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Dynamical equations for high-order structure functions, and a comparison of a mean-field theory
with experiments in three-dimensional turbulence

Susan Kurien and Katepalli R. Sreenivasan
Physics Department and Mason Laboratory, Yale University, New Haven, Connecticut 06520-8286

~Received 20 May 2001; published 22 October 2001!

Two recent papers@V. Yakhot, Phys. Rev. E63, 026307,~2001! and R. J. Hill, J. Fluid Mech.434, 379,
~2001!# derive, through two different approaches that have the Navier-Stokes equations as the common starting
point, a set of dynamic equations for structure functions of arbitrary order in turbulence. These equations are
not closed. Yakhot proposed a ‘‘mean-field theory’’ to close the equations for locally isotropic turbulence, and
obtained scaling exponents of structure functions and expressions for the peak in the probability density
function of transverse velocity increments, and for its behavior for intermediate amplitudes. At high Reynolds
numbers, some relevant experimental data on pressure gradient and dissipation terms are presented that are
needed to provide closure, as well as on other aspects predicted by the theory. Comparison between the theory
and the data shows varying levels of agreement, and reveals gaps inherent to the implementation of the theory.
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I. INTRODUCTION

It is well known that the Navier-Stokes~NS! equations of
fluid motion can be used to derive equations for statist
quantities such as the moments of turbulent velocity at s
eral simultaneous spatial points. This statistical reformu
tion of the dynamic equations introduces extra variables, g
ing rise to the familiar ‘‘closure’’ problem in turbulence. I
the interest is in small-scale properties of turbulence, i
more appropriate to obtain equations for quantities that
volve only small scales,r !L, whereL corresponds to the
energetic large-scale motion of turbulence. The simp
such quantities involve two-point statistics and are cal
structure functions. These are the moments of velocity inc
mentsDur5u(x1r)2u(x) over a separation vectorr, and
uru!L is the range of interest. The equation governing
third-order structure function is known from Kolmogorov
pioneering work@1#. In the so-called inertial range define
by h!r !L, whereh is the Kolmogorov scale represent
tive of the dissipative motion, the equation takes a parti
larly simple form if the turbulence is locally homogeneo
and locally isotropic. For the longitudinal velocity increme
Dur5u(x1r )2u(x), where u is the velocity componen
along the direction of the separation vector, it takes the fo

^Dur
3&52 4

5 ^«&r , ~1!

where^«& is the average energy dissipation rate. This is K
mogorov’s 4/5 law. For the third-order structure function
the transverse velocity incrementDv r5v(x1r )2v(x),
wherev is the velocity component transverse to the sepa
tion vector, we also have the result

^Dv r
3&50. ~2!

Recently, Yakhot@2# and Hill @3# have derived dynamica
equations for structure functions of all higher orders. Yak
first derived an equation for the generating functionZ from
which structure functions of all orders can be obtained
simple differentiation. Hill worked directly in the velocity
1063-651X/2001/64~5!/056302~14!/$20.00 64 0563
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space to generate those same equations. The equation
on the whole, new. However, unlike Kolmogorov’s 4/5 law
they are not closed. Yakhot presents a ‘‘mean-field
proach’’ to obtain contributions from the pressure gradie
and dissipation terms, thereby closing the equations. F
these closed equations, it is possible to obtain certain sm
scale properties such as the probability density funct
~PDF! of transverse velocity differences and the scaling
ponents of structure functions of all orders.

Our overall goal is to inquire if anything new can b
learnt about turbulence through the new equations of Yak
and Hill. In particular, we wish to clarify the closure assum
tions, and assess the value of the mean-field approach
providing experimental comparisons for theoretical pred
tions. We accomplish our goal in the following specific wa
Since the equations and the procedure for deriving them
not yet familiar, we summarize them in Sec. II and, for la
use, explicitly write them down for structure functions
several orders. Section III introduces the experimental ba
ground needed for our purposes, while Sec. IV examines
approximate balance of the equations without clos
assumptions—mostly to set the stage for further discussi
We summarize the mean-field theory in Sec. V and pres
in Sec. VI comparisons of its predictions with experimen
data on the PDFs of transverse velocity increments and t
scaling exponents. Section VII deals explicitly with the ma
nitude of dissipation terms, and our conclusions are sum
rized in Sec. VIII. We consider the direct numerical simu
tions data at some high Reynolds number as the b
resource for carrying this work forward, and hope that t
work will stimulate such efforts.

II. THEORETICAL BACKGROUND

A. Brief review of the relevant equations

Yakhot @2# writes the NS equations in terms of the ge
erating functionZ5^el•Dur&, whereDur is the vector veloc-
ity difference between two space pointsx1 andx2 separated
by the vector distancer. The generating functionZ is con-
©2001 The American Physical Society02-1
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structed, in the spirit of field theories, so that its Lapla
transform gives the PDF of the velocity differences, a
obeys the equation

]Z

]t
1

]2Z

]lm]r m
5I f1I p1D. ~3!

Here I f , I p and D are the~known! forcing, pressure, and
dissipative terms, respectively, and are given by

I f5^l•Dfel•Dur&, ~4!

I p52l•^el•Dur@¹2p~x2!2¹1p~x1!#&,

D5nl•^@¹2
2Dur~x2!2¹1

2Dur~x1!#el•Dur&.

The forcing term is small in the inertial range and so n
glected. The closure of the equation requires a knowledg
I p and D. In particular, the advection terms are treated
actly. The pressure termI p contains correlation functions o
the form ^(Dur) i(Dur) j•••(Dur)mD(¹p)&, and so one re-
quires only the knowledge of the correlation of the press
gradientincrementsand multipoint velocity increments. Th
multipoint energy dissipation functionD has a structure tha
depends on details such as the order of the moment con
ered. As we shall see later, its structure resembles the
known refined similarity hypotheses of Kolmogorov@4#. In
any case, the terms needed for the closure of Eq.~3! are, in
principle, well defined.

In locally homogeneous and isotropic turbulence, the f
lowing transformation of variables is justified:h15r , paral-
lel to the separation vector;h25(l.r)/r , the component ofl
along r; h35Al22h2

2, the component ofl in the direction
perpendicular the separation vector. In these new variab
Eq. ~3! for the generating function becomes

] tZ1F]1]21
d21

r
]21

h3

r
]2]31

~22d!h2

rh3
]32

h2

r
]3

2GZ
5I f1I p1D, ~5!

where] i denotes the partial derivative with respect tohi . In
the new variables, the generating function can be written

Z5^exp~h2Dur1h3Dv r !&, ~6!

whereDur and Dv r are the familiar velocity differences in
the longitudinal and transverse directions, respectively.
structure functions are then generated by successive di
entiation ofZ as

Sn,m[^~Dur !
n~Dv r !

n&5]2
n]3

mZ~r !uh25h350 . ~7!

From this point on, we use the symbolsDur and Du inter-
changeably~alsoDv r andDv). Let us first focus attention on
even-order structure functions for which the dissipat
terms are negligible in the inertial range. Multiply Eq.~5! by
h3, perform]3]2

2n21 of the resulting equation, and take th
limit h25h3→0. We then have
05630
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]S2n,0

]r
1

d21

r
S2n,02

~d21!~2n21!

r
S2n22,2

52~2n21!^Dpx~Du!2n22&1P~12cosr / l f !

3an,dS2n23,0, ~8!

whered denotes the space dimension,P is the mean energy
‘‘pumping’’ rate, l f is the forcing scale andan,d[2(2n
21)(2n22)/d. For n51, we obtain the well-known rela
tionship between the second-order longitudinal and tra
verse structure functions, as

]S2,0

]r
1

d21

r
S2,05

d21

r
S0,2. ~9!

For n52, Eq. ~8! yields the relation

]S4,0

]r
1

d21

r
S4,05

3~d21!

r
S2,223^~Dpx!~Du!2&,

~10!

which is exact in the case of incompressible, isotropic tur
lence in the inertial range~where dissipation terms are neg
ligible!. This equation was derived in Ref.@5# using Hill’s
method, and investigated numerically in Ref.@6#. To extract
further information from this equation, one has to invo
some closure. We consider only three-dimensional tur
lence below unless specified otherwise. If the pressure t
is small in the inertial range~as argued in Ref.@6# and will be
amplified momentarily!, we obtain

]S4,0

]r
1

2

r
S4,0'

6

r
S2,2. ~11!

Following this same procedure, it is now easy to wr
down a sixth-order equation withn53 in Eq.~8!. Neglecting
the pressure term again, we obtain

]S6,0

]r
1

2

r
S6,0'

10

r
S4,2. ~12!

In a similar manner, we can extract two additional relatio
for fourth and sixth orders. Their corresponding approxim
forms ~again neglecting pressure contributions! are

]S2,2

]r
1

4

r
S2,2'

4

3r
S0,4, ~13!

]S2,4

]r
1

6

r
S2,4'

6

5r
S0,6. ~14!

Equations~11!–~14! were also derived by Hill@3# on the
basis of homogeneity or local homogeneity. For the parti
lar case of isotropy, Hill developed a matrix algorithm f
solving the system of equations that determined all com
nents of the tensorial structure function of a given order. T
resulting equations confirm Yakhot’s results. Hill’s formul
tion provides an additional useful fact that there are exa
two equations relating fourth-order structure function
2-2
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DYNAMICAL EQUATIONS FOR HIGH-ORDER . . . PHYSICAL REVIEW E 64 056302
namely, Eqs.~11! and~13!. For the sixth order, his procedur
shows that there arethree equations relating the nonzer
components of structure functions, and the third equatio
easily generated. Again without the pressure terms, this
maining sixth-order equation is

]S4,2

]r
1

4

r
S4,2'

4

r
S2,4. ~15!

Equations~11!–~15! are relationships among different com
ponents of structure-function tensor of the same order.

Hill’s procedure is convenient for writing down the equ
tions for odd-order structure functions. The equation for
third-order is well known@see Eqs.~1! and~2!# and need not
be written again. There are three equations for the fifth or
which, again without pressure and dissipation terms, are

]S5,0

]r
1

2

r
S5,0'

8

r
S3,2; ~16!

]S3,2

]r
1

4

r
S3,2'

8

3r
S1,4; ~17!

]S1,4

]r
1

6

r
S1,4'0. ~18!

The ' symbol in this set of equations has to be trea
with greater caution than for even orders because dissipa
terms may not be small for odd orders even in the iner
range, see Ref.@2#. Thus, the approximation implied in Eqs
~16!–~17! may be more suspect than for even orders,
which dissipation terms are indeed small in the iner
range. We shall assess this feature in Sec. VII, but
readily see by inspection that the approximation cannot
correct for at least the last equation above, Eq.~18!: It con-
tains only one component of the fifth-order structure funct
S1,4, which, when estimated using Kolmogorov’s scali
~1991! @7#, generally denoted as K41, shows an imbalance
order unity.

A further discussion of these equations, and of the deg
to which they may be reasonable, requires tangible con
with experiments. It is, therefore, necessary to introdu
some basic experimental details at this stage before resu
the discussion of the theory.

III. EXPERIMENTAL CONDITIONS

The velocity data were acquired by means of a cross-w
probe mounted at a height of about 35 m above the gro
on a meteorological tower at the Brookhaven National La
ratory. The hot wires were about 0.7 mm in length at 5mm
in diameter. They were calibrated just prior to bei
mounted on the tower, and operated on DISA 55M
constant-temperature anemometers. The frequency resp
of the system was typically good up to 20 kHz. The voltag
from the anemometers were low-pass filtered and digitiz
The low-pass cutoff was never more than half the samp
frequency f s . The sampling rate was adequate to reso
most of the scales, including dissipative ones. The volta
were converted to velocities in a standard way through
05630
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standard nonlinear calibration procedure. The mean wind
locities, roughly constant over the duration of a given d
set, ranged between 5 and 10 ms21 in the entire series. The
usual procedure of surrogating time for space~‘‘Taylor’s hy-
pothesis’’! was used to obtain the mean dissipation rate^«&
and an estimate for the Kolmogorov scaleh.

The details of the data analyzed here are similar to th
given in Refs.@8,9#. Briefly, the Taylor microscale Reynold
number is 10 700, the large scaleL is about 42 m, Kolmog-
orov scaleh is 0.44 mm, the scaling range according to t
linear part in the third-order structure function is conserv
tively between 0.01 m and 0.2 m; although both these nu
bers could be stretched in either direction by factors of or
2, this range will be regarded as the operational definition
the inertial range.

The theoretical development discussed here is mean
locally isotropic turbulence appropriate to asymptotica
large Reynolds numbers. The present measurements ar
deed at large enough Reynolds numbers, but it is not obv
that the small scales are isotropic. Indeed, we have u
similar data before@10,11# to extract anisotropic parts of th
structure functions by performing the SO~3! decomposition.
Thus, a few explanatory words regarding the degree
small-scale isotropy are appropriately described here
terms of two familiar quantities.

Figure 1 shows the longitudinal spectral densityE11 and
the transverse spectral densityE22 for one of the data sets. I
strict isotropy prevails in the inertial range, the ratioE22/E11
should be a constant~54/3 if K41 scaling is correct!. The
data show that the ratio, while varying slowly in the inerti
range from a somewhat smaller value than 4/3 to a somew
larger value, is not far from being 4/3. Similarly, for third
order structure functions, we have the exact result@12# that
the ratio S1,2/S3,0 should be 1/3. Measurements show th
this ratio, which is indeed reasonably constant in the iner
range, has a magnitude of about 0.42~see Fig. 2!. There is
undoubtedly some degree of anisotropy in the inertial ran
and so the conclusions are to some degree affected by
feature. To pursue this issue further, we note thatS3,0 has the

FIG. 1. Longitudinal and transverse spectral densities, Tay
microscale Reynolds number'19 000. The high-frequency noise i
present in only some sets of data considered.
2-3
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SUSAN KURIEN AND KATEPALLI R. SREENIVASAN PHYSICAL REVIEW E64 056302
expected value of 4/5, andS0,3, which should be zero ex
actly for the isotropic case, is small, no more than abou
tenth of S3,0. The anisotropy is thus not large for prese
purposes, and the transverse component is perhaps the
more affected. This conclusion is consistent with Re
@11,13#.

In summary, then, we regard for present purposes the
partures from isotropy to be benign in the inertial rang
especially for even orders, and expect that the results will
be qualitatively affected by their presence. A completely s
isfactory demonstration of this statement is, however,
easy.

IV. THE BALANCE OF THE APPROXIMATE EQUATIONS

Using the experimental data just described, we calcu
the left-hand side~LHS! and right-hand side~RHS! of each
approximate equation of Sec. II, and obtain the relative s
of the difference@~LHS!-~RHS!#/~LHS!; this difference is an

FIG. 3. The terms of Eq.~11! with their relative difference.

FIG. 2. The ratio ofS1,2 to S3,0 showing some deviations from
the isotropic value of 1/3 in the inertial range. In this figure a
elsewhere, the horizontal bar in the figure represents a conserv
extent of the scaling region determined from Kolmogorov’s 4
law.
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estimate of the magnitude of the neglected terms. Since
even orders, the dissipation terms are small in the iner
range, the imbalance is mostly due to the neglected pres
terms. Figures 3, 4, 5, 6, and 7 display the results for E
~11!, ~12!, ~13!, ~14!, and ~15!, respectively. The absolut
value of the relative difference is also shown in each case
the inertial range, all four equations seem to balance wit
about 10% of the LHS.

This smallness of pressure terms in the inertial range s
gests that the intercomponent energy transfer~for which they
are responsible! is probably small. Thus, if the forcing is
strongly anisotropic, there is a suggestion that the anisotr
does not tend to diminish rapidly as the scale size decre
through the inertial range. There is growing evidence t
this might indeed be so@11,16#. This same smallness ma
also suggest that the operating physics in the inertial ra
might have some connection to the forced Burgers equat
This thought is worth some consideration. For smallerr,
where some of the imbalance in Eqs.~11!–~15! is no doubt
due to increasing dissipation effects, it is likely that some
it is due the neglected pressure terms; if so, one may c
clude that the pressure-gradient effects that are negligibl

ive

FIG. 4. The terms of Eq.~12! with their relative difference.

FIG. 5. The terms of Eq.~13! with their relative difference.
2-4
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DYNAMICAL EQUATIONS FOR HIGH-ORDER . . . PHYSICAL REVIEW E 64 056302
the inertial range reenter the balance as one approache
small-scale end of the inertial range. It is usually the c
~for example towards the tips of aircraft wings! that vortices
are generated when pressure-gradient terms are activ
Perhaps the small-scale vortex tubes~or worms, see Refs
@14,15#! are a result of this effect.

Despite this intriguing suggestion, it is difficult to sta
that pressureless physics has serious relevance to the in
range of three-dimensional turbulence. One reason is th
is not clear if the pressure terms are similarly small in eq
tions for odd-order structure functions. Unfortunately, exa
ining the balance of Eqs.~16!–~18! will not immediately
give us the needed information. This is so because, at
stage, there is no means of estimating dissipation terms
may also be important in the inertial range for odd-orde
Even so, it is instructive to assess the balance of these e
tions. This is done in Figs. 8–10. Since odd moments do
converge as well as even moments, there is a significa
more scatter in the plots. Despite this scatter, it is reason
clear that the relative difference of LHS and RHS in Fig. 8
of the order of 20-30% in the inertial range. In Fig. 9, t
relative difference is perhaps larger, up to 50% for somer.

FIG. 6. The terms of Eq.~14! with their relative difference.

FIG. 7. The terms of Eq.~15! with their relative difference.
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For Eq.~18!, as was expected and remarked upon earlier,
imbalance is quite large~see Fig. 10!.

The discussion of how one might ascertain the sepa
contributions to this imbalance by pressure and dissipa
terms is relegated to Sec. VII.

V. A MEAN-FIELD THEORY

The previous section has shown that the imbalance in
approximate equations for even-order structure functio
caused entirely by the neglect of pressure terms, is of
order 10%. The imbalance is larger for odd orders, for wh
it is to be remembered that dissipation terms might also c
tribute. Thus, ignoring pressure and dissipation terms is
an option in general, and it is clear that one must mak
plausible theory for them. This has been attempted in
mean-field theory of Ref.@2#. Though our interest and con
tributions are primarily in the experimental assessment of
theory, it is helpful to provide here a summary of the theo
itself—if only to clarify the motivation for the experimenta
tests performed. We shall focus on the essence of the ph
cal arguments, rather than on analytical details.

FIG. 8. The terms of Eq.~16! with their relative difference.

FIG. 9. The terms of Eq.~17! with their relative difference.
2-5
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A. General remarks

Mean-field theories provide approximate means of
scribing a thermodynamic system by supposing that e
‘‘particle’’ in a many-body system moves in the ‘‘mean
field of all other particles in the system. This is opposite
the situation in which only nearest neighbor interactions m
ter. More formally, attribute to the system an order parame
f that is zero when the system is ordered and becomes
creasingly nonzero with increasing disorder. If the fluctu
tions in the order parameter are small, then it may be
placed by a spatially uniform average value. The mean-fi
approximation implies infinite range interactions; while th
cannot be realized in practice, the order parameter in m
thermodynamic systems could become arbitrarily small
the temperature approaches a phase transition valueTc . The
Ginzburg-Landau theory makes use of this feature to prop
a description of the free energy and to derive critical ex
nents at phase transitions. In general terms, the free en
F(f,T) is expanded in powers off as

F5F01Af1Bf21Cf31•••, ~19!

whereA, B, andC are functions ofT. Near the critical point
in theT space, whereT→Tc , the expansion can be truncate
at the lowest-order terms inf. The expansion then provide
a qualitative description of the thermodynamic processes
practice, this mean-field approach may work even far fr
the critical point.

Strictly speaking, a mean-field theory may not apply
turbulence where quantities such as the free energy and o
parameter cannot be defined unambiguously. In Yakh
theory, the idea is carried over qualitatively by identifying
small parameter in some regime and expanding other de
dent quantities around that small parameter. The ‘‘ph
transition’’ considered is the change of sign in energy fl
that occurs in going from two-dimensional (2d) to three-
dimensional (3d) turbulence. It is understood from Kolmog
orov’s equation for the third-order structure function that t
energy transfer is from the small to the large scale ind
turbulence, and vice versa in 3d turbulence. It is assume

FIG. 10. The terms of Eq.~18! with their relative difference.
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that this change is continuous, changing sign at some crit
dimensiondc—analogous to the critical temperatureTc in
thermodynamic phase transitions. In 2d turbulence, the dis-
sipation is negligible for high Reynolds numbers~because
the energy ultimately concentrates in the large scale!. In 3d
turbulence, on the other hand, the dissipation is the key
energy transfer from large to small scales. The hope, the
that both pressure gradient and dissipation can be expa
in terms of a small parameter in the vicinity ofdc .

B. The pressure terms

The energy transfer in turbulence dynamics is usually d
cussed in terms of longitudinal structure functions~for ex-
ample, via Kolmogorov’s 4/5 law!, and transverse structur
functions are not assigned a direct role. Yakhot, therefo
regards the fluctuations in the transverse velocity increm
Dv r as small—in effect, if not in actual fact. It is know
from numerical simulations@17# as well as experiments@18#
of the inverse cascade in 2d turbulence thatDv r is almost
exactly gaussian. The absence of intermittency make
plausible to regard the fluctuations as ‘‘small.’’ We sha
therefore, consider the 2d case briefly.

The key step for further analysis is the introduction of
conditional expectation of the pressure gradient increm
for a fixed value ofDur , Dv r , andr as

^]yp~x1r !2]yp~x!uDur ,Dv r ,r &

'(
m,n

km,n~r !~Dur !
m~Dv r !

n. ~20!

This is related to the needed correlations inI p , which is of
the form

^@]yp~x1r !2]yp~x!#~Dur !
p~Dv r !

q&

5E ^]yp~x1r !2]yp~x!uDur ,Dv r ,r &Dur
pDv r

q

3P~Dur ,Dv r ,r !d~Dur !d~Dv r !. ~21!

The use of the conditional expectation provides a tool
expanding the pressure terms in terms of the ‘‘small qu
tity’’ Dv r . Now, in the spirit of the Ginzburg-Landau expa
sion, only the lowest-order terms inDv r are retained~corre-
sponding toDur ,Dv r , and Dv r!. The prefactors of the
expansion are constrained by the incompressibility condit
and by the dimensionality of space.

By substituting in Eqs.~9!–~11! the pressure term derive
from the conditional expectation value, and assuming
exponents to be given by from Kolmogorov’s K41 scalin
arguments@7#, Yakhot concludes that the high-order eve
moments are consistent with gaussianity. The argumen
circular but internally consistent. The gaussianity of t
transverse incrementDv r is then deduced from Eqs.~13!–
~15!. This is in excellent agreement with the results of n
merical simulations of Ref.@17#. Thus, we might conclude
that a plausible mean-field expression for the pressure c
tribution exists for 2d.
2-6
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DYNAMICAL EQUATIONS FOR HIGH-ORDER . . . PHYSICAL REVIEW E 64 056302
The next crucial assumption of the theory is that the sa
form of the mean-field approximation is applicable also
3d turbulence. The rationale is not easy to articulate, es
cially because, unlike in 2d turbulence, the PDFs ofDv r
possess stretched-exponential tails in 3d turbulence@19#. We
shall provide some statements of mild justification sub
quently, but emphasize that the validity or otherwise of t
assumption must be based on the agreement, or lack the
with experiments.

C. The small parameter and the dissipation term

We need to consider the dissipation term before return
to experiments. In the inverse cascade range in 2d turbulence
the dissipation termD can be set to zero because the flo
evolution is towards larger and larger scales. However,D is
central in 3d turbulence, and it is known that dissipatio
fluctuations are immense at high Reynolds numbers@20#.
The objective in a mean-field approach is to locally smo
out the fluctuations, through some procedure such
Obukhov’s @21#. For closure, there is a need to relate th
coarse-grained dissipation field to velocity fluctuation
analogous to that employed in the refined similarity hypo
eses@4,22#. Yakhot’s theory is similar in spirit but the detail
are different, as we shall illustrate.

Let us denote a coarse-grained velocity field for a giv
spatial scaler by Vr . This will be assumed to be the same
Dv r . Certain one-loop calculations of Yakhot and Orsz
@23# give the effective viscosity as

n r'~d2dc!
1/3N~« r r

4!1/3

'Vr
2t r1~higher-order nonlinear terms!, ~22!

where N is a constant that depends weakly on the sp
dimensionalityd and« r is the dissipation rate coarse grain
on the scaler. If we ignore nonlinear terms, this equatio
provides a natural definition oft r , the characteristic time fo
the fieldVr .

There is no obvious justification for ignoring the highe
order nonlinear terms in 3d turbulence, which are typically
O(1), nor in assuming thatt r is small compared toVr /r .
However, if we assume that the theory can be analytic
continued into noninteger dimensions between 2 and 3
suitable small parameter can be generated as follows
dc . The time scale characterizing the interaction of a scar
with all other scales less thanr is the so-called eddy turnove
time, or the time taken for energy transfer to occur betwe
r and the Kolmogorov scaleh. One may use K41 to estimat
this time scale. The process of energy transfer can be tho
to consist of two distinct steps, one involving nonline
transfer across scales without any pressure effects, and
other involving the relaxation due to pressure effects. Ind
turbulence, these two steps are part of the same insepa
process, so the time scales associated with them canno
separated. But, if, as one approachesdc , it is increasingly
true that the pressure effects are small except when scal
the orderh are reached, the two time scales involved co
become disparate, and the relaxation due to pressure t
enters the picture only at the smallest scale and can, th
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fore, be assumed to be fast. Then the dimensionless
qr[t r /u r , wheret r is the time scale for relaxation effect
andu r is the time scale for energy transfer, would be a sm
parameter.

Using this basic idea and his one-loop calculations@23#,
Yakhot deduces the following results:

dc52.56, qr'~d2dc!
1/2, Vr'~d2dc!

21/6,

and so forth. The notion of a critical dimension is not ne
~see Ref.@24#!, though the estimates for it in Refs.@2# and
@24# are substantially different. The precise numbers a
powers in the above equation depend in detail on the
proximation made to compute them, and are presumably
final; they cannot, in any case, be verified experimenta
near the critical dimension. Here, we merely wish to dr
upon the general idea of a critical dimension near whic
small parameter can be defined, and in whose vicinity
energy piles up~as shown by the last of the three relatio
above: the energy is being pumped at a constant rate b
being transferred neither upscale as in 2d nor downscale as
in 3d). These ideas allow Yakhot to truncate the effecti
viscosity and write the dissipation« r in terms of the lowest-
order terms in terms of the coarse-grained velocity fieldin
the vicinity of dc, as

« r'2
1

2

]

]r i
$Vri Vr j

2 @11O~d2dc!#%. ~23!

Perhaps two additional remarks might be usefully ma
First, the coarse-grained velocity fluctuations become v
large as the critical dimension is approached, yet it may se
that the mean-field approximation proposed for press
terms assumes that fluctuations are small. To avoid co
sion, it is important to keep in mind the distinction betwe
fluctuations in longitudinal and transverse velocity incr
ments. The velocity scale that blows up is related to ene
transfer, and hence the longitudinal velocity component,
the component whose fluctuations are supposed to rem
small is the transverse velocity. The sense in which th
fluctuations are small is unclear~because they too are inte
mittent in 3d, see Ref.@19#!, but the fact remains that it take
no part in energy transfer and so itseffectsare thought to be
‘‘small’’ in some rough sense. Since the pressure effects
small, the intercomponent energy transfer is inhibited, a
so, once fluctuations inDv r are small at some scale, the
will presumably remain small at others as well. Secondly,
order to be able to truncate the energy dissipation,
higher-order viscosity terms have to decay faster than
rate of blowup of velocity fluctuations. This is indeed th
case above.

Now, keeping in the mind the symmetries of the NS equ
tions, the simplest form for theVr contributions to the dissi-
pation rate is

«'c~d!DurDv r

]Dv r

]r
. ~24!

The coefficientc(d) must reflect the change in going from
2d to 3d ~zero dissipation to finite dissipation!. This may not
2-7



s

s

-
of

he
a
w
p
an
o

co
an
of
a

e
ca
rs

in
he

he

the

DFs
itive
,

ize.

all
w-
es
ure

s-

SUSAN KURIEN AND KATEPALLI R. SREENIVASAN PHYSICAL REVIEW E64 056302
be a smooth change~as in second-order phase transition!
becausec(dc) could well be singular~as in first-order phase
transitions!. Yakhot assumes, however, that it isO(1) for
d2dc.0. ThenD takes on a form similar to Kolmogorov’
refined similarity hypothesis, relatinĝ« r& with the third-
order longitudinal structure function

D'c~d!h3]h2
]h3

] rZ

'c~d!h3
3K DurDv r

]Dv r

]r
exp~h2Dur1h3Dv r !L

1terms neglected. ~25!

This enables the closure to be complete.
A nontrivial difficulty is the testing of the theory in non

integer dimensions neardc . At present, the consequences
the theory can only be tested in 2d or 3d. The extrapolation
to noninteger dimensions is not an intrinsic limitation of t
theory, but reflects the lack of experimental ingenuity
present. Simulations offer a better opportunity. It must, ho
ever, be noted that in shell models where an interaction
rameter can be tuned to change the direction of energy tr
fer, one can make more reasonable contact with the the
Such comparisons have been attempted recently@25# and the
results are encouraging. We have already noted that the
clusions of the theory are consistent with experiments
simulations of 2d turbulence. We shall examine in the rest
the paper the extent to which the predictions of the theory
applicable also to 3d.

VI. COMPARISON OF THE THEORY WITH
MEASUREMENTS IN THREE-DIMENSIONAL

TURBULENCE

A. Probability density function of transverse velocity
increments

When the forms ofI p and D from previous sections ar
substituted into the full structure function equations, one
generate the following equation for the PDF of transve
velocity incrementsP(Dv r ,r )[P(V,r ):

]P

]r
1

113b

3r

]

]V
VP2b

]

]V
V

]P

]r
50. ~26!

Here,b}c(d). This equation is linear and can be solved
principle, but we have found no simple analytic form of t
solution.~For some discussion of this aspect, see Ref.@26#.!
For smallV, however, the equation admits a solution of t
type r kF(V/r k) with

P~V50,r !}r 2k, ~27!

where, from Yakhot’s theory,

k[
113b

3~12b!
'0.4 ~28!
05630
t
-
a-
s-

ry.

n-
d

re

n
e

andb'0.05, a semiempirical estimate given in Ref.@2#. We
estimate the constant independently from our data. Using
fact that the variancesV of V is expected to vary asr 0.35 ~see
Ref. @8#!, we have the result

PS V

sV
→0,r D[sVP~V→0,r !'r 20.052. ~29!

We shall now test these predictions.
The precise measurement of the peak value of the P

from the data must be done carefully because it is sens
to the bin width chosen aroundV50. In our measurements
the bin width aroundV50 was gradually refined until the
PDF value at the origin no longer depended on the bin s
Figure 11 shows thatP(V→0) at r'100h asymptotes to a
value of 0.64. The sharp ascent of the numbers for very sm
values of the bin width is an artifact of the extreme narro
ness of the bin width, which results in falsely large valu
due to normalization. This is to be ignored. The proced
was repeated for several values ofr. Figure 12 shows the
properly normalized PDF values forV50 for different
scalesr ranging from the Kolmogorov scaleh to the large
scaleL. The scaling exponent for this quantity is'20.065

FIG. 11. The value of the PDF asV/sV→0 for r'100h for
different binwidths.

FIG. 12. Log-log plot of the peak values of the PDFs of tran
verse velocity increments. The line indicates a slope of20.065.
2-8
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in the inertial range, numerically about 25% larger than
theoretical value of20.052. With this experimentally de
rived scaling exponent, we can evaluate thatb'0.058 com-
pared to the estimate in Ref.@2# of 0.05, a 16% difference
Figure 13 also shows that the formr 0.065P(V/sV) is essen-
tially constant for smallV.

One can obtain the form ofF for large V by a steepes
descent approximation~see Ref.@26# for more details!. The
result from Ref.@2# is

F}
1

AV~r !
expS 2

~ ln j!2

V~r ! D , ~30!

where j5VLbk/b21/r k(122b)/12b, and V(r )5bk/(1
2b)2u ln(r/L)u. ~The corresponding expressions in Ref.@2#
are printed incorrectly.! The prefactor of Eq.~30! is possibly
r dependent. Equation~30! can be rewritten as

@2V~r !ln$P~V,r !r kAV~r !%#0.5} ln~j!. ~31!

Figure 14 shows plausible linear behaviors for the interm
diate range~between peaks and tails! of the PDF in the pro-
posed logarithmic units of Eq.~31!. There is, however, evi-
dently still somer dependence that precludes their collap
We recall that corrections to steepest descent approxima
are often logarithmic, but are difficult to calculate here an
lytically. We assume a dependence of the form@ ln(r/L)#g for
the proportionality factor. Figure 15 shows a replot of t
data with the additional factor of@ ln(r/L)#2 multiplying the
PDF. The exponent 2 was chosen because it collapses
data best in the inertial range.~The one separation distanc
that does not collapse belongs to the dissipation range.!

Our main conclusion so far is that the mean-field mod
for pressure and dissipation terms provide a means for c
ing the PDF equation, and for solving it for the limitin
situations. The prediction is that, to first approximation, t
intermediate range estimates of the PDF ofDv r are lognor-
mal for momentsn,20. The experimental data suggest th
this might be so, but that anr-dependent contribution is

FIG. 13. Log-log plot of the near-peak values of the PDFs
transverse velocity increments. The collapse of the data occur
the normalizationr kP(V/r k), wherek50.065.
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missing. It is at present not clear whether this missing asp
is merely a correction to asymptotics, or corresponds to
ditional terms in the mean-field expansion, or is even m
fundamental.

B. The scaling exponents and the prospect of their saturation

Seeking the solution to Eq.~26! under the K41 constrain
for the third-order structure functions and assumingS0,n
}r zn, Yakhot obtained the following formula for the struc
ture function exponents:

zn5
n~113b!

3~11bn!
. ~32!

Table I and Fig. 16 show the calculated exponents a
compare them with those obtained from the direct numer
simulations~DNS!, data @27# as well as experiments. Th
agreement is good for all orders, perhaps slightly better
the DNS data for high-order exponents. The formula in

f
or

FIG. 14. The tails and the intermediate regions of the PDFs
the form required by the theory@see Eq.~31!#. Lognormality of the
intermediate range~between peaks and tails! requires that the data
follow straight lines.

FIG. 15. The collapsed PDF from the previous plot, taking in
account anad hocprefactor of@ ln(r/L)#2.
2-9
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cates saturation for largen, beyond about 20 or so, but th
range is inaccessible at present to experiment as we
simulations.

Using probability density functions to define the statistic
quantities, we have~puttingU5Dur) the conditional expec-
tation value ofV2 for a fixed value ofU, Q2(U), as

TABLE I. Comparison of exponents from the DNS data and
experiment~both using ESS! and Yakhot’s formula, Eq.~32!.

Order DNS Experiment From Eq.~32!

20.80 20.317 20.313 20.328
20.20 20.077 20.078 20.079
0.10 0.036 0.039 0.039
0.20 0.073 0.076 0.077
0.30 0.112 0.113 0.115
0.40 0.150 0.150 0.153
0.50 0.187 0.190 0.190
0.60 0.223 0.221 0.227
0.70 0.260 0.265 0.263
0.80 0.296 0.292 0.299
0.90 0.332 0.333 0.335
1.00 0.366 0.372 0.370
1.25 0.452 0.458 0.456
1.50 0.536 0.542 0.540
1.75 0.619 0.628 0.622
2 0.699 0.708 0.701
3 1 1 1
4 1.279 1.26 1.271
5 1.536 1.56 1.517
6 1.772 1.71 1.742
7 1.989 1.97 1.948
8 2.188 2.05 2.138
9 2.320 2.20 2.314
10 2.451 2.38 2.477

FIG. 16. Comparison of the DNS and experimental values ozn

with those from Eq.~32!. The numbers in the plot are for longitu
dinal structure functions, but these are identical to those for tra
verse structure functions in the isotropic sector see Refs.@10,11#.
05630
as
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S2n22,25E P~U !U2n22Q2~U !dU. ~33!

See Sec. IV of Ref.@2#. The Kolmogorov scaling will hold
~by dimensional arguments! for Q2(U)}U2. On the other
hand, saturation of exponents,z2n→ constant asn→`, is
possible forQ2(U)}Ud for d,2 andU large. We present
the conditional statistical quantityQ2(U) as a function ofr
in Fig. 17. It is not clear if the trend for largeU is in agree-
ment with the saturation condition. There is a very sm
range ofU towards the tails that seems to vary asU2/ln(U2)
but this is not conclusive. There might also be the influen
of anisotropy in the PDFs, as is evident, for example, in
asymmetry of the joint PDFs, which in turn could change t
nature of the tails of conditional statistics.

VII. REMARKS ON THE MAGNITUDE OF DISSIPATION
TERMS

It is helpful to recall that the equation relating even ord
transverse moments to mixed moments of the same orde
3d, without dissipation terms, is

]S2,2n

]r
1

212n

r
S2,2n5

212n

2n11

S0,2n12

r
22n^PyDu~Dv !2n21&

2^Px~Dv !2n&, ~34!

where Py[]yp(x1r )2]yp(x) and Px[]xp(x1r )
2]xp(x). Note that the last term in this equation is inadve
ently omitted in Ref.@2#. The subscriptsx,y denote the com-
ponent of the pressure gradient. In the inertial range,
dissipation term is small for even orders and the forcing te
negligible. In certain equations, only thePx term of the pres-
sure effects appears, and in certain others onlyPy does.
Since all other terms can be measured in such equations
can use those equations and the mean-field pressure mod
estimatePx andPy , and substitute the estimates in equatio

s-

FIG. 17. Q2(U), the conditional expectation value ofV2 on U
for various differentr, on a log-log scale. The upper solid lin
indicatesU2/log(U2), the lower solid line indicates theU2 scaling
slope.
2-10
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for the odd order that contain the form of the pressure ter
From these steps, the unknown terms in the odd-order e
tions, namely, the dissipation terms, can be estimated. Th
the strategy here.

Retaining the pressure term in Eq.~8!, we have

]S4,0

]r
1

2

r
S4,05

6

r
S2,223^Px~Du!2&, ~35!

in which, according to the mean-field approximation,

Px5
G~Du!21A~Dv !2

r
, ~36!

andG andA are unknown constants constrained by the re
tion A52G(S2,0/S0,2) @Eq. ~8! with n51#. This model for
the pressure term may be used to close Eq.~35! giving

]S4,0

]r
1

2

r
S4,05

6

r
S2,22

3

r
GS S4,02

S2,0

S0,2
S2,2D . ~37!

All the terms in this equation may be calculated explici
from the data and the constantG determined via

G5

]S4,0

]r
1

2

r
S4,02

6

r
S2,2

2
3

r S S4,02
S2,0

S0,2
S2,2D . ~38!

Figure 18 showsG as a function ofr. Despite some scatte
we estimate an inertial range value ofG520.15. This pro-
vides thePx part of the pressure term in Eq.~34!. The Py
part in Eq.~34! may be modeled by

Py52H
DurDv r

r
2B

Dv r

~Pr !2/3
, ~39!

whereH andB are unknown constants, andP, as before, is
the rate of forcing. The second term is chosen in order

FIG. 18. The coefficientG of the pressure term computed a
cording to Eq.~38.!
05630
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the pressure term in the third-order equationPyDv r̄50 ~see
Ref. @28# for a proof of this result!. The two constantsH and
B are then related through

B52H
S1,2

S0,2

P2/3

r 1/3
. ~40!

These models forPx andPy provide closure for Eq.~34!,
which now becomes

]S2,2n

]r
1

212n

r
S2,2n5

212n

2n11

S0,2n12

r
22n

H

r

3S S2,2n2
S1,2

S0,2
S1,2nD2

G

r

3S S2,2n2
S2,0

S0,2
S0,2n12D . ~41!

All the terms in this equation may be computed from the d
and, withG520.15, the only remaining constantH may be
obtained. Forn51,

H5

]S2,2

]r
1

4

r
S2,22

4

3

S0,4

r
1

G

r S S2,22
S2,0

S0,2
S0,4D

2
2

r S S2,22
S1,2

S0,2
S1,2D . ~42!

Figure 19 showsH as a function ofr calculated from the data
using Eq.~42!. There is a more or less steady decrease oH
asr increases. In the inertial range, the value decreases f
about 0.42 to about 0.29. The uncertainty in this estim
does not allow us to be definitive but we shall proceed w
an average value ofH50.37 in the inertial range of in wha
follows. Once the pressure terms are accounted for by
model just evaluated, the remaining imbalance in equati
for odd orders must come from dissipative contributio
alone.

Consider one such odd-order structure function equat

FIG. 19. The coefficientH of the pressure term computed a
cording to Eq.~42!.
2-11
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]S1,2n

]r
1

212n

r
S1,2n522n^Py~Dv r !

2n21&1D. ~43!

We now substitute the pressure model of Eq.~39! into Eq.
~43! with n52 @i.e., Eq.~18! with pressure and dissipatio
terms included#, in order to estimate the only unknown ter
D; we useH50.37 andB given by Eq.~40! in the substitu-
tion. Figure 20~a! shows that the pressure termI p computed
in this manner contributes between 10 and 15% to the
ance. Figure 20~b! shows that the dissipation term, being t
remainder (D5LHS2RHS2I p), dominates the right-hand
side of the equation, and is much larger than the pres
term; it alone balances about 85 to 90% of the LHS of E
~43!.

There is another equation, Eq.~17!, for fifth-order struc-
ture functions that contains both kinds of contributionsPx
andPy in the pressure term. In full, it has the form

FIG. 20. ~a! The LHS and pressure terms of Eq.~43! with n
52 andH50.37 in the pressure model; the ratio indicates that
pressure term as computed from the model is about 10–15% o
balance.~b! The terms of Eq.~43! with n52, H50.37; the differ-
ence LHS2I p @where Ip is calculated as in~a!#, indicates the mag-
nitude of the dissipation term.
05630
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]S3,2

]r
1

4

r
S3,25

8

3r
S1,422^PxDu~Dv !2&

22^Py~Dur !
2Dv r&1D. ~44!

We now follow a similar procedure as before. With know
values forG and H in the mean-field model, the pressu
terms are

22^Px~Dur !~Dv r !
2&522

G

r S S3,22
S2,0

S0,2
S1,4D ,

22^Py~Dur !
2Dv r&52

H

r S S3,22
S1,2

S0,2
S2,2D . ~45!

We have already seen in Fig. 9 that the RHS of Eq.~17!
balances the LHS up to about 80% in the inertial range. T
imbalance of about 20% is due to a possible mix of press
and dissipation terms, both of which are now included in E
~44!, thus completing Eq.~17!. The pressure term compute
from Eqs.~45! is shown in Fig. 21~a!. It makes a 10% con-
tribution in the inertial range. The dissipation term from t
remainder is plotted in Fig. 21~b!; while it shows significant
scatter, it is clearly small in the inertial range~of the order of
15% or less! while increasing, as it must, toward dissipativ
scales. On the whole, it appears that both pressure and
sipation are relatively small compared to the RHS of E
~17!, with dissipation terms taking over towards the sm
scales.

From the above two examples it appears that the m
knowledge of the overall order of the structure function~in
this case the fifth! is not enough to prescribe the importan
of the pressure and dissipation terms. The equations tha
late differentcomponentsof the fifth-order structure function
tensor have different structures. While equation Eq.~44!
seems to balance more or less without pressure and dis
tion terms, in Eq.~43! the dissipation term is overwhelm
ingly large.

VIII. CONCLUDING REMARKS

Our experimental results are assessed in the context
mean-field model due to Yakhot, using as framework
new equations derived for structure functions of all orde
The model allows us to write the pressure terms that
cannot measure directly, in terms of the velocity structu
functions that we can measure.~The pressure terms appe
here in a different form from those used in turbulence mo
eling, and so the value of the present work to that endeavo
unclear.! Among the assumptions made, the most drastic
is the use of the same pressure model for 2d and 3d turbu-
lence.

Nevertheless, if we adopt the pressure model in Eq.~34!
in which the dissipation terms are thought to be negligi
~see Refs.@2# and @3# for symmetry and asymptotic argu
ments as to why this might be so!, the coefficientsH andG
can be obtained, and thus the pressure terms can be mod
We can now proceed to analyze odd-order equations
have the same structure for pressure terms. Since the p

e
he
2-12
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sure term is known, we can deduce the only remaining te
namely, the dissipation. For one equation~43!, the dissipa-
tion term is of the order of 80% of the balance. Anoth
dynamical equation~44! for the same order of the structur

FIG. 21. ~a! The LHS and pressure termsI p of Eq. ~44! with
their ratio showing that the pressure only accounts for about
12% of the balance, less as one approaches the dissipative s
and large scales.~b! The LHS and dissipation termsD of Eq. ~44!
with the dissipation computed by subtracting the RHS and the p
sure @see~a!# from LHS; the ratio ofD to LHS indicates a large
scatter but shows that the dissipation contributes in the ine
range only about 10%, but that it increases significantly towards
dissipative scales.
05630
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function has a different structure, and there, the dissipa
term is relatively small. This is a new and interesting sta
ment about the inertial range dynamics, but its validity d
pends on the pressure model used. At least one outcom
the calculations is tautologically correct: in all the cases c
sidered here, the dissipation range is always dominated
the dissipation termD.

Yakhot’s theory postulates the existence of a critical
mension,dc . This, in itself, is not implausible@24#. How-
ever, the precise numerical value ofdc , the analytic structure
of the NS equations in the neighborhood ofdc and the extent
of its ‘‘neighborhood’’ remain unclear. The theory yield
certain exponents for the vicinity ofdc , but the details on
which they are based need closer scrutiny; at least to
some of the steps remain unclear. Thus, while the numer
values of the exponents, as well as that ofdc itself, are prob-
ably not to be taken literally, we should be interested
drawing some qualitative conclusions.

Such conclusions come from a few independent sour
First, the prediction of the theory for the PDF ofDv r for 2d
turbulence is in good agreement with simulations and exp
ments @17,18#. Second, the conditional expectation of th
pressure terms in 3d simulations@29# appear to follow the
mean-field theory, at least for modest values of the veloc
increments. Third, shell model calculations@25# show that
the behavior expected near the critical dimension can be
served as one varies a coupling parameter. Finally,
present comparisons with experimental data at high R
nolds numbers reveal that the scaling of the PDF ofDv r for
small and largeDv r are in some measure of agreement w
the theory. All these are positive developments. Howev
since many details are unclear, it remains to be seen a
whether the theory will evolve into a rational framework. F
now, we find it to be both interesting and worthy of som
attention.
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