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Evolution of triangles in a two-dimensional turbulent flow
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As a turbulent flow advects a swarm of Lagrangian markers, the mutual separation between particles grows,
and the shape of the swarm gets distorted. By following three points in an experimental turbulent two-
dimensional flow with ak25/3 spectrum, we investigate the geometry of triangles, in a statistical sense. Two
well-characterized shape distributions are identified. At long times when the average size of the triangles^R&
is larger than the integral scale, the distribution of shapes is Gaussian. When the size of the triangle^R& is in
the inertial range and grows ast3/2 ~Richardson’s law!, a plausibly self-similar, non-Gaussian probability
distribution is observed, where very elongated triangles have a much larger probability than in the Gaussian
regime. These results are discussed, and, in the latter case, compared with the predictions of a stochastic model
recently introduced@A. Pumir et al., Phys. Rev. Lett.85, 5324~2000!#.
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I. INTRODUCTION

Passive scalar dispersion in a turbulent flow is a prob
of both theoretical and practical relevance in many differ
fields of science and engineering like chemical enginee
and geophysics. Some examples are provided by pollu
density, temperature field, and concentration of chemica
biological species in the atmosphere, in the ocean, o
model systems in the laboratory@1#.

One of the remarkable aspects of the process is the o
nization of the passive scalar in fronts of high gradient@2–6#.
Also, a very strong intermittency of the scalar statistics h
been reported, even when the advecting velocity field is
intermittent as in the case of two-dimensional~2D! turbu-
lence@7–10#. A recent study has shown how these two pro
erties are related in the 2D case: the presence of fronts
fectively dominates the statistics of intense fluctuatio
resulting in the saturation of the scalar structure funct
exponents@10#.

The structure of the full multipoint correlation function
also sensitive to the coherent structures present in the fl
This has been demonstrated in the case of the passive s
in the presence of a mean gradient@11#. The notion of zero
modes indeed provides an adequate framework to study
multipoint correlators of the scalar field in the statistica
steady state. Their property are intrinsically related to
Lagrangian evolution operator@1,12#. The relation between
the structure function of ordern and the Lagrangian evolu
tion of n point clusters has been exploited in@9# and a link
between the geometrical properties of the turbulent sc
advection and the breakdown of the scale invariance rel
to intermittency has been established numerically in@12# by
studying the evolution of triangles in 2D forced scalar turb
lence.

An interesting question about the Lagrangian evolut
consists in understanding the dispersion of a swarm of
ticles of initially fixed shape. We emphasize that the stati
cal properties of the geometry of dispersing Lagrangian c
ters arenot directly related to the zero modes governing t
1063-651X/2001/64~5!/056303~11!/$20.00 64 0563
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multipoint correlator evolution and responsible for the a
pearance of anomalous scaling in scalar turbulence in
statistically steady state problem@7,13–16#. Mathematically,
while the zero modesZn are the solutions of the equatio
HZn50 whereH is the evolution operator, the self-simila
statesSs f predicted in@17# satisfyHSs f5(d/dt)Ss f . In the
dispersion problem, the zero modes appear only as subd
nant corrections to the self-similar behavior. However, it
intuitively very natural to expect that the evolution of th
swarm should also provide important information on t
geometric structures observed in the flow. Actually, the f
mation of ‘‘fronts’’ is associated with transient domains
hyperbolic flow which distort and ‘‘flatten’’ blobs of fluid
due to volume preservation. The study ofn-point cluster dis-
tortion is thus expected to provide insight into the geome
structure of turbulent fluctuations.

One may distinguish several intrinsically different r
gimes, according to the length scales in the flow. In the
ertial range of scales~i.e., when the particle separation
smaller than the largest eddy size!, according to Richard-
son’s prediction the dispersion of particle pairs in turbule
flows obeys the superdiffusive laŵR2(t)&;t3. This law has
been observed in 2D both experimentally@18# and numeri-
cally @19–21#. At larger scales, one expects the distance
tween particles to grow according to a diffusive law
^R2&}t.

The dynamics of three- and four-particle configuratio
advected by a turbulent flow was studied numerically
three-dimensions~3D! in @17#. By using direct numerical
simulation of the Navier-Stokes equation at moderate R
nolds number, and a phenomenological model of the
grangian kinematics, the authors predict the existence, wi
the inertial range of scales, of a self-similar state where
average size of the cluster increases, but the statistical d
bution of shapes is stationary and nonuniform. For sca
larger than the integral size, the shape distribution is
served to be Gaussian.

In this paper we study the geometrical aspects of
grangian dispersion and, in particular, the shape distortio
©2001 The American Physical Society03-1
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FIG. 1. ~a! rW 1 and rW 2 corre-
sponding to the triangle withrW1

5(0,0), rW25(4,2), rW35(2,0).
The vectors are applied to the cen
ter of mass of the trianglerW 0

5(rW11rW21rW3)/A3. ~b! Shapes of
triangles as a function ofw andx.
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small triangles in an experimental 2D turbulent flow in t
inverse energy cascade regime. In Sec. II we briefly in
duce the parametrization used to describe the size and s
of the triangles. Section III is devoted to the description
our experimental advecting flow and in Sec. IV we report
results of our numerical study. We then~Sec. V! compare
our results with those obtained by using the phenomenol
cal model of@17# in the 2D case. We summarize our resu
and present our conclusions in Sec. VI.

II. TRIANGLE PARAMETRIZATION

In order to describe the size and shape of the trian
corresponding to the pointsrW1 , rW2, andrW3 we have used the
Eulerian parametrization as in@22,23#. Introducing

rW 15
~rW22rW1!

A2
, ~1!

rW 25
~2rW32rW22rW1!

A6
, ~2!

we define the radius of gyrationR characterizing the globa
size of the triangles by

R25r1W
21rW 2

25
~r 12

2 1r 23
2 1r 31

2 !

3
, ~3!

wherer i j 5urW j2rW i u are the triangle sides, and the variable

x5
1

2
arctanF2rW 1•rW 2

r2
22r1

2 G , w52
r11r222r12r21

R2
~4!

for parametrizing the triangle shape. The numerator in
above definition ofw is simply the~algebraic! area of the
triangle, souwu52A/(A3R2), whereA5urW123rW13u.

The two variablesw and x are invariant under dilation
rotation, and translation of the triangle. The parameter sp
wP@21,1#, xP@0,p# can be reduced towP@0,1#,
xP@0,p/6# thanks to the global invariance of the triangl
under any relabeling of the three vertices.

In Fig. 1 therW 1 andrW 2 vectors corresponding to a scale
triangle are shown~a! and different shapes of triangles a
shown as a function ofw andx ~b!. The isosceles triangle
with the third side smaller~larger! than the equal ones cor
respond tox50 (x5p/6). The linew50 corresponds to
05630
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degenerate configurations, where the three points are alig
Configurations with bothx andw small correspond to geom
etries where two vertices~say 1 and 2! are separated by a
distance much smaller than the distance to the third:r 12
!r 13,r 23. Equilateral triangles correspond to the spec
caserW 1•rW 250 andr1

22r2
250, that is, tow51 and an un-

defined value ofx. For triangles of arbitrary shape, the var
ablesw andx defined in Eq.~4! do not have a simple geo
metric interpretation.

We investigate here the distribution of parameters cha
terizing the geometry of the triangles. These include the
erage value and probability distribution functions~PDF’s! of
R, w, andx as functions of time. In this respect we note th
the quantityI 2 introduced in@17# as the ratio between th
second eigenvalue and the trace of the tensor of momen
inertia,gab[( ir iar ib , wherer ia is thea component ofrW i ,
is very simply related tow by I 25(12A12w2)/2.

III. THE TURBULENT VELOCITY FIELD

The experimental velocity field was obtained as describ
in @24,25#. We recall here the main characteristics of t
system used for the preparation of the flow in a steady
verse cascade regime. The flow is generated in a square p
vinyl chloride cell, 15315 cm2. The bottom of the cell is
made of a thin~1 mm! glass plate, below which permane
magnets, 53834 mm3 in size, are placed. In order to en
sure two-dimensionality, the cell is filled with two layers o
NaCl solution, 3 mm thick, with different densitiesd1
51030 g l21 and d251060 g l21, placed in a stable con
figuration, i.e., the heavier underneath the lighter. The in
action of an electrical current driven across the cell with
magnetic field produces local stirring forces. In the expe
ments we describe here, the experimental conditions of@24#
have been exactly reproduced: the magnets are arrange
that the energy is injected, on average, on a scale ol i
51.5 cm; the excitation is permanently maintained. T
flow is visualized by tiny latex particles placed at the fr
surface. During the experiment, the flow is recorded~25 im-
ages per second! on a video tape using a charge-coupl
device camera placed above the cell. The images are d
tized and stored on a computer. We then use standard
ticle imaging velocimetry techniques to compute the veloc
fields every 0.04 s on 64364 grids. The typical injection
Reynolds number of the system~based on the root mea
square velocity and the injection scalel i) is around 100 and
3-2
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EVOLUTION OF TRIANGLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 64 056303
the mean turnover time of the largest eddies istv'8 s.
After a short transient, the flow develops a stationary

verse energy cascade with Kolmogorov-Kraichnan sca
E(k);k25/3. The compensated energy spectrum of the c
sidered velocity field is shown in Fig. 2; the boundaries
the inertial range correspond to the scalesr min

I .1.5 cm and
r max

I .5 cm. In addition, as reported in@24#, the velocity
field is homogeneous, isotropic, and nonintermittent.

IV. EVOLUTION OF TRIANGLES IN THE FLOW

The velocity fieldvW (xW ,t) described in the previous sectio
has been used to calculate numerically the trajectoriesxW (t)
of particles by integrating the Lagrangian equations

xẆ5vW ~xW ,t !. ~5!

The integration of Eq.~5! was performed by using a fourt
order Runge-Kutta method with time stepDt50.2 s and a
third order interpolation algorithm for the velocity field, de
fined on a rectangular grid with a lattice spacingDx5Dy
50.25 cm@26#.

A. Long time asymptotic regime

We studied first the evolution of a set of 23104 initially
equilateral triangles with sides of sizer 0 equal to 0.25, 1, 4,
and 6 cm, respectively. As shown in Fig. 3, the typical s

FIG. 2. Compensated energy spectrumE(k)k5/3 averaged over
the stationary temporal range.

FIG. 3. Temporal evolution of the typical size of the triangl
for r 050.25, 1, 4, and 6 cm.
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A^R2& of the triangles increases untilt.13tv and fluctuates
afterwards around a saturation value of about 9 cm. Thi
due to the finite size of our experimental cell.

The evolution of̂ w&, ^I 2& and^x& as functions of time is
shown in Figs. 4 and 5.

As in @17# a rapid decrease of the parameters, correspo
ing to strong shape distortion of the triangles, is observ
and the smaller the value ofr 0, the lower the minimal value
of the parameters. Whenr 050.25 cm the shape distortion i
maximum forA^R2&;1.5 cm, the low boundary of the in
ertial range, while forA^R2&;5.5 cm, around the upper en
of the inertial range, the parameters tend to the asympt
values^w&asy50.5, ^x&asy50.25, and^I 2&asy50.11. These
values forw and I 2 correspond to a Gaussian distribution
rW 1 andrW 2 , which implies a uniform distribution forw andx
@^w&Gau51/2, ^I 2&Gau5(12p/4)/2'0.107, and ^x&Gau
5p/12'0.262# and the following distribution for R:
PGau(R)5(8R3/^R2&2)exp(22R2/^R2&), ~see the Appendix!.
We note a small but significant difference between^x&asy
and ^x&Gau .

In Fig. 6, the probability density function evolution o
R/A^R2&, w, andx is shown in the case ofr 050.25 cm. We
can see that the PDF ofR andw can be well approximated by
the Gaussian distribution betweent580 s and t5100 s
corresponding toA^R2& between 7.5 cm and 8.6 cm. At late
times, because of the saturation of the triangle size, the
of the distribution ofR can no longer be correctly fitted b
PGau(R).

FIG. 4. Temporal evolution of̂w& for r 050.25, 1, 4, and 6 cm.
In the inset, the temporal evolution of^I 2&.

FIG. 5. Temporal evolution of̂x& for r 050.25, 1, 4, and 6 cm.
3-3
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FIG. 6. Temporal evolution of
PDF’s of R/s, w, and x ~ex-
pressed in radians! for r 0

50.25 cm. The light lines corre-
spond to the Gaussian prediction
P(R) 5 8(R/s)3 exp@22(R/s)2)],
P(w)51, andP(x)5p/6.
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The slight deviation between the observed value^x&asy
and the Gaussian value^x&Gau has its origin in the PDF ofx,
which is not constant as a function ofx. We notice that the
value x50 is ~slightly! more probable than the valuex
5p/6. Geometrically, this means that triangles with a ve
short edge~two of the three vertices are separated by a d
tance much smaller thanA^R2&) have a larger probability
than when the three points are taken at random. We bel
that this effect is an artifact due to the fact that the diffus
regime cannot be followed for long enough. Indeed, as
triangle size grows larger than the integral size, particle p
still have a large probability of being very close, which r
05630
-
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flects the systematic distortion observed in the inertial ra
and documented in the following subsection. This effe
should disappear if the triangles could be followed for a lo
enough time.

In Fig. 7 the PDF ofA5wR2 proportional to the triangle
area is represented fort510tv . Very long tails are observed
which can be well fitted by an exponential function. No
that the PDF of the area is exactly exponential when
distribution of shape is Gaussian~see the Appendix!.

The Gaussian distribution of shapes observed at l
times corresponds to the regime where the radius of gyra
of the triangles grows according toA^R2&}t1/2, above the
3-4
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EVOLUTION OF TRIANGLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 64 056303
integral size of the flow. As shown in Fig. 8, the quant
^R2&/t exhibits a rather convincing plateau betweent53tv
andt513tv when the initial separation isr 050.25 cm~this
corresponds in physical units to 3.5 cm<A^R2&<9 cm,
i.e., in the range between the integral scale;4 cm and the
size of the system;9 cm. When the initial separation i
larger (r 051 cm or r 054 cm), no clear diffusive regime
can be seen. This is due to the fact that transients bec
larger whenr 0 is larger, so the asymptotic regime cannot
established before the saturation regime is reached.

In order to check that our results are independent of
presence of the boundaries, we have repeated the nume
analysis in a smaller square of 12312 cm2. The results ob-
tained in this case are qualitatively completely similar
those reported here.

In conclusion, we have demonstrated here that the di
bution of shapes in the long time, dissipative regime is
sentially Gaussian, as expected theoretically, and in ag
ment with recent numerical simulations@17#.

B. The Richardson regime

The flow in our experiment exhibits ak25/3 velocity spec-
trum over a limited range of scales only~see Fig. 2!. Yet it
has been possible to observe in a convincing way with
experimental setup the Richardson regime, where par
pairs separate on the average as^R2&}et3 @18#. In this sub-
section, we investigate the problem of triangle dispersion

FIG. 7. Probability distribution function ofA5w R2, for r 0

50.25 cm andt510tv .

FIG. 8. Compensated temporal behavior of^R2& for the cases
r 050.25, 1, and 4 cm.
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the ~limited! inertial range of scale of our experiment. W
are interested not only in the growth of the characteris
shape of the triangles, but, more importantly, in the ge
metrical properties of the triangles as their size grows in
inertial range.

Before we present our experimental results, we empha
that, in order to obtain the statistical properties of triangles
the inertial range, one needs to make sure that all the s
rations between the vertices are in the inertial range. In v
of the very strong distortion expected theoretically, and
deed observed in the experiment, and of the limited rang
inertial scales, this condition is difficult to fulfill. This has t
be kept in mind when we discuss our results. However,
experiment shows interesting trends, which we expect w
persist in a setup with a larger inertial range of scale.

Our discussion in this section is based on a run with a
of initially 105 equilateral triangles with side of sizer 0
50.045 cm (̂R&50.045 cm). In this case, a convincin
plateau of^R2&/t3 is reached, as shown in Fig. 9 durin
about 11 s and correspondinglyA^R2& ranges from 1.25 to 3
cm whenr 050.045 cm.

We can explain the fact that the Richardson regime st
at the length 3 cm~see Fig. 9! smaller than the upper limit o

FIG. 9. Compensated temporal behavior of^R2& in the case of
equilateral triangles witĥR&50.045 cm. In the inset, theA^R2&
temporal behavior. The plateau between 1.8tv and 3.2tv corre-
sponds toA^R2& between 1.25 and 3 cm.

FIG. 10. PDF ofR/s with s5A^R2& in the case ofr 050.045
cm and t52.5tv . The arrows correspond to the positions of t
inertial values ofR: 1.25/s and 3/s. In the inset the PDF nea
R/s50.
3-5
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the inertial range, 5 cm, by recalling that the typical sizeR is
obtained by averaging over the three sides of the trian
Indeed, for strongly distorted triangles, the longest side
the triangle will reach 5 cm significantly before the radius
gyrationA^R2&, therefore making the Richardson law inval
well beforeA^R2&55 cm.

The RichardsonA^R2&}t3/2 regime starts at a scale 1.2
cm slightly smaller than the lower limit of the inertial rang
~1.5 cm!.

In Fig. 10 the PDF ofR/s with s5A^R2& is shown in the
r 050.045 cm andt52.5tv case. The arrows correspond
the positions of the inertial values ofR: 1.25 and 3. The
probability distribution functions exhibit a sharp peak ne
R50, an exponential behavior in the inertial domain, an
decay forlarge values ofR slower than an exponential func
tion. The peak occurs forR/s;0.034 corresponding toR
50.04 cm. We emphasize that the peak is located out
the inertial range, and is very likely to reflect properties
sociated with the smooth, small scales of the flow.

Figure 11 shows the PDF ofR for t5(1.7,2.2,2.5,3.1)tv
corresponding to the inertial values ofR in the caser 0
50.045 cm. The data are slightly dispersed and they co
be fitted by the exponential function exp(21.2x).

Figure 12 shows the PDF’s ofw in the case ofr 0
50.045 cm, for three different times in the Richardson
gime. The PDF’s are not perfectly stationary and a sli

FIG. 11. PDF ofR/s for (t51.7,2.2,2.5,3.1)tv corresponding
to the inertial values ofR in the caser 050.045 cm. The continuous
line corresponds to the exponential function exp(21.2x).

FIG. 12. PDF’s ofw in the caser 050.045 cm at different times
in the Richardson regime.
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although systematic time dependence of the tails of the
tributions is observed. The same behavior occurs for
PDF’s of x as shown in Fig. 13.

The core of thew and x PDF’s is well fitted by the
stretched exponential functionaexp(2gxb) as shown at time
t52.5tv in Fig. 14. The values of thea, b, andg param-
eters are indicated in the caption.

We have also calculated the joint probability density fun
tion P(w,x). In Fig. 15 the contour lines of the logarithm o
P(w,x) are displayed. The function reaches its maximu
for (w,x)5(0,0), meaning that the most probable triang
are those with two or three particles stuck together.

The contour lines of the logarithm of the joint PD
P(w,R/s) in the case ofr 050.045 cm are shown in Fig
16. The maximum of the function is reached for (w,R/s)
.(0,0.034), showing that the most probable triangles
stretched and smaller in size than 0.034s corresponding to
R50.04 cm.

The experimental results presented in this section prov
strong evidence that the shape distribution of the triangle
2D, in the inverse energy cascade, is nontrivial, as ant
pated in@17#.

V. STOCHASTIC MODEL, MONTE CARLO APPROACH

The stochastic model introduced in@17# predicted the ex-
istence of a nontrivial shape distribution for triangles a
vected in a turbulent flow, in the inertial range of scales,
the basis of a study in 3D. The experimental data in
inertial range presented in the previous section invite a co
parison with the predictions of this stochastic model in 2

FIG. 13. PDF’s ofx in the caser 050.045 cm at different times
in the Richardson regime.

FIG. 14. Best fit of thew and x PDF’s in the caser 0

50.045 cm. The chosen function isa exp(2gxb) with a57.69
60.06, b50.54860.005, g54.0860.03 ~w!, a58.660.2,
b50.3560.01, g52.860.05 (x).
3-6
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In this section, we recall the physical approximations lead
to this model, and compare its predictions with the expe
mental results.

We emphasize at the outset that the model is ofphenom-
enologicalnature, and has several shortcomings. Its pre
tions are not expected to be quantitatively accurate. H
ever, as we will explain here, it reproduces correctly seve
qualitatively important aspects of the solution.

The main idea of the approach consists in using a sim
fied scale decomposition of the turbulent velocity field.
study the evolution of a triangle with a radius of gyrationR,
defined as before, we write the velocity field as

vW [vW ,1vW '1vW . ~6!

wher vW , is the contribution due to the small wave numbe
in the usual Fourier decomposition (uqu&1/2R), v. comes
from the large wave numbers (uqu*2/R), andvW ' originates
from the scales of the flow comparable toR @1/(2R)&uq
u&2/R#. The large scale contribution is uniform over th
triangle, and simply advects the points without any dist
tion. As such it is not important for our present purpose. T
like-scalepart of the velocity field,vW ' , acts coherently ove
the scale of the triangles, with a correlation time of the or
of tR5R2/3e21/3. Finally, the small scale componentv. is
completely incoherent over the three points, and its corr
tion time is short compared totR . The action of the turbu-
lent velocity field on the triangle shape is modeled by
following set of stochastic equations:

dr ia

dt
5r ibMba1uia , ~7!

dMab

dt
52

Mab

t~R!
1hab , ~8!

where latin subscripts label the two vectorsrW 1,2, as before,
and greek subscripts represent spatial indices. Theu and h
terms on the right-hand side~RHS!, of Eqs.~7! and ~8! are
random Gaussian terms,d correlated in time, with the fol-
lowing variances:

FIG. 15. Contour lines of the logarithm of the joint PD
P(w,x) at time t52.5tv in the caser 050.045 cm.
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^hab~ t !hmn~ t8!&

5Ch
2 d~ t2t8!S damdbn2

1

2
dabdmnD /t~R!, ~9!

^uia~ t !uj b~ t8!&5S Cv

2 D 2

d~ t2t8!d i j dabR2/t~R!, ~10!

t~R!5R2/3e21/3. ~11!

Equation~8! together with Eq.~9! implies that the matrices
M are correlated with a time scalet(R), and that their am-
plitudes are of orderuM u;R21/3. The rM term in Eq. ~7!
represents the action ofvW ' on the triangle. The random ve
locity u represents the action of the small scale contribut
vW , . Its time correlation is short; it is represented here byd
correlated field. The two terms on the RHS of Eq.~7! are of
the same magnitude, and they lead to a growth ofR accord-
ing to A^R2&}e1/2t3/2. The two dimensionless parametersCv
and Ch give the relative importance of the incoherent jitt
and the coherent term, respectively.

Physically, therM term in Eq.~7! tends to distort the se
of points. Indeed, whenCv50 (u50), the vectorsrW 1 andrW 2
are stretched and aligned under the multiplicative action o
random matrix. At very long times, this process leads to
unbounded distortion.

This effect is opposed by theu term in Eq.~7!. In the case
whereM50 (Ch50), the vectorsrW 1 andrW 2 experience the
action of an additive, random Gaussian noise. Under th
circumstances, the distribution of shapes will be Gauss
P(rW 1 ,rW 2)5@1/̂ R(t)2&2p2#exp@2(rW1

21rW2
2)/^R2&(t)#.

The unknown ratioCv /Ch is a priori of order 1 and ap-
pears at this stage as a free parameter. Its actual value i
ences the precise distribution of shapes predicted by
model. For the sake of comparison with the experiments
the present work, we will fix the ratioCv /Ch by imposing
the requirement that the mean values^w& and ^I 2& obtained
with the model agree with the observed experimental valu

Note that the Gaussian distribution observed at very lo
times in the experiment can be explained in this framewo

FIG. 16. Contour lines of the logarithm of the joint PD
P(w,R/^R&) at time t52.5tv in the caser 050.045 cm.
3-7
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Indeed, at very long times~long compared to the eddy turn
over time ;L/U), the separations between particles a
larger than the integral scaleL, so each particle is advecte
by a different eddy, acting randomly and independently of
the others. Effectively, one may model the advection by
flow on these time scales by

drW

dt
5uW 8 ~12!

with

^u8 i
a~ t !u8 j

b~ t8!&5C82d~ t2t8!d i j dabL
2/t~L !, ~13!

effectively leading to the observed Gaussian distribution
shapes.

Before we proceed to study the model in 2D, we wish
point out its limitations. The experimental results presen
above, as well as the numerical results in 3D@17#, show that
the triangles tend to form very elongated structures. In
experiments, it was found that the probability that two of t
three vertices of the triangles are very close, compared to
third, is relatively high. For these configurations, it is ina
propriate to argue that the relative velocity between the
closest points should behave likeR2/3, whereR is the radius
of gyration, as implied by Eqs.~7!–~10!. As a consequence
the model tends to diminish the probability of forming tr
angles with two very close vertices. This should be kep
mind while discussing the results of the model.

The model was integrated numerically by using a strai
Monte Carlo algorithm. The time stepping is done by usin
classical Euler-Ito scheme of order 1/2@27#. To prevent oc-
casional underflows, a small scale cutoff, at a scaleh much
smaller than the characteristic size att50, is introduced.
Statistics over;105 triangles are accumulated.

Figure 17 shows the evolution ofA^R2& as a function of
time, for two values ofr 0 (r 050.001 andr 050.016 in our
arbitrary units!, the initial value of the side of the equilater
triangle. The units are chosen so thate51. A convincing
regime whereA^R2& grows ast3/2 can be clearly seen. Th
Richardson regime is observed after a transient time, wh

FIG. 17. Temporal evolution of̂R2&1/2 for r 050.001 andr 0

50.016. The spatial units are arbitrary, much smaller than the
tegral scale and much larger than the dissipative scale. The sp
and temporal units are chosen so thate51.
05630
e

ll
e

f

d

e

he
-
o

n

t
a

h

lasts longer whenr 0 is larger. The existence of thet3/2 re-
gime is independent of the ratioCv /Ch .

As a diagnostic of the deformation observed in our mod
we monitor the mean values ofw and I 2 as a function of
time, averaged over all the triangles of the sample. The
quantities relax after a short transient to an equilibriu
value, which does not evolve with time~see Fig. 18!. This
limiting value depends on the ratioCv /Ch , as seen in Fig.
19. To actually compare with the experiments, we use
values measured experimentally:^w&Rich50.2360.01 and
^I 2&Rich50.03360.003. For the value ofCv /Ch50.45 indi-
cated by the arrow in Fig. 19 we find̂w&model50.238 and
^I 2&model50.0288, very close to the values found experime
tally.

The PDF of the radius of gyration for the ratioCv /Ch
50.45 is shown in Fig. 20. The PDF ofR/^R&, correspond-
ing to t5nDT, with DT52 in our arbitrary units, is super
posed. This value ofDT is always much larger than th
turnover time at scalêR(t)&: at the last time in the calcula
tion, DT/t(R);10. The distribution atn51, shown by the
dashed line, has not quite converged yet, although the^R&
}t3/2 growth regime is already reached at this time. In t
statistically steady state, the tails of the PDF decay so
what more slowly than exponentially, as indicated by t
slight concavity of the tails in the semilogarithmic plot o
Fig. 20, similar to what was observed in Fig. 10. The ma
obvious difference comes from the behavior observed

-
tial

FIG. 18. Temporal evolution of̂ w& for r 050.001 andr 0

50.016. In the inset, temporal evolution of^I 2&.

FIG. 19. ^w& and ^I 2& ~in the inset! as functions of the ratio
Cv /Ch .
3-8



ly
th

tia

e
y
re

he

e
on

io
th
re
in
a
e

ak

t,
a

f

en-

or-
of

tri-
ates

m-

gs

tics
w.

flow
en
tic
ith

an
ius

of

r-
,
is

,

F
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small values ofR/^R&. The experimental PDF’s are sharp
peaked very near 0, whereas the PDF’s predicted by
model show a much smoother maximum, aroundR/A^R2&
'0.45 ~we recall, however, that the value ofR where the
experimental PDF peaks is significantly below the iner
range!.

The PDF ofw is shown in Fig. 21. As was the case for th
experimental data, the PDF ofw decreases monotonicall
from w50 to w51. The distributions in both cases a
therefore biased toward smallw, implying, qualitatively, a
large probability for very elongated triangles. However, t
cuspy aspect of the experimental PDF ofw is replaced by a
much smoother maximum in the case of the model.

The joint PDF ofw andR presented in Fig. 22 shows th
same qualitative features as Fig. 16. The isoprobability c
tours are at a marked angle with the axisw50 and
R/A^R2&50, implying that the largest values ofR are found
preferentially for very smallw, i.e., for very distorted tri-
angles. Similarly, very regular triangles (w close to 1) are
rare, and are associated with rather small radii of gyrat
R/A^R2&. The differences already reported between
PDF’s of R/A^R2& and w can be seen by comparing mo
precisely the locations of the isoprobability levels of the jo
PDF. We find that the isocontours accumulate more tow
(R/A^R2&,w)5(0,0) in the experimental case than in th

FIG. 20. PDF of R/^R& for t5nDT with DT52 and n
51, . . . ,5.

FIG. 21. PDF of ^w& for t5nDT with DT50.4 and n
51, . . .,25.
05630
e

l

-

n
e

t
rd

model prediction. This is in large part due to the large pe
of probability nearR/A^R2&50 in the experiments.

The PDF ofx, not shown, is found to be completely fla
contary to the experimental PDF, Fig. 13, which shows
cusp nearx50. The isocontours of the joint PDF o
R/A^R2& and x consist of lines parallel to thex50 axis,
strongly suggesting that the joint PDF is completely indep
dent ofx.

To summarize our results, we note that the model c
rectly anticipates the main trends of the distribution
R/A^R2& andw, namely,~i! the tails of theR/A^R2& distri-
butions decay somewhat more slowly than exponentially,~ii !
a large fraction of the triangles are very elongated~probabil-
ity is larger for w close to 0), and~iii ! large values of the
radius of gyration are associated with very elongated
angles. However, the model systematically underestim
the very sharp peaks observed for both quantitiesR/A^R2&
andw in the experiments. In the same spirit, the model co
pletely misses the sharp dependence of thex distribution, an
effect which can be understood in view of the shortcomin
of the model.

VI. DISCUSSION AND CONCLUSIONS

The purpose of this article was to investigate the statis
of the shapes of triangles advected by a 2D turbulent flo
To this end, we have used an experimentally generated
to follow sets of triangles numerically. The results have be
compared with the prediction of a simplified stochas
model, describing the statistics of shapes. Two regimes w
well-characterized distributions are identified.

At scales larger than the integral scale, but smaller th
the size of the box, a diffusive regime where the mean rad
of gyration ^R&}t1/2 is observed. The shape distribution
this regime is essentially Gaussian.

When the mean radius of gyration^R& is in the ~experi-
mentally limited! inertial range of scales, Richardson dispe
sion is observed (^R&}t3/2), and a plausibly self-similar
nontrivial distribution of shapes is identified. This regime
characterized by an~almost! exponential tail of the PDF of
R, and by distributions ofw and x sharply peaked near 0

FIG. 22. Contour lines of the logarithm of the joint PD
P(w,R/^R&) for the Monte Carlo model.
3-9
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contrary to the Gaussian distribution, which is uniform f
both variables. These results show that triangles hav
higher probability of being elongated than for the pure
Gaussian distribution of shapes.

The main limitation of these very suggestive experimen
results comes from the limited range of inertial scales. In
Richardson regime, the probability thatR is below the iner-
tial range remains relatively important, therefore introduc
some biases that should disappear when the inertial ran
increased.

Whereas the experimental velocity field exhibits a limit
inertial range, we have studied the shape distribution in a
turbulent flow with the help of a simplified stochastic mod
This model predicts a non-Gaussian, self-similar shape
tribution, parametrized by the ratio between the incoher
and coherent components of the flow, acting on the th
points. For a realistic value of this ratio, the tails of the PD
of R and the overall shape of the PDF ofw qualitatively
agree with the exponential PDF’s. One strong differen
comes from the definition ofx, which is found to be uniform
in the model. In general, the probability that two or thr
particles are very close~separated by a distance smaller th
^R&) is found to be comparatively smaller in the model th
experimentally. This phenomenon is partly due to the sh
comings both of the experimental flow~limited inertial
range!, and of the model, which artificially increases the ra
of separation of two close particles when the third particle
far away. This tends to make the distribution ofx even, in
particular by diminishing the probability around (x,w)
5(0,0).

The quantitative differences observed between the exp
mental distribution and the model predictions can theref
be understood by elementary considerations, related to
deficiencies of the flow and the model. Beyond the discr
ancies pointed out, we wish to emphasize that in both ca
elongated triangles are observed with a probability sign
cantly higher than in the completely random case. Ph
cally, this can be understood as resulting from the action
the coherent, strainlike component of the velocity field wh
tends to align all points. The effect of alignment of particl
in a particular direction of the strain, coarse grained at
scale characterizing the set of points, should persist bot
the case of clusters with more than three points, and
higher dimensions (D53).
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APPENDIX: THE GAUSSIAN SHAPE DISTRIBUTION
FOR TRIANGLES IN TWO DIMENSIONS

Let us assume that the two vectors, defined by Eq.~2!, are
distributed according to the Gaussian distribution
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P~rW 1 ,rW 2!5
4

p2^R2&2exp@22~rW 1
21rW 2

2!/^R2&#. ~A1!

We reexpress in this Appendix the PDFP in terms of the
variables introduced to characterize the shape of the
angles. The vectorsrW 1 andrW 2 are decomposed according
@22,23#

rW 15j1cosxê1~f!1j2sinxê2~f!,

rW 252j1sinxê1~f!1j2cosxê2~f! ~A2!

with ê1(f)5(cosf,sinf) and ê2(f)5(2sinf,cosf). The
anglef is a rotation angle, with respect to a fixed orthogon
basis. A straightforward calculation leads to the followin
result for the Jacobian of the transformation (j1 ,j2 ,x,f)
→(r11,r12,r21,r22), wherer i , j is the j th component ofrW i :

UD~r11,r12,r21,r22!

D~j1 ,j2 ,x,f!
U5uj2

22j1
2u, ~A3!

so the PDF expressed in the variablesj1 , j2 , x, andf is

P~j1 ,j2 ,x,f!5P~r11,r12,r21,r22!UD~r11,r12,r21,r22!

D~j1 ,j2 ,x,f!
U

5
4

p2^R2&2 exp@22~j1
21j2

2!/^R2&#uj2
22j1

2u.

~A4!

Introducing further R5ArW 1
21rW 2

25Aj1
21j2

2 and w
52j1j2 /(j1

21j2
2), the Jacobian of the transformatio

(j1 ,j2)→(R,w) is

U D~R,w!

D~j1 ,j2!
U5 2uj2

22j1
2u

R3 . ~A5!

Combining Eqs.~A4! and ~A5!, one finds that the Gaussia
PDF of shapes, expressed withR, w, x, andf is simply

P~R,w,x,f!5
8

^R2&2R3exp~22R2/^R2&!. ~A6!

Equation~A6! implies that the probabilities of the variable
x andw are both uniform, which implies that the Gaussi
mean values arêx&gau5p/12 and^w&gau51/2.

With the distribution ofR andw, it is straightforward to
compute the PDF of the areaA5wR2. Indeed,

P~A!5
8

^R2&2E dRdwd~A2wR2!R3exp~22R2/^R2&!

5
8

^R2&2E
AA

`

dRRexp~22R2/^R2&!

5
2

^R2&
exp~22A/^R2&!. ~A7!

The quantityI 2, used to characterize the shape distortio
is defined as the ratio of the second eigenvalue of the
3-10
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ment of inertia tensor andR2. This quantity can be ex
pressed, in the case of triangles in two-dimensions, aI 2

5(12A12w2)/2. The mean value, in the sense of t
Gaussian distribution ofI 2, can be simply computed by usin
the fact thatp(w)51. Introducing the change of variabl
w5sinu (0<u<p/2), we havep(u)5dw/du5cosu and
Ib

tt

s

.

,

05630
I 25(12cosu)/2, implying that

E
0

1/2

dI2I 2P~ I 2!5E
0

p/2

du
1

2
~12cosu!cosu5

1

2S 12
p

2 D .

~A8!

The mean value ofI 2 is thus^I 2&gau5(12p/4)/2.
tt.
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