape distribution is ob-
ticles of initially fixed shape. We emphasize that the statisti-served to be Gaussian.
cal properties of the geometry of dispersing Lagrangian clus- In this paper we study the geometrical aspects of La-
ters arenot directly related to the zero modes governing thegrangian dispersion and, in particular, the shape distortion of
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small triangles in an experimental 2D turbulent flow in the degenerate configurations, where the three points are aligned.
inverse energy cascade regime. In Sec. Il we briefly intro-Configurations with botty andw small correspond to geom-
duce the parametrization used to describe the size and shapties where two verticetsay 1 and 2 are separated by a

of the triangles. Section Il is devoted to the description ofdistance much smaller than the distance to the thigd:

our experimental advecting flow and in Sec. IV we report the<r5,r,5. Equilateral triangles correspond to the special
results of our numerical study. We thé8ec. \j compare casep;-5,=0 andp?—p5=0, that is, tow=1 and an un-

our results with those obtained by using the phenomenologidefined value ofy. For triangles of arbitrary shape, the vari-
cal model of(17] in the 2D case. We summarize our resultsablesw and y defined in Eq.(4) do not have a simple geo-

and present our conclusions in Sec. VI. metric interpretation.
We investigate here the distribution of parameters charac-
Il. TRIANGLE PARAMETRIZATION terizing the geometry of the triangles. These include the av-

erage value and probability distribution functiof®DF’s) of

®, w, andy as functions of time. In this respect we note that
the quantityl, introduced in[17] as the ratio between the
second eigenvalue and the trace of the tensor of moments of
inertia,g,s=2ipiqpig, Wherep;, is thea component op; ,

corresponding to the pointg, f,, andr; we have used the
Eulerian parametrization as [22,23. Introducing

Fp—T
p1 % (1) is very simply related tav by I,=(1—y1—w?)/2.
P (2F3—Ty—T1) 2 lll. THE TURBULENT VELOCITY FIELD
2_—1
G The experimental velocity field was obtained as described

in [24,25. We recall here the main characteristics of the
system used for the preparation of the flow in a steady in-
verse cascade regime. The flow is generated in a square poly-
vinyl chloride cell, 15<15 cnf. The bottom of the cell is

3 made of a thin(1 mm) glass plate, below which permanent
magnets, 5X8X4 mntT in size, are placed. In order to en-
sure two-dimensionality, the cell is filled with two layers of
NaCl solution, 3 mm thick, with different densitie§;
=1030 gI'! and 6,=1060 gI'!, placed in a stable con-

we define the radius of gyratioR characterizing the global
size of the triangles by

2, .2 .2
(riptragtrsy)

RZ_ 2+ =2
pP2= 3 )

wherer;;=|f;— ;| are the triangle sides, and the variables

Y= 1 arcta 2p1°p2 . w=pPwm PP figuration, i.e., the heavier underneath the lighter. The inter-
2 p3—p? R? action of an electrical current driven across the cell with the

magnetic field produces local stirring forces. In the experi-

for parametrizing the triangle shape. The numerator in thenents we describe here, the experimental conditior]Q4f
above definition ofw is simply the (algebrai¢ area of the have been exactly reproduced: the magnets are arranged so
triangle, solw|=2.4/(\/3R?), where A=|f1,X 4. that the energy is injected, on average, on a scalé; of

The two variablesv and y are invariant under dilation, =1.5 cm; the excitation is permanently maintained. The
rotation, and translation of the triangle. The parameter spaciow is visualized by tiny latex particles placed at the free
we[—1,1], xe€[0,m] can be reduced towe[O0,1], surface. During the experiment, the flow is record28 im-
x €[0,7/6] thanks to the global invariance of the triangles ages per secondn a video tape using a charge-coupled
under any relabeling of the three vertices. device camera placed above the cell. The images are digi-

In Fig. 1 thep, andp, vectors corresponding to a scalenetized and stored on a computer. We then use standard par-
triangle are showria) and different shapes of triangles are ticle imaging velocimetry techniques to compute the velocity
shown as a function ofv and y (b). The isosceles triangles fields every 0.04 s on 6464 grids. The typical injection
with the third side smalleflargen than the equal ones cor- Reynolds number of the systefbased on the root mean
respond toy=0 (y==/6). The linew=0 corresponds to square velocity and the injection scédJ§ is around 100 and
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FIG. 2. Compensated energy spectréifk) k> averaged over FIG. 4. Temporal evolution ofw) for r,=0.25, 1, 4, and 6 cm.
the stationary temporal range. In the inset, the temporal evolution of,).
the mean turnover time of the largest eddies,is-8 s. V(R?) of the triangles increases unti=13r, and fluctuates

After a short transient, the flow develops a stationary in-aterwards around a saturation value of about 9 cm. This is
verse energy cascade with Kolmogorov-Kraichnan scalingjye to the finite size of our experimental cell.

E(k)~k~°°. The compensated energy spectrum of the con- The evolution of(w), (I,) and(y) as functions of time is
sidered velocity field is shown in Fig. 2; the boundaries ofghown in Figs. 4 and 5.

the inertial range correspond to the scalgg,~1.5 cm and As in[17] a rapid decrease of the parameters, correspond-
Mmax=5 Cm. In addition, as reported i{24], the velocity ing to strong shape distortion of the triangles, is observed;
field is homogeneous, isotropic, and nonintermittent. and the smaller the value of, the lower the minimal value
of the parameters. Whan=0.25 cm the shape distortion is
IV. EVOLUTION OF TRIANGLES IN THE FLOW maximum for \/(R2)~1.5 cm, the low boundary of the in-

L i ) i . ertial range, while for\/<R2>~5.5 cm, around the upper end
The velocity fieldv (x,t) descrlbeq in the previous SEeclion of the inertial range, the parameters tend to the asymptotic
has been used to calculate numerically the trajectof{€s  values(w),s,=0.5, (x)asy=0.25, and(l »),5,=0.11. These

of particles by integrating the Lagrangian equations values forw and|, correspond to a Gaussian distribution of
. p1 andp,, which implies a uniform distribution fow and y
X=v(X,t). B [(Wygau=1/2, (1)gau=(1—7/4)[2~0.107, and {x)gau

. . ) =m/12~0.2620 and the following distribution forR:
The integration of Eq(5) was performed by using a fourth PGau(R)=(8R3/<R2)2)exp(—2R2/<R2)), (see the Appendix

order Runge-Kutta method with time st&g=0.2 s and a \ye note a small but significant difference betwe@ as,

third order interpolation algorithm for the velocity field, de- and(x)cau.
fined on a rectangular grid with a lattice spaciag=Ay In Fig. 6, the probability density function evolution of
=0.25 cm[26]. RA(R?), w, andy is shown in the case of,=0.25 cm. We
) _ ) can see that the PDF 8fandw can be well approximated by
A. Long time asymptotic regime the Gaussian distribution betweer-80 s andt=100 s

We studied first the evolution of a set o2L0% initially corresponding te/(Rz) between 7.5 cm and 8.6 cm. At later
equilateral triangles with sides of sizg equal to 0.25, 1, 4, times, because of the saturation of the triangle size, the tails
and 6 cm, respectively. As shown in Fig. 3, the typical sizeof the distribution ofR can no longer be correctly fitted by

PGau(R)-
10 LT
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FIG. 3. Temporal evolution of the typical size of the triangles
for ry=0.25, 1, 4, and 6 cm. FIG. 5. Temporal evolution ofy) for ry=0.25, 1, 4, and 6 cm.

056303-3



PATRIZIA CASTIGLIONE AND ALAIN PUMIR

Temporal evolution of PDF

PHYSICAL REVIEW E 64 056303

t=205=2.517v o~3.7cm
e S ey 8 R ——
TE P(R/G 4t Pw) 6 P 2
0.8 3F 3 5F E
88 2 11 E
022 1 E e é 2? =
-0.80: Ll NN E)Tm\mmm‘m‘mmmf
. 3 -02°0 02040608 1 1.2 0.1 0 0.10.20304050.6
R/c W X
t=40s=5t o©~5.6cm
[/ SR S L R S R RRES 8 [T
12 Tt B TSI Rl 4- ERYe P 3
1 P(R/c) 3 Pw) 45 w
0.8 E E 3 =
0.6 2c 1 3 3
33 15 3 2F E
9 1S TTTTR TR I | PRI
0.5y ‘ 5 020 02040608 112 20107010203040506
Ric ., w X
t=608=7.5‘5v 6~6.9cm
1.421;”_"_HWWWW; 5 e
0.23 3 P(R/c) g E P(w) -
06 i 2
0:82: = é* LSO : FIG. 6. Temporal evolution of
02570705 115 2725 020 02040608 112 PDF's of Rig, w, and x (ex-
R/c w pressed in radians for rg
t=80s=10t o~7.7cm =0.25 cm. The light lines corre-
1.4 ““ 2 e e ey A e e e e spond to the Gaussian predictions
1.2 PRIS) | 15 P(w) 3-§, P P(R) = 8(R/0)® exd —2(Rlo)?)],
28 ER 5 23 M P(w)=1, andP(x) = /6.
8:‘21 : 05 113
_080 - Oo,nzub.,\,\ R N R I - 08?\ 1bxu Ligon ol gl
5 - 02040608 112 20.107010203040506
R/c w x
t=100s=12.5tv c~8.7c¢m
1-4 T \\‘ TTT TT ‘\ \\‘\\\\‘\\\\ 2 T ‘ ‘ ‘\\\‘\\\‘ | 4:“ | | “ | T ““\““:
. ‘ 1 35E =
128 PRIO) | 15 Pw 03 PG)
0.8 1 25& 3
04 ! 115 3
0.2F 0.5 1 dE
‘080: e b e | e el Qb Ly gyl “J_lz O'gémuum IR il d
05005 115 2 25 B20702040608 112 0170701020304 050.6
R/c w X
t=120s=15t  o~8.8cm
N U JS S B wrerr T R
E 3 35¢& =
15 PRIO) © 15 Pw) 3 P
08 3 i BE E
0.6 - E R S PPV SREr AP  -S E
8.%;— E 05 j 1?; 3
(]2 E 0.5 -
-0.2 .\5\\(‘)‘\\01.15\\\‘\]\\\1‘.\5\\\‘2\\\\2.5 (_)0-\216wol.élo\.awo.-gol-gul‘.\3-2 0 ‘1H‘OH‘0‘.‘1”(‘)‘.2"(‘)‘.‘3“0“.‘4‘-‘0‘.5‘0‘.6
R/c w

X

The slight deviation between the observed valyg,sy
and the Gaussian valyg) s, has its origin in the PDF of,
which is not constant as a function gf. We notice that the
value y=0 is (slightly) more probable than the valug  enough time.
= /6. Geometrically, this means that triangles with a very In Fig. 7 the PDF ofA=wR? proportional to the triangle
short edgdtwo of the three vertices are separated by a disarea is represented for 107, . Very long tails are observed,
tance much smaller thag(R?)) have a larger probability which can be well fitted by an exponential function. Note
than when the three points are taken at random. We believidat the PDF of the area is exactly exponential when the
that this effect is an artifact due to the fact that the diffusivedistribution of shape is Gaussidsee the Appendjx
regime cannot be followed for long enough. Indeed, as the The Gaussian distribution of shapes observed at long
triangle size grows larger than the integral size, particle pairémes corresponds to the regime where the radius of gyration
still have a large probability of being very close, which re- of the triangles grows according t&R?)«=t*2, above the

flects the systematic distortion observed in the inertial range
and documented in the following subsection. This effect
should disappear if the triangles could be followed for a long

056303-4



EVOLUTION OF TRIANGLES IN A TWO-DIMENSIONAL . .. PHYSICAL REVIEW E 64 056303

T T T T T
1_ -
t=10t,
&
~ L
v
I otk . o
vl E ] §
&
[
v
E AR R ST AP B
1 0 3 4 5

2
A/<A>

FIG. 7. Probability distribution function oA=w R?, for r,
=0.25 cm and=10r, . FIG. 9. Compensated temporal behaviorBf) in the case of
equilateral triangles witfR)=0.045 cm. In the inset, thg(R?)
integral size of the flow. As shown in Fig. 8, the quantity temporal behavior. The plateau betweenrl.@nd 3.2, corre-
(R?)/t exhibits a rather convincing plateau betweaen37,  sponds to\{R?) between 1.25 and 3 cm.

andt=13r, when the initial separation i5=0.25 cm(this

. . . the (limited) inertial range of scale of our experiment. We
&N 2 = . . ..
icgrr?r?aﬁgdrznlgepbhe{agiln L:Q'etsinig g?; scal éRczn agn dcrt];’e are interested not only in the growth of the characteristic

size of the system~9 cm. When the initial separation is shape of the triangles, but, more importantly, in the geo-

larger (o=1 cm orr,=4 cm), no clear diffusive regime _metr_lcal properties of the triangles as their size grows in the
inertial range.

l(::n et;ewz?afrn i-g::r 'Zrdii :ﬁetgi f;CttéTiitrgaiﬁfgfm?gf g(rane Before we present our experimental results, we emphasize
estgablished t?efore gt;he' saturationyrepime is rgeached that, in order to obtain the statistical properties of triangles in
9 ’ the inertial range, one needs to make sure that all the sepa-

In order to check thatlour results are independent of th altions between the vertices are in the inertial range. In view
presence of the boundaries, we have repeated the numeric

g &t the very strong distortion expected theoretically, and in-
?;;22’;'?n'nthe}ssr::s"sr;gua{faﬁtgaé C(r:ri'mTTeetéfsuslit;i?g todeed observed in the experiment, and of the limited range of
o o o ted Fore d y compietely inertial scales, this condition is difficult to fulfill. This has to

P ' be kept in mind when we discuss our results. However, the

In conclusion, we have demonstrated here that the d'sméxperiment shows interesting trends, which we expect will

ks)gzggll()f égagse.zr']n ;Zeelongc&n;et’hgfrse'??gﬁe raer?ém.ﬁ ': ?g’g_ersist in a setup with a larger inertial range of scale.
lally ussian, xp icaily, In ag Our discussion in this section is based on a run with a set

ment with recent numerical simulatiofis7]. of initially 10° equilateral triangles with side of sizg,
=0.045 cm (R)=0.045 cm). In this case, a convincing
plateau of(R?)/t% is reached, as shown in Fig. 9 during
The flow in our experiment exhibitska > velocity spec-  about 11 s and correspondingw_RZS ranges from 1.25 to 3
trum over a limited range of scales onfsee Fig. 2 Yetit cm whenry=0.045 cm.
has been possible to observe in a convincing way with this We can explain the fact that the Richardson regime stops
experimental setup the Richardson regime, where particlat the length 3 cnisee Fig. 9 smaller than the upper limit of
pairs separate on the average(R$)= et® [18]. In this sub-

B. The Richardson regime

section, we investigate the problem of triangle dispersion in 100 gy T T
F 25E
g 2 b
T 10 ¢ 150
ol E i 05+
£ - L 3
- 12 s r;=4cm 7 g 1 0
T % E = o1k —;
< 8 [r,=lem 4 E ]
r =0.25 cm i
4L 0 ]
. 0.001 L L
s ] 0 1 2 3 4
I P EFSIP SPEPE E R/c
4 8 12 16 20 24 _ .
t/t FIG. 10. PDF ofR/o with o= \(R?) in the case of ,=0.045

cm andt=2.5r,. The arrows correspond to the positions of the
FIG. 8. Compensated temporal behavior(8f) for the cases inertial values ofR: 1.256 and 3b. In the inset the PDF near
ro=0.25, 1, and 4 cm. R/a=0.
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in the Richardson regime.

FIG. 11. PDF ofR/¢ for (t=1.7,2.2,2.5,3.13, corresponding
to the inertial values oRin the case ,=0.045 cm. The continuous although systematic time dependence of the tails of the dis-

line corresponds to the exponential function exp(2x). tributions is observed. The same behavior occurs for the
N ) i , PDF'’s of y as shown in Fig. 13.
the inertial range, 5 cm, by recalling that the typical s The core of thew and y PDF’s is well fitted by the

obtained by averaging over the three sides of the trianglesiyatched exponential functiapexp(—yx?) as shown at time
Indeed, for strongly distorted triangles, the longest side of_5 5. in Fig. 14. The values of the:, 3, and y param-
the triangle will reach 5 cm significantly before the radius of g4e,g al;e indicated in the caption.

gyration(R), therefore making the Richardson law invalid e have also calculated the joint probability density func-
well before (R")=5 cm. tion P(w, x). In Fig. 15 the contour lines of the logarithm of

The Richardson/(R?)ot** regime starts at a scale 1.25 p(w, ) are displayed. The function reaches its maximum
cm slightly smaller than the lower limit of the inertial range for (w, y) =(0,0), meaning that the most probable triangles
(1.5 cm. are those with two or three particles stuck together.

In Fig. 10 the PDF oR/o with o= \(R?) is shown in the The contour lines of the logarithm of the joint PDF
ro=0.045 cm and=2.5r, case. The arrows correspond to P(w,R/¢) in the case of;=0.045 cm are shown in Fig.
the positions of the inertial values & 1.25 and 3. The 16. The maximum of the function is reached fav,R/ o)
probability distribution functions exhibit a sharp peak near=(0,0.034), showing that the most probable triangles are
R=0, an exponential behavior in the inertial domain, and astretched and smaller in size than 0.63dorresponding to
decay forlarge values ofR slower than an exponential func- R=0.04 cm.
tion. The peak occurs foR/oc~0.034 corresponding t& The experimental results presented in this section provide
=0.04 cm. We emphasize that the peak is located outsidstrong evidence that the shape distribution of the triangles in
the inertial range, and is very likely to reflect properties as2D, in the inverse energy cascade, is nontrivial, as antici-
sociated with the smooth, small scales of the flow. pated in[17].

Figure 11 shows the PDF @& for t=(1.7,2.2,2.5,3.13,
corresponding to the inertial values & in the caser, V. STOCHASTIC MODEL, MONTE CARLO APPROACH

=0.045 cm. The data are slightly dispersed and they could
be fitted by the exponential function exp{.2x). The stochastic model introduced [ih7] predicted the ex-

Figure 12 shows the PDF's ofv in the case ofr, istence of a nontrivial shape distribution for triangles ad-

=0.045 cm, for three different times in the Richardson re-vected in a turbulent flow, in the inertial range of scales, on

gime. The PDF's are not perfectly stationary and a slighthe basis of a study in 3D. The experimental data in the
inertial range presented in the previous section invite a com-

10 parison with the predictions of this stochastic model in 2D.
t=2.51
10;"' LS RS LR RS "'I"'§ 10 :""i"" EGET T TR TR T TR T
2 1L 4 - _
& B oL 4 =
Y [
r 1L Phe |
0.1 s b b by i Lo b s lay TN NS FNET SETE FRRTE PN |
0.2 0 0.2 0.4w0.6 08 1 1.2 -0.1 0 0.1 0.210.3 (0.;1“(1).5) 0.6
01 PN NS T ST T T N T T S [N ST [T ST M
0 02 04 06 08 1 1.2 FIG. 14. Best fit of thew and y PDF's in the caser,

=0.045 cm. The chosen function igexp(—yxf) with «=7.69
FIG. 12. PDF's ofw in the case,=0.045 cm at differenttimes +0.06, B=0.548-0.005, y=4.08+0.03 (w), «a=8.6*x0.2,
in the Richardson regime. B=0.35+-0.01, y=2.8+0.05 (x).
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FIG. 15. Contour lines of the logarithm of the joint PDF FIG. 16. Contour lines of the logarithm of the joint PDF
P(w,x) at timet=2.5r, in the case y=0.045 cm. P(w,R/(R)) at timet=2.57, in the case ,=0.045 cm.

In this section, we recall the physical approximations leading (7ap(t) 7,,(t))
to this model, and compare its predictions with the experi- ®
mental results. 1
We emphasize at the outset that the model iplefnom- :ng 5("_”( Oandpy— §5aﬁ5uv I7(R), (9)
enologicalnature, and has several shortcomings. Its predic-
tions are not expected to be quantitatively accurate. How-
ever, as we will explain here, it reproduces correctly several (Uia(t)um(t')>=(
qualitatively important aspects of the solution.
The main idea of the approach consists in using a simpli-

CU

2
7) o(t—t") & 5aﬁR2/T( R), (10

fied scale decomposition of the turbulent velocity field. To (R)=R%%e 13 (13)
study the evolution of a triangle with a radius of gyratign
defined as before, we write the velocity field as Equation(8) together with Eq(9) implies that the matrices
M are correlated with a time scal€R), and that their am-
)=U.+U-+0> (6)  plitudes are of ordefM|~R™ %3 The pM term in Eq.(7)

) o represents the action of. on the triangle. The random ve-
whery_ is the contribution due to the small wave numbersiocity u represents the action of the small scale contribution
in the usual Fourier decompositiopg(<1/2R), v~ comes  ;_ jts time correlation is short; it is represented here Wy a
from the large wave number$g(=2/R), andov . originates  correlated field. The two terms on the RHS of Efj. are of
from the scales of the flow comparable R[1/(2R)=<[|q  the same magnitude, and they lead to a growtR atcord-
|<2/R]. The large scale contribution is uniform over the ing to \(R?%) o432 The two dimensionless paramet€ls
triangle, and simply advects the points without any distorangc, give the relative importance of the incoherent jitter
tion. As such it is not important for our present purpose. Théyng the coherent term, respectively.

like-scalepart of the velocity fieldp -, acts co_herently over Physically, theoM term in Eq.(7) tends to distort the set

the scale of the triangles, with a correlation time of the ordery¢ points. Indeed, whe@,=0 (u=0), the vector$, andgp,
—pR2B3_-1/3 [ i ) ’ . v ’ . . .

of 7g=R""e""". Finally, the small scale component is  are stretched and aligned under the multiplicative action of a

completely incoherent over the three points, and its correlargndom matrix. At very long times, this process leads to an

tion time is short compared te;. The action of the turbu- ,npounded distortion.

following set of stochastic equations: whereM =0 (C,=0), the vectorg; and g, experience the
q action of an additive, random Gaussian noise. Under these
Pia_ M 7 circumstances, the distribution of shapes will be Gaussian:
dt pI,B Ba Uia s ( )

P(p1,p2) =[1KR()%)>m*Jexd — (57 +55 )R ®)].
The unknown raticC,, /C,, is a priori of order 1 and ap-
dM g _ Mg 8 pears at this stage as a free parameter. Its actual value influ-
dt WJF”"B’ (8) ences the precise distribution of shapes predicted by the
model. For the sake of comparison with the experiments in
where latin subscripts label the two vectgrs,, as before, the present work, we will fix the rati€, /C,, by imposing
and greek subscripts represent spatial indices.dhad »  the requirement that the mean valyes and{l,) obtained
terms on the right-hand sid&®HS), of Egs.(7) and(8) are  with the model agree with the observed experimental values.
random Gaussian terms, correlated in time, with the fol- Note that the Gaussian distribution observed at very long
lowing variances: times in the experiment can be explained in this framework.
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FIG. 17. Temporal evolution ofR?)*? for r,=0.001 andr
=0.016. The spatial units are arbitrary, much smaller than the in- FIG. 18. Temporal evolution ofw) for r,=0.001 andr,
tegral scale and much larger than the dissipative scale. The spatia0.016. In the inset, temporal evolution @f,).
and temporal units are chosen so thatl.

lasts longer whem, is larger. The existence of thé’? re-

Indeed, at very long timeong compared to the eddy turn- 9ime is independent of the rati@, /C,,. _
larger than the integral scale so each particle is advected We monitor the mean values of and |, as a function of
by a different eddy, acting randomly and independently of altime, averaged over all the triangles of the sample. The two
the others. Effectively, one may model the advection by théluantities relax after a short transient to an equilibrium
flow on these time scales by value, which does not evolve with timsee Fig. 18 This

limiting value depends on the rati©,/C,,, as seen in Fig.

ds 19. To actually compare with the experiments, we use the
d—=G’ (120  values measured experimentallfw)g;.n=0.23+0.01 and
t (I2)Rich="0.033+0.003. For the value o, /C,=0.45 indi-
. cated by the arrow in Fig. 19 we fingv),o4e=0.238 and
with (I ) mode™ 0-0288, very close to the values found experimen-
tally.
(u’?(t)u’}’(t’»:C'za(t—t’)éij5abL2/7-(L), (13) The PDF of the radius of gyration for the rat®,/C,,

=0.45 is shown in Fig. 20. The PDF &/(R), correspond-

effectively leading to the observed Gaussian distribution ofnd to t=nAT, with AT=2 in our arbitrary units, is super-
shapes. posed. This value oAT is always much larger than the

Before we proceed to study the model in 2D, we wish toturnover time at scaléR(t)): at the last time in the calcula-
point out its limitations. The experimental results presentedion, AT/7(R)~10. The distribution ah=1, shown by the
above, as well as the numerical results in[3D], show that dashed line, has not quite converged yet, although(Rje
the triangles tend to form very elongated structures. In the<t®? growth regime is already reached at this time. In the
experiments, it was found that the probability that two of thestatistically steady state, the tails of the PDF decay some-
three vertices of the triangles are very close, compared to th#hat more slowly than exponentially, as indicated by the
third, is relatively high. For these configurations, it is inap- slight concavity of the tails in the semilogarithmic plot of
propriate to argue that the relative velocity between the twdig. 20, similar to what was observed in Fig. 10. The main,
closest points should behave liR8®, whereR is the radius obvious difference comes from the behavior observed at
of gyration, as implied by Eqg7)—(10). As a consequence,
the model tends to diminish the probability of forming tri- el Sl Sl R LA L SRR ALl LA ]
angles with two very close vertices. This should be kept in
mind while discussing the results of the model. ¥ ]

The model was integrated numerically by using a straight 0.4 [ l .

0

OB E e E

Monte Carlo algorithm. The time stepping is done by using a
classical Euler-Ito scheme of order 1/27]. To prevent oc-
casional underflows, a small scale cutoff, at a seal@auch

<w>

03 |

02 |

smaller than the characteristic sizetat0, is introduced. r

Statistics over~10° triangles are accumulated. 0.1 [
Figure 17 shows the evolution gf(R?) as a function of

time, for two values of gy (ro=0.001 andry=0.016 in our 0

arbitrary unit3, the initial value of the side of the equilateral
triangle. The units are chosen so that 1. A convincing

regime where\(R?) grows ast®? can be clearly seen. The  FIG. 19. (w) and(l,) (in the inse} as functions of the ratio
Richardson regime is observed after a transient time, whicke, /C,, .
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FIG. 20. PDF of R/(R) for t=nAT with AT=2 and n
=1,...,5 FIG. 22. Contour lines of the logarithm of the joint PDF
P(w,R/(R)) for the Monte Carlo model.

small values oRR/(R). The experimental PDF'’s are sharpl - L
peaked very nea<r é where:Es the PDF’s predicted b)? )t/hgmdel prediction. This is in large part due to the large peak

model show a much smoother maximum, arowRid/(R?) of probability neaR/ V(R >:0_ in the experiments.
~0.45 (we recall, however, that the value & where the The PDF ofy, not shown, is found to be completely flat,

experimental PDF peaks is significantly below the inertialcONtary to the expenmgntal PDF, Fig. 13, W.h'Ch shows a

range. cusp nearx=0. Thfe |soc.ontours of the joint PDE of
The PDF ofw is shown in Fig. 21. As was the case for the R/V(R%) and consist of "F‘e_s parall_el to thg =0 axis,

experimental data, the PDF of decreases monotonically strongly suggesting that the joint PDF is completely indepen-

from w=0 to w=1. The distributions in both cases are dent ofx. _
therefore biased toward small, implying, qualitatively, a To summarize our results, we note that the model cor-
large probability for very elongated triangles. However, the/€Ctly_anticipates the main trends of the distribution of
cuspy aspect of the experimental PDFvofs replaced by a R/ V(R®) andw, namely, (i) the tails of theR/(R*) distri-
much smoother maximum in the case of the model. butions decay somewhat more slowly than exponentiglly,
The joint PDF ofw andR presented in Fig. 22 shows the @ large fraction of the triangles are very elongatebabil-
same qualitative features as Fig. 16. The isoprobability conlty is larger forw close to 0), andiii) large values of the
tours are at a marked angle with the axis=0 and radius of gyration are associated W|th_ very elongate_d tri-
R/\(R?)=0, implying that the largest values Bfare found ~angles. However, the model systematically underestimates
preferentially for very small, i.e., for very distorted tri- the very sharp peaks observed for both.quantmés{(_RZ;
angles. Similarly, very regular trianglesv(close to 1) are andw in the experiments. In the same spirit, th'e m'odel com-
rare, and are associated with rather small radii of gyratiofP/etely misses the sharp dependence ofjtttéstribution, an
R/V(R?). The differences already reported between theeffect which can be understood in view of the shortcomings
PDF's of R/\/(R?) andw can be seen by comparing more of the model.
precisely the locations of the isoprobability levels of the joint
PDF. We find that the isocontours accumulate more toward V1. DISCUSSION AND CONCLUSIONS

(RIV(R%),w)=(0,0) in the experimental case than in the  1he humose of this article was to investigate the statistics
of the shapes of triangles advected by a 2D turbulent flow.

b7 T T T To this end, we have used an experimentally generated flow
35 © E to follow sets of triangles numerically. The results have been
AN ] compared with the prediction of a simplified stochastic
F E model, describing the statistics of shapes. Two regimes with
. B=p \\ E well-characterized distributions are identified.
& 2 F ] £ At scales larger than the integral scale, but smaller than
=% F AN B . . . . .
150 \\ E the size of the box, a diffusive regime where the mean radius
1 E ] of gyration(R)=t¥2 is observed. The shape distribution of
3 E this regime is essentially Gaussian.
05 [ E When the mean radius of gyratidiR) is in the (experi-
ob v T mentally limited inertial range of scales, Richardson disper-
0 02 04 06 08 1 sion is observed (R)=t%?), and a plausibly self-similar,

Y nontrivial distribution of shapes is identified. This regime is

FIG. 21. PDF of (w) for t=nAT with AT=0.4 andn characterized by afalmos} exponential tail of the PDF of
=1,...,25. R, and by distributions ofv and y sharply peaked near O,
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contrary to the Gaussian distribution, which is uniform for 4

both variables. These results show that triangles have a P(51.52)=WGXF{—2(5§+52)/<R2>]- (A1)

higher probability of being elongated than for the purely

Gaussian distribution of shapes. We reexpress in this Appendix the PDFin terms of the
The main limitation of these very suggestive experimentalariables introduced to characterize the shape of the tri-

results comes from the limited range of inertial scales. In theyngles. The vectors, and g, are decomposed according to
Richardson regime, the probability thtis below the iner-  [22 23

tial range remains relatively important, therefore introducing

some biases that should disappear when the inertial range is p1=E&1C0Sx81( )+ Eo5iNxey( ),
increased.
Whereas the experimental velocity field exhibits a limited p2=—£1SiNx81(P) + §,c05x8,( ) (A2)

inertial range, we have studied the shape distributionina 2D . B . . _ .
turbulent flow with the help of a simplified stochastic model. With &1(#)=(cos¢,sin¢) and&;(¢) =(-sin¢,cos¢g). The

This model predicts a non-Gaussian, self-similar shape di@n9/€¢ is arotation angle, with respect to a fixed orthogonal
tribution, parametrized by the ratio between the incoherenp@Sis- A straightforward calculation leads to the following
and coherent components of the flow, acting on the thre&eSult for the Jacobian of the transformatioy (&2, x, ¢)
points. For a realistic value of this ratio, the tails of the PDF— (P11:P12:P21,p22), Wherep; ; is thejth component of; :
of R and the overall shape of the PDF wf qualitatively
agree with the exponential PDF’'s. One strong difference
comes from the definition of, which is found to be uniform D(&1.62.x,¢)
in the model. In general, the probability that two or three
particles are very closgseparated by a distance smaller than
(R)) is found to be comparatively smaller in the model than
experimentally. This phenomenon is partly due to the short-P(&1,62.x, ) =P(p11,pP12,P21.P22) D ) ‘
comings both of the experimental floWimited inertial (1,620 ¢
range, and of the model, which artificially increases the rate 4
of separation of two close particles when the third particle is = (R? exl —2(&+£)/(R)]|&— &,
far away. This tends to make the distribution yfeven, in
particular by diminishing the probability aroundy,w) (A4)
=(0,0). : =7 =7 7. 2
The quantitative differences observed between the experi- 'erdUC'an 2further R= \/p_1+92: Vé+& and w
mental distribution and the model predictions can therefore=2£1£2/(£1+ &), the Jacobian of the transformation
be understood by elementary considerations, related to tHe1,£2)—(R,w) is
deficiencies of the flow and the model. Beyond the discrep- 2 2
ancies pointed out, we wish to emphasize that in both cases D(R.w) ‘: 2|&- &
elongated triangles are observed with a probability signifi- D(£1.8)| R
cantly higher than in the completely random case. Physi- . , )
cally, this can be understood as resulting from the action of@mbining Egs(A4) and (A5), one finds that the Gaussian
the coherent, strainlike component of the velocity field whichPPF Of shapes, expressed wihw, x, and ¢ is simply
tends to align all points. The effect of alignment of particles 8
in a particular c_hr_ectlon of the strgln, coarse gram_ed at thg P(RW,x,d)= —2—2R3exp(—2R2/(R2)). (AB)
scale characterizing the set of points, should persist both in (R
the case of clusters with more than three points, and i
higher dimensionsi=3).

D 1 it t
(P11:P12:P21,P22) :|§§_§i|’ (A3)

so the PDF expressed in the variabigs &,, x, and ¢ is

D(p11,p12,P21,020)|

(A5)

rEquation(AG) implies that the probabilities of the variables
x andw are both uniform, which implies that the Gaussian
mean values argy)ga,= /12 and(w)q,,= 1/2.
With the distribution ofR andw, it is straightforward to
We are particularly grateful to M. C. Jullien and P. Tabel-compute the PDF of the arée=wR®. Indeed,
ing for their support. We thank M. Vergassola and A. Celani
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APPENDIX: THE GAUSSIAN SHAPE DISTRIBUTION =———exp —2A/{R?)). (A7)

FOR TRIANGLES IN TWO DIMENSIONS <R >

Let us assume that the two vectors, defined by(By.are The quantityl ,, used to characterize the shape distortion,

distributed according to the Gaussian distribution is defined as the ratio of the second eigenvalue of the mo-
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ment of inertia tensor an®?. This quantity can be ex- |,=(1—cos#)/2, implying that
pressed, in the case of triangles in two-dimensions|,as

:(1—\/1—W2)/2. The mean value, in the sense of the 1/2d|2|2P(|2):fﬁlzdﬁl(l—cosﬁ)cosez E(l_Z)_
Gaussian distribution df,, can be simply computed by using 0 0 2 2 2
the fact thatp(w)=1. Introducing the change of variable (A8)
w=sing (0<6#<m/2), we havep(d)=dw/df=cosf and  The mean value of, is thus(l,)ya,= (1 — 7/4)/2.
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