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Dynamical equations for high-order structure functions, and a comparison of a mean-field theory
with experiments in three-dimensional turbulence
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Two recent paperpV. Yakhot, Phys. Rev. 63, 026307,(2001) and R. J. Hill, J. Fluid Mech434, 379,
(2002] derive, through two different approaches that have the Navier-Stokes equations as the common starting
point, a set of dynamic equations for structure functions of arbitrary order in turbulence. These equations are
not closed. Yakhot proposed a “mean-field theory” to close the equations for locally isotropic turbulence, and
obtained scaling exponents of structure functions and expressions for the peak in the probability density
function of transverse velocity increments, and for its behavior for intermediate amplitudes. At high Reynolds
numbers, some relevant experimental data on pressure gradient and dissipation terms are presented that are
needed to provide closure, as well as on other aspects predicted by the theory. Comparison between the theory
and the data shows varying levels of agreement, and reveals gaps inherent to the implementation of the theory.
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[. INTRODUCTION space to generate those same equations. The equations are,
on the whole, new. However, unlike Kolmogorov’s 4/5 law,

It is well known that the Navier-Stoke®S) equations of they are not closed. Yakhot presents a “mean-field ap-
fluid motion can be used to derive equations for statisticaproach” to obtain contributions from the pressure gradient
quantities such as the moments of turbulent velocity at sevand dissipation terms, thereby closing the equations. From
eral simultaneous spatial points. This statistical reformulathese closed equations, it is possible to obtain certain small-
tion of the dynamic equations introduces extra variables, givscale properties such as the probability density function
ing rise to the familiar “closure” problem in turbulence. If (PDP of transverse velocity differences and the scaling ex-
the interest is in small-scale properties of turbulence, it igponents of structure functions of all orders.
more appropriate to obtain equations for quantities that in- Our overall goal is to inquire if anything new can be
volve only small scales;<L, whereL corresponds to the learnt about turbulence through the new equations of Yakhot
energetic large-scale motion of turbulence. The simplesand Hill. In particular, we wish to clarify the closure assump-
such gquantities involve two-point statistics and are calledions, and assess the value of the mean-field approach by
structure functions. These are the moments of velocity increproviding experimental comparisons for theoretical predic-
mentsAu,=u(x+r)—u(x) over a separation vecto; and  tions. We accomplish our goal in the following specific way.
Ir|<L is the range of interest. The equation governing theSince the equations and the procedure for deriving them are
third-order structure function is known from Kolmogorov’s not yet familiar, we summarize them in Sec. Il and, for later
pioneering work[1]. In the so-called inertial range defined use, explicitly write them down for structure functions of
by »<r<L, where 7 is the Kolmogorov scale representa- several orders. Section Il introduces the experimental back-
tive of the dissipative motion, the equation takes a particuground needed for our purposes, while Sec. IV examines the
larly simple form if the turbulence is locally homogeneousapproximate balance of the equations without closure
and locally isotropic. For the longitudinal velocity increment assumptions—mostly to set the stage for further discussions.
Au,=u(x+r)—u(x), whereu is the velocity component We summarize the mean-field theory in Sec. V and present
along the direction of the separation vector, it takes the formin Sec. VI comparisons of its predictions with experimental

data on the PDFs of transverse velocity increments and their
(AudY=—2({e)r, (1)  scaling exponents. Section VIl deals explicitly with the mag-
nitude of dissipation terms, and our conclusions are summa-
where(e) is the average energy dissipation rate. This is Kol-rized in Sec. VIIl. We consider the direct numerical simula-
mogorov’s 4/5 law. For the third-order structure function oftions data at some high Reynolds number as the best
the transverse velocity incremeniv,=v(x+r)—uv(x), resource for carrying this work forward, and hope that this
wherev is the velocity component transverse to the separawork will stimulate such efforts.
tion vector, we also have the result

(Avdy=0. 2 Il. THEORETICAL BACKGROUND
Recently, Yakhof2] and Hill [3] have derived dynamical A. Brief review of the relevant equations
equations for structure functions of all higher orders. Yakhot Yakhot[2] writes the NS equations in terms of the gen-
first derived an equation for the generating functibfrom  erating functionz=(eM 2%, whereAu, is the vector veloc-
which structure functions of all orders can be obtained byity difference between two space pointsandx, separated
simple differentiation. Hill worked directly in the velocity by the vector distance. The generating functioZ is con-
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structed, in the spirit of field theories, so that its Laplace Syno d—1 (d—1)(2n—1)
transform gives the PDF of the velocity differences, and ar] + r n0— r n-2.2
obeys the equation
=—(2n—1)(Apy(Au)?"~2)+ P(1—cosr/I
97 227 ( (AP (AW %) +P( £)

at + &7\,ut9r,u=|f+lp+D' © Xan dSn-3,0 €))

whered denotes the space dimensidhjs the mean energy

“pumping” rate, | is the forcing scale and, 4=2(2n

—1)(2n—2)/d. Forn=1, we obtain the well-known rela-

l=(\- Afeh-dury, (4) tionship between thg second-order longitudinal and trans-
verse structure functions, as

|p:_)\.<e"'A“r[V2p(x2)—le(xl)]>, 0752'0+ d—182 d—lso ©
0 2

r

Herel¢, I, and D are the(known) forcing, pressure, and
dissipative terms, respectively, and are given by

. ar r
D= v ([V5AU(X) = VAU (xg) ]t A1),

. ) ) o Forn=2, Eq.(8) yields the relation
The forcing term is small in the inertial range and so ne-
glected. The closure of the equation requires a knowledge of 9S40 d—1 3(d—1) X
|, andD. In particular, the advection terms are treated ex- o T Sao S2.2— 3((Apy) (Au)9),
actly. The pressure teri, contains correlation functions of (10)
the form ((Au,)i(Au,);- - - (Au)wA(VPp)), and so one re-
quires only the knowledge of the correlation of the pressurevhich is exact in the case of incompressible, isotropic turbu-
gradientincrementsand multipoint velocity increments. The lence in the inertial rangévhere dissipation terms are neg-
multipoint energy dissipation functioD has a structure that ligible). This equation was derived in Rd5] using Hill's
depends on details such as the order of the moment consiehethod, and investigated numerically in R]. To extract
ered. As we shall see later, its structure resembles the wellirther information from this equation, one has to invoke
known refined similarity hypotheses of Kolmogorp4]. In some closure. We consider only three-dimensional turbu-
any case, the terms needed for the closure of(Bgare, in  lence below unless specified otherwise. If the pressure term
principle, well defined. is small in the inertial rangéas argued in Ref6] and will be

In locally homogeneous and isotropic turbulence, the fol-amplified momentarily, we obtain

lowing transformation of variables is justified; =r, paral-

lel to the separation vecton,= (\.r)/r, the component ok 354,o+ ES _ Esz 11)
alongr; hy=+/\Z—h2, the component ok in the direction ar | p A0 22

perpendicular the separation vector. In these new variables, ) . o )
Eq. (3) for the generating function becomes Following this same procedure, it is now easy to write

down a sixth-order equation with= 3 in Eq.(8). Neglecting

d-1 h, (2—d)h, h, the pressure term again, we obtain
OZ+| 919,+ e e e :
r r rhs r 0Se0 2 103 L
:|f+|p+D, (5) or +FSG,O~T 4,2+ ( )

whered; denotes the partial derivative with respectito In  In a similar manner, we can extract two additional relations
the new variables, the generating function can be written afor fourth and sixth orders. Their corresponding approximate
forms (again neglecting pressure contributipase

Z=(exp(h,Au,+hzAv,)), (6)
0S,, 4 4
whereAu, andAv, are the familiar velocity differences in a_r+ T 22T 3730'4’ (13
the longitudinal and transverse directions, respectively. The
structure functions are then generated by successive differ- 9S,4 6 6
entiation ofZ as o TS 5 Se (14
SrnmE((Aur)n(AUr)n>:‘92‘7?2(r)|h2:h3:0- () Equations(11)—(14) were also derived by Hil[3] on the

basis of homogeneity or local homogeneity. For the particu-
From this point on, we use the symbadisi, andAu inter-  lar case of isotropy, Hill developed a matrix algorithm for
changeablyalsoAv, andAv). Let us first focus attention on solving the system of equations that determined all compo-
even-order structure functions for which the dissipationnents of the tensorial structure function of a given order. The
terms are negligible in the inertial range. Multiply E§) by  resulting equations confirm Yakhot's results. Hill’s formula-

hs, perform 53&3”’1 of the resulting equation, and take the tion provides an additional useful fact that there are exactly
limit h,=h3;—0. We then have two equations relating fourth-order structure functions,
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namely, Eqs(11) and(13). For the sixth order, his procedure
shows that there aréhree equations relating the nonzero
components of structure functions, and the third equation is
easily generated. Again without the pressure terms, this re-
maining sixth-order equation is

0S4, 4

4
a b FS4,2~ F32,4- (15)

Equations(11)—(15) are relationships among different com-
ponents of structure-function tensor of the same order.
Hill's procedure is convenient for writing down the equa-
tions for odd-order structure functions. The equation for the
third-order is well knowrsee Egs(1) and(2)] and need not

be written again. There are three equations for the fifth order, 10 10 10, 10 10 10
which, again without pressure and dissipation terms, are k(m™)
9Ssq 2 8 FIG. 1. Longitudinal and transverse spectral densities, Taylor
—+ =S5~ —S35; (16) microscale Reynolds number19 000. The high-frequency noise is
ar r>%
present in only some sets of data considered.
0S3, 4 . o .
r + PR §31,4: (17) standard nonlinear calibration procedure. The mean wind ve-
locities, roughly constant over the duration of a given data
39S, 6 set, ranged between 5 and 10 Thsn the entire series. The
ar + 731,4“0- (18 usual procedure of surrogating time for sp&€eaylor’s hy-

pothesis’) was used to obtain the mean dissipation Kate

The ~ symbol in this set of equations has to be treatecBNd an estimate for the Kolmogorov scaje
with greater caution than for even orders because dissipation The details of the data analyzed here are similar to those
terms may not be small for odd orders even in the inertiagiven in Refs[8,9]. Briefly, the Taylor microscale Reynolds
range, see Ref2]. Thus, the approximation implied in Egs. number is 10700, the large scalés about 42 m, Kolmog-
(16—(17) may be more suspect than for even orders, fororov scalez is 0.44 mm, the scaling range according to the
which dissipation terms are indeed small in the inertiallinear part in the third-order structure function is conserva-
range. We shall assess this feature in Sec. VII, but cafively between 0.01 m and 0.2 m; although both these num-
read"y see by inspection that the approximation cannot b@ers could be stretched in either direction by factors of order
correct for at least the last equation above, @@®): It con- 2, this range will be regarded as the operational definition of
tains only one component of the fifth-order structure functionthe inertial range. . .
S, 4, Which, when estimated using Kolmogorov's scaling The theoretical development discussed here is meant for
(1991 [7], generally denoted as K41, shows an imbalance ofocally isotropic turbulence appropriate to asymptotically
order unity. large Reynolds numbers. The present measurements are in-

A further discussion of these equations, and of the degre@eed at large enough Reynolds numbers, but it is not obvious
to which they may be reasonable, requires tangible contadhat the small scales are isotropic. Indeed, we have used
with experiments. It is, therefore, necessary to introducéimilar data befor¢10,11] to extract anisotropic parts of the

some basic experimental details at this stage before resumiﬁ%:UC'fure functions by performing the £ decomposition.
the discussion of the theory. Thus, a few explanatory words regarding the degree of

small-scale isotropy are appropriately described here in
terms of two familiar quantities.

Figure 1 shows the longitudinal spectral dendity and

The velocity data were acquired by means of a cross-wirghe transverse spectral densiy, for one of the data sets. If
probe mounted at a height of about 35 m above the grounsditrict isotropy prevails in the inertial range, the rafig,/E
on a meteorological tower at the Brookhaven National Laboshould be a constarit=4/3 if K41 scaling is corregt The
ratory. The hot wires were about 0.7 mm in length a5n  data show that the ratio, while varying slowly in the inertial
in diameter. They were calibrated just prior to beingrange from a somewhat smaller value than 4/3 to a somewhat
mounted on the tower, and operated on DISA 55MO01larger value, is not far from being 4/3. Similarly, for third-
constant-temperature anemometers. The frequency respormeler structure functions, we have the exact regiff that
of the system was typically good up to 20 kHz. The voltageshe ratio S, ,/S; o should be 1/3. Measurements show that
from the anemometers were low-pass filtered and digitizedthis ratio, which is indeed reasonably constant in the inertial
The low-pass cutoff was never more than half the samplingange, has a magnitude of about 0(42e Fig. 2 There is
frequencyfs. The sampling rate was adequate to resolveundoubtedly some degree of anisotropy in the inertial range,
most of the scales, including dissipative ones. The voltageand so the conclusions are to some degree affected by this
were converted to velocities in a standard way through théeature. To pursue this issue further, we note tathas the

IIl. EXPERIMENTAL CONDITIONS
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RHS :
[LHS-RHS| /LHS |-

r{m)

r(m)
FIG. 2. The ratio ofS, , to S3 showing some deviations from
the isotropic value of 1/3 in the inertial range. In this figure and
elsewhere, the horizontal bar in the figure represents a conservative . )
extent of the scaling region determined from Kolmogorov's 4/5€Stimate of the magnitude of the neglected terms. Since, for
law. even orders, the dissipation terms are small in the inertial
range, the imbalance is mostly due to the neglected pressure
expected value of 4/5, anfl;, which should be zero ex- terms. Figures 3, 4, 5, 6, and 7 display the results for Egs.
actly for the isotropic case, is small, no more than about 411), (12), (13), (14), and (15), respectively. The absolute
tenth of S;o. The anisotropy is thus not large for presen»[valu.e of _the relative difference is also shown in each case. In
purposes, and the transverse component is perhaps the o inertial range, all four equations seem to balance within
more affected. This conclusion is consistent with Refsabout 10% of the LHS. _ o
[11,13. This smalln_ess of pressure terms in the |nert|ql range sug-
In summary, then, we regard for present purposes the ddlests that the intercomponent energy trangfarwhich they
partures from isotropy to be benign in the inertial range @€ responsibleis probably small. Thus, if the forcing is
especially for even orders, and expect that the results will nottrongly anisotropic, there is a suggestion that the anisotropy
be qualitatively affected by their presence. A completely satdoes not tend to diminish rapidly as the scale size decreases
isfactory demonstration of this statement is, however, nothrough the inertial range. There is growing evidence that

FIG. 4. The terms of Eq12) with their relative difference.

easy. this might indeed be spl1,16. This same smallness may
also suggest that the operating physics in the inertial range
IV. THE BALANCE OF THE APPROXIMATE EQUATIONS might have some connection to the forced Burgers equation.

This thought is worth some consideration. For smaller

Using the experimental data just described, we calculat&here some of the imbalance in Eq$1)—(15) is no doubt
the left-hand sidéLHS) and right-hand sidéRHS) of each  due to increasing dissipation effects, it is likely that some of
approximate equation of Sec. I, and obtain the relative sizét is due the neglected pressure terms; if so, one may con-
of the differencd (LHS)-(RHS)]/(LHS); this difference is an clude that the pressure-gradient effects that are negligible in

RHS
|LHS-RHS| / LHS

LHS [
o o RHS L
+—+ |LHS-RHS|/LHS |-

10 N N N i ! b 10 N 1
107 10° 107 107 10° 10' 107 107 10° 10°
r (m) r(m)
FIG. 3. The terms of Eq.11) with their relative difference. FIG. 5. The terms of Eq13) with their relative difference.
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% % LHS
“le o nmHs
|LHS-RHS]| / LHS

LHS

O RHS :
|LHS-RHS|/LHS [*

107 107 10° 10° 107 107 107 107" 10°
r(m) r(m)
FIG. 6. The terms of Eq.14) with their relative difference. FIG. 8. The terms of Eq16) with their relative difference.

the inertial range reenter the balance as one approaches tRer Eq.(18), as was expected and remarked upon earlier, the
small-scale end of the inertial range. It is usually the casémbalance is quite largésee Fig. 10

(for example towards the tips of aircraft wingbhat vortices The discussion of how one might ascertain the separate
are generated when pressure-gradient terms are activatemhntributions to this imbalance by pressure and dissipation
Perhaps the small-scale vortex tuhes worms, see Refs. terms is relegated to Sec. VII.

[14,15]) are a result of this effect.

Despite this intriguing suggestion, it is difficult to state
that pressureless physics has serious relevance to the inertial
range of three-dimensional turbulence. One reason is that it The previous section has shown that the imbalance in the
is not clear if the pressure terms are similarly small in equaapproximate equations for even-order structure functions,
tions for odd-order structure functions. Unfortunately, exam-caused entirely by the neglect of pressure terms, is of the
ining the balance of Eq9.16)—(18) will not immediately  order 10%. The imbalance is larger for odd orders, for which
give us the needed information. This is so because, at thi$ is to be remembered that dissipation terms might also con-
stage, there is no means of estimating dissipation terms thatibute. Thus, ignoring pressure and dissipation terms is not
may also be important in the inertial range for odd-ordersan option in general, and it is clear that one must make a
Even so, it is instructive to assess the balance of these equplausible theory for them. This has been attempted in the
tions. This is done in Figs. 8—10. Since odd moments do nomean-field theory of Ref.2]. Though our interest and con-
converge as well as even moments, there is a significantliributions are primarily in the experimental assessment of the
more scatter in the plots. Despite this scatter, it is reasonablgheory, it is helpful to provide here a summary of the theory
clear that the relative difference of LHS and RHS in Fig. 8 isitself—if only to clarify the motivation for the experimental
of the order of 20-30% in the inertial range. In Fig. 9, thetests performed. We shall focus on the essence of the physi-
relative difference is perhaps larger, up to 50% for same cal arguments, rather than on analytical details.

V. A MEAN-FIELD THEORY

LHS

RHS -
|LHS-RHS|/LHS |

O RHS :
+——+  |LHS-RHS|LHS |

107 107 107 107" 10
r (m) r(m)
FIG. 7. The terms of Eq15) with their relative difference. FIG. 9. The terms of Eq17) with their relative difference.
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that this change is continuous, changing sign at some critical
dimensiond.—analogous to the critical temperatufg in
thermodynamic phase transitions. Id furbulence, the dis-
sipation is negligible for high Reynolds numbeisecause

the energy ultimately concentrates in the large gcate3d
turbulence, on the other hand, the dissipation is the key to
energy transfer from large to small scales. The hope, then, is
that both pressure gradient and dissipation can be expanded
in terms of a small parameter in the vicinity df.

B. The pressure terms

The energy transfer in turbulence dynamics is usually dis-
cussed in terms of longitudinal structure functiaifer ex-
ample, via Kolmogorov’'s 4/5 layy and transverse structure
functions are not assigned a direct role. Yakhot, therefore,
regards the fluctuations in the transverse velocity increment
FIG. 10. The terms of Eq18) with their relative difference. Av, as small—in effect, if not in actual fact. It is known

from numerical simulationgl7] as well as experimen{4.8]
A. General remarks of the inverse cascade ind2urbulence that\v, is almost
exactly gaussian. The absence of intermittency makes it
lausible to regard the fluctuations as “small.” We shall,

10 10 10 10™ 10 10 10
r(m)

Mean-field theories provide approximate means of de
ibi h [ [ h
scribing a thermodynamic system by supposing that eac erefore, consider thed2case briefly.

“particle” in a many-body system moves in the “mean” 0 . .

field of all other particles in the system. This is opposite to The_ key step for further analysis is the |ntrpduqt|on of a
the situation in which only nearest neighbor interactions matconditional expectation of the pressure gradient increment
ter. More formally, attribute to the system an order parametefOr @ fixed value ofAu;, Av,, andr as
¢ that is zero when the system is ordered and becomes in-
creasingly nonzero with increasing disorder. If the fluctua-
tions in the order parameter are small, then it may be re- n N
placed by a spatially uniform average value. The mean-field *% Km,n(r)(AU)"(Av,)" (20
approximation implies infinite range interactions; while this '
cannot be realized in practice, the order parameter in many
thermodynamic systems could become arbitrarily small a
the temperature approaches a phase transition Valu@he
Ginzburg-Landau theory makes use of this feature to propose
a description of the free energy and to derive critical expo-

(dyp(x+r)—dyp(x)|Au; ,Av, 1)

his is related to the needed correlationd F;n which is of
the form

([ayp(x+1)=ayp(x)1(Au)P(Av)9)

nents at phase transitions. In general terms, the free energy ox g
F(¢,T) is expanded in powers ap as :f (dyp(x+1)=dyp(x)|Au, ,Av,,r)AuPAuy
F=Fo+A¢+Bp*+Cp>+- - -, (19 X P(Au, ,Av, ,r)d(Au,)d(Av,). (21)

whereA, B, andC are functions ofT. Near the critical point The use of the conditional expectation provides a tool for
in theT space, wherd — T, the expansion can be truncated expanding the pressure terms in terms of the “small quan-
at the lowest-order terms igp. The expansion then provides tity” Awv,. Now, in the spirit of the Ginzburg-Landau expan-
a qualitative description of the thermodynamic processes; ision, only the lowest-order terms ixw, are retainedcorre-
practice, this mean-field approach may work even far fromsponding toAu, ,Av,, and Av,). The prefactors of the
the critical point. expansion are constrained by the incompressibility condition
Strictly speaking, a mean-field theory may not apply toand by the dimensionality of space.
turbulence where quantities such as the free energy and order By substituting in Eqs(9)—(11) the pressure term derived
parameter cannot be defined unambiguously. In Yakhot'$rom the conditional expectation value, and assuming the
theory, the idea is carried over qualitatively by identifying aexponents to be given by from Kolmogorov's K41 scaling
small parameter in some regime and expanding other depeargumentg 7], Yakhot concludes that the high-order even
dent quantities around that small parameter. The “phasenoments are consistent with gaussianity. The argument is
transition” considered is the change of sign in energy fluxcircular but internally consistent. The gaussianity of the
that occurs in going from two-dimensional R to three-  transverse incrememtv, is then deduced from Eq$13)—
dimensional (8) turbulence. It is understood from Kolmog- (15). This is in excellent agreement with the results of nu-
orov’s equation for the third-order structure function that themerical simulations of Ref17]. Thus, we might conclude
energy transfer is from the small to the large scale ¢h 2 that a plausible mean-field expression for the pressure con-
turbulence, and vice versa ind3turbulence. It is assumed tribution exists for 2.

056302-6



DYNAMICAL EQUATIONS FOR HIGH-ORDER . ... PHYSICAL REVIEW E 64 056302

The next crucial assumption of the theory is that the saméore, be assumed to be fast. Then the dimensionless ratio
form of the mean-field approximation is applicable also forq,=r,/6,, wherer, is the time scale for relaxation effects
3d turbulence. The rationale is not easy to articulate, espeand#, is the time scale for energy transfer, would be a small
cially because, unlike in @ turbulence, the PDFs dlv, parameter.
possess stretched-exponential tails ¢tht@rbulencd 19]. We Using this basic idea and his one-loop calculatip?3],
shall provide some statements of mild justification subse¥Yakhot deduces the following results:
guently, but emphasize that the validity or otherwise of this o oy
assumption must be based on the agreement, or lack thereof, ~ dc=2.56, g;~(d—d¢)™% V,~(d—dc) ™%,

with experiments. and so forth. The notion of a critical dimension is not new

o (see Ref[24]), though the estimates for it in Refi] and
C. The small parameter and the dissipation term [24] are substantially different. The precise numbers and

We need to consider the dissipation term before returninggowers in the above equation depend in detail on the ap-
to experiments. In the inverse cascade rangeditu®bulence ~ proximation made to compute them, and are presumably not
the dissipation ternD can be set to zero because the flowfinal; they cannot, in any case, be verified experimentally
evolution is towards larger and larger scales. Howeleis near the critical dimension. Here, we merely wish to draw
central in 3 turbulence, and it is known that dissipation Upon the general idea of a critical dimension near which a
fluctuations are immense at high Reynolds numHee. small parameter can be defined, and in whose vicinity the
The objective in a mean-field approach is to locally smoothenergy piles ugas shown by the last of the three relations
out the fluctuations, through some procedure such agbove: the energy is being pumped at a constant rate but is
Obukhov's[21]. For closure, there is a need to relate thisbeing transferred neither upscale as thi@or downscale as
coarse-grained dissipation field to velocity fluctuations,in 3d). These ideas allow Yakhot to truncate the effective
analogous to that employed in the refined similarity hypoth-viscosity and write the dissipatia} in terms of the lowest-
eseq4,22). Yakhot's theory is similar in spirit but the details order terms in terms of the coarse-grained velocity fiald
are different, as we shall illustrate. the vicinity of ¢, as

Let us denote a coarse-grained velocity field for a given
spatial scale by V, . This will be assumed to be the same as 6~ — E i
Av,. Certain one-loop calculations of Yakhot and Orszag ' 2 0r;
[23] give the effective viscosity as

{ViiV4[1+0(d—dg)]}. (23)

Perhaps two additional remarks might be usefully made.
ve~(d—do)Y*N(e rH)? First, the coarse-grained velocity fluctuations become very
5 _ ) large as the critical dimension is approached, yet it may seem
~Vy 7+ (higher-order nonlinearterms ~ (22)  that the mean-field approximation proposed for pressure
terms assumes that fluctuations are small. To avoid confu-
where N is a constant that depends weakly on the spacgjon, it is important to keep in mind the distinction between
dimensionalityd ande, is the dissipation rate coarse grained flyctuations in longitudinal and transverse velocity incre-
on the scale. If we ignore nonlinear terms, this equation ments. The velocity scale that blows up is related to energy
provides a natural definition of, , the characteristic time for  transfer, and hence the longitudinal velocity component, but
the fieldV, . the component whose fluctuations are supposed to remain
There is no obvious justification for ignoring the higher- small is the transverse velocity. The sense in which those
order nonlinear terms in@turbulence, which are typically fluctuations are small is uncleéibecause they too are inter-
O(1), nor inassuming that, is small compared t&/,/r.  mittent in 3d, see Ref[19]), but the fact remains that it takes
However, if we assume that the theory can be analyticallyno part in energy transfer and so @fectsare thought to be
continued into noninteger dimensions between 2 and 3, asmall” in some rough sense. Since the pressure effects are
suitable small parameter can be generated as follows negmall, the intercomponent energy transfer is inhibited, and
d.. The time scale characterizing the interaction of a scale so, once fluctuations ithv, are small at some scale, they
with all other scales less tharis the so-called eddy turnover il presumably remain small at others as well. Secondly, in
time, or the time taken for energy transfer to occur betweemrder to be able to truncate the energy dissipation, the
r and the Kolmogorov scalg. One may use K41 to estimate higher-order viscosity terms have to decay faster than the
this time scale. The process of energy transfer can be thoughdte of blowup of velocity fluctuations. This is indeed the
to consist of two distinct steps, one involving nonlinearcase above.
transfer across scales without any pressure effects, and an- Now, keeping in the mind the symmetries of the NS equa-
other involving the relaxation due to pressure effects.dn 3 tions, the simplest form for th¥, contributions to the dissi-
turbulence, these two steps are part of the same inseparaljjgtion rate is
process, so the time scales associated with them cannot be
separated. But, if, as one approaclikgs it is increasingly
true that the pressure effects are small except when scales of
the orderz are reached, the two time scales involved could
become disparate, and the relaxation due to pressure terrifie coefficientc(d) must reflect the change in going from
enters the picture only at the smallest scale and can, ther@d to 3d (zero dissipation to finite dissipatibrl his may not

dAv,
SNC(d)AUrAUrT. (24
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be a smooth chang@s in second-order phase transitions 1 ' g ,
because(d.) could well be singulafas in first-order phase 0.95¢
transitiong. Yakhot assumes, however, that it@(1) for PN R B S S |

d—d.>0. ThenD takes on a form similar to Kolmogorov's
refined similarity hypothesis, relatinge,) with the third-
order longitudinal structure function

0.85¢

100)

0.8x

g . i
?“ 0,75 K oo oerrere e ................................................ i
D ~c(d)hydn, dn, 0 Z oo
2 '3 3 : :
T S T e I
3 Jd Uy Xx-xxxxxxxxXXxX);(
~c(d)hg AurAvrTeXthAur+h3Aur) P AR Sl B |

L

+terms neglected. (25

0.05 0.1 0.15 0.2
Bin width around Av = 0

0.50
This enables the closure to be complete.

A nontrivial difficulty is the testing of the theory in non-
integer dimensions neal;. At present, the consequences o

the theory can only be tested ird2r 3d. The extrapolation _ . S . . .
to noninteger dimensions is not an intrinsic limitation of theandBNO'OS’ a semiempirical estimate given in Rif]. We

theory, but reflects the lack of experimental ingenuity at]?;é;r?r?;?t;]h:vc{;?;;igt ";?(\a/piinedxergggaotrg \c/);rr d;é%#:égg the
present. Simulations offer a better opportunity. It must, how—Ref [8]), we have thevresult P y
ever, be noted that in shell models where an interaction pa-—~" "

rameter can be tuned to change the direction of energy trans-

fer, one can make more reasonable contact with the theory. P
Such comparisons have been attempted recg@flyand the

resu]ts are encouraging. We haye aIready noted t_hat the COQye shall now test these predictions.
clusions of the theory are consistent with experiments and 11,4 precise measurement of the peak value of the PDFs

simulations of 2 turbulence. We shall examine in the rest of 4o the data must be done carefully because it is sensitive
the paper the extent to which the predictions of the theory arg, 11« nin width chosen around=0. In our measurements

FIG. 11. The value of the PDF a&#/o,—0 for r~100y for
f different binwidths.

\Y
— —0r ) =oyP(V—0r)~r 002 (29
Oy

applicable also to 8. the bin width aroundv=0 was gradually refined until the
PDF value at the origin no longer depended on the bin size.
VI. COMPARISON OF THE THEORY WITH Figure 11 shows tha®(V—0) atr~ 100y asymptotes to a
MEASUREMENTS IN THREE-DIMENSIONAL value of 0.64. The sharp ascent of the numbers for very small
TURBULENCE values of the bin width is an artifact of the extreme narrow-
o ) ) _ ness of the bin width, which results in falsely large values
A. Probability density function of transverse velocity due to normalization. This is to be ignored. The procedure
increments was repeated for several values rofFigure 12 shows the

When the forms ol , and D from previous sections are properly normalized PDF values fov=0 for different
substituted into the full structure function equations, one carscalesr ranging from the Kolmogorov scalg to the large
generate the following equation for the PDF of transversescaleL. The scaling exponent for this quantity 46— 0.065
velocity incrementd(Av, ,r)=P(V,r):

1

10 -
aP+1+3/3 d b &VaP 0 o6
ar 3r oV BovVor =0 (26)
Here, Bc(d). This equation is linear and can be solved in
principle, but we have found no simple analytic form of the s
solution. (For some discussion of this aspect, see R28].) } 10°
For smallV, however, the equation admits a solution of the >
type r“F(V/r*) with
P(V=0,)or—*, (27
where, from Yakhot's theory, 107 ‘ 5 i 5 .
10 10 10 12‘ 10 10 10
1+3p ) }
K= ~0.4 (29) FIG. 12. Log-log plot of the peak values of the PDFs of trans
3(1-p8) ' verse velocity increments. The line indicates a slope-6£065.

056302-8



DYNAMICAL EQUATIONS FOR HIGH-ORDER.. . . PHYSICAL REVIEW E 64 056302

10° o ——— — — 25 ' T ' g

N

,,,,, o
S
=
.............. Py
2=
- =
N 9.1 5
: =
T b >
P : 2
8 : &
S H : = 1
[=
x X r=00052m : pes
“lo o r=0026m | é‘/
O 0 r=005Im !
A A r=026m VO.S
+ 4+ r=052m
v v r=257m :
* % r=515m
, — — v v vvv :
10” i . i i i i
) ) o
10 10 10 -6 -4 -2 0 2 4
Vic In ()

FIG. 13. Log-log plot of the near-peak values of the PDFs of FIG. 14. The tails and the intermediate regions of the PDFs in
transverse velocity increments. The collapse of the data occurs féhe form required by the theofgee Eq(31)]. Lognormality of the
the normalizatiorr “P(V/r~), wherex=0.065. intermediate rangébetween peaks and tailsequires that the data

follow straight lines.

in the inertial range, numerically about 25% larger than the
theoretical value of-0.052. With this experimentally de- missing. Itis at present not clear whether this missing aspect
rived scaling exponent, we can evaluate tAat0.058 com- IS merely a correction to asymptotics, or corresponds to ad-
pared to the estimate in Rd®2] of 0.05, a 16% difference. ditional terms in the mean-field expansion, or is even more
Figure 13 also shows that the fomfi®%P(V/ay) is essen- fundamental.
tially constant for smalV.

One can obtain the form df for largeV by a steepest B. The scaling exponents and the prospect of their saturation
descent approximatiofsee Ref[26] for more details The

result from Ref[2] is Seeking the solution to E@26) under the K41 constraint

for the third-order structure functions and assumiBg,
«rén, Yakhot obtained the following formula for the struc-

Fo Lexp( — M) (30)  ture function exponents:
JO(r) Q(r) )’
n(1+3p8)
where &=VLA/A~ Y p<(A=2AR=8 " and  Q(r)=B«x/(1 "T3(1+8n) (32
—B)?|In(r/L)|. (The corresponding expressions in REd)
are printed incorrectly.The prefactor of Eq(30) is possibly Table | and Fig. 16 show the calculated exponents and
r dependent. Equatiof80) can be rewritten as compare them with those obtained from the direct numerical
simulations(DNS), data[27] as well as experiments. The
[—Q(0)IN{P(V,r)r<yQ(r)}]%%=In(&). (31 agreement is good for all orders, perhaps slightly better for

the DNS data for high-order exponents. The formula indi-
Figure 14 shows plausible linear behaviors for the interme-

diate ranggbetween peaks and tailef the PDF in the pro- 18 . ; . !
posed logarithmic units of Eq31). There is, however, evi- eb|s o roosm ,,; |
dently still somer dependence that precludes their collapse. + o+ re8em :
We recall that corrections to steepest descent approximations f;_'=1.4- M
are often logarithmic, but are difficult to calculate here ana- & _||v v r-5m
lytically. We assume a dependence of the fin(r/L)]” for grer
the proportionality factor. Figure 15 shows a replot of the % 1 §
data with the additional factor dfin(r/L)]*> multiplying the an- -
PDF. The exponent 2 was chosen because it collapses the
data best in the inertial rangéThe one separation distance Sosf
that does not collapse belongs to the dissipation range. éM_
Our main conclusion so far is that the mean-field models "
for pressure and dissipation terms provide a means for clos-  o02pyo Y
ing the PDF equation, and for solving it for the limiting o ; b i ?
situations. The prediction is that, to first approximation, the -6 -4 2 ® 0 2 4

intermediate range estimates of the PDFAaf, are lognor-
mal for momentsn<20. The experimental data suggest that FIG. 15. The collapsed PDF from the previous plot, taking into
this might be so, but that an-dependent contribution is account arad hocprefactor of[ In(r/L)T
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TABLE I. Comparison of exponents from the DNS data and the 10° e

experiment(both using ESBand Yakhot's formula, Eq(32). * x :f;;;l?;fz‘m

{o o r=515x10"%m
Order DNS Experiment From E¢32 100 fs & [aodotm

EV v r=0.103m
-0.80 -0.317 -0.313 -0.328 { M
—0.20 —0.077 —0.078 —0.079 10
0.10 0.036 0.039 0.039 §N
0.20 0.073 0.076 0.077 %
0.30 0.112 0.113 0.115
0.40 0.150 0.150 0.153 :
0.50 0.187 0.190 0.190 10
0.60 0.223 0.221 0.227
0.70 0.260 0.265 0.263 EOINIE S A I R T b
0.80 0.296 0.292 0.299 0 10 10 10 10
0.90 0.332 0.333 0.335 v
1.00 0.366 0.372 0.370 FIG. 17. Q,(U), the conditional expectation value ¥# on U
1.25 0.452 0.458 0.456 for various differentr, on a log-log scale. The upper solid line
1.50 0.536 0.542 0.540 indicatesU?/log(U?), the lower solid line indicates thel? scaling
1.75 0.619 0.628 0.622 slope.
2 0.699 0.708 0.701
3 1 1 1
4 1.279 1.26 1271 Sanz,z=J P(U)U*""2Q,(U)dU. (33)
5 1.536 1.56 1.517
6 1.772 171 1.742 See Sec. IV of Ref[2]. The Kolmogorov scaling will hold
7 1.989 1.97 1.948 (by dimensional argumentdor Q,(U)=U?2. On the other
8 2.188 2.05 2.138 hand, saturation of exponents;,— constant aan—x, is
9 2.320 2.20 2.314 possible forQ,(U)xU? for §<2 andU large. We present
10 2.451 2.38 2.477 the conditional statistical quantif®,(U) as a function of

in Fig. 17. It is not clear if the trend for lardé is in agree-

ment with the saturation condition. There is a very small
H 2

cates saturation for large beyond about 20 or so, but this fange ofU towards the tails that seems to varyladIn(U?)

range is inaccessible at present to experiment as well Jwt this is not_conclusive. The_re mi_ght also be the infll_Jence
simulations of anisotropy in the PDFs, as is evident, for example, in the

Using probability density functions to define the statistical 2SYMMetry of the joint PDFs, which in turn could change the

guantities, we havéouttingU = Au,) the conditional expec- nature of the tails of conditional statistics.
tation value ofV? for a fixed value ofU, Q,(U), as

VIl. REMARKS ON THE MAGNITUDE OF DISSIPATION

TERMS
2 o ' ' It is helpful to recall that the equation relating even order
O O Experiment transverse moments to mixed moments of the same order in
o | =—— Formula | ........... SR oS Do . . . . .
3d, without dissipation terms, is
1_5. ....................................................... M A (9822’1 2+2n 2+2n Som+2 2
“ : : = 4 — i _ n—-1
' ' ar r AN 2n+1 2n{PyAu(Av)™"5)
UC Th gl
—(Py(Av)?", (34)
05 i i
| where  Py=dp(x+r)—ayp(x) and P=dyp(X+r)
b ] —dxp(x). Note that the last term in this equation is inadvert-
ently omitted in Ref[2]. The subscriptx,y denote the com-
ponent of the pressure gradient. In the inertial range, the

05, 0 2 3 5 8 10 dissipation term is small for even orders and the forcing term
" negligible. In certain equations, only tf#& term of the pres-
FIG. 16. Comparison of the DNS and experimental valueg,of Sure effects appears, and in certain others dRjydoes.
with those from Eq(32). The numbers in the plot are for longitu- Since all other terms can be measured in such equations, we
dinal structure functions, but these are identical to those for transcan use those equations and the mean-field pressure model to
verse structure functions in the isotropic sector see R&611. estimateP, andP,, and substitute the estimates in equations
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10° : 10

-G(n H(r)

r{m)

FIG. 18. The coefficienG of the pressure term computed ac- ~ FIG. 19. The coefficient of the pressure term computed ac-
cording to Eq.(38) cording to Eq.(42).

for the odd order that contain the form of the pressure termshe pressure term in the third-order equatiRyiv, =0 (see
From these steps, the unknown terms in the odd-order equief. [28] for a proof of this resujt The two constantsl and
tions, namely, the dissipation terms, can be estimated. This i§ are then related through

the strategy here.

Retaining the pressure term in E®), we have S, P23
B=—-Hz"—5" (40)
9S40 2 6 ) Sozr
7 Sao= 1 Se 3(P(AW)), (39

These models foP, andP, provide closure for Eq(34),

in which, according to the mean-field approximation, which now becomes

G(AU)2+A(AU)2 (982’21+2+2n :2+2ﬂ SO’2n+Z_2nﬂ
Py= ; ; (36) ar r 2720+l r
G
andG andA are unknown constants constrained by the rela- X| Spon— 8.%281'2“ s

tion A=—G(S,,0/Sp») [EQ. (8) with n=1]. This model for

the pressure term may be used to close (B) giving S0
X Sz,m‘§%,m+2)- (41)
0Sso 2 6 3 S20 2
r ' =S40==S" =G| S4o— S22 (37) . .
rr r r So,2 All the terms in this equation may be computed from the data

and, withG= —0.15, the only remaining constadtmay be

All the terms in this equation may be calculated explicitly obtained. Fon=1

from the data and the consta@tdetermined via

S, 4 45,4 G S20
%4— 554,0_ ?SZ,Z H= o " F52,2_§ o . T< SZ,Z_STQSM) 42
- F<S4,o_ ST'OSz,z) 7% S
2

. . . Figure 19 shows1 as a function of calculated from the data
Flgure'18 showg as a function of. Despite some'scatter, using Eq.(42). There is a more or less steady decreasH of
we estimate an inertial range value@f=.—0.15. This pro- asr increases. In the inertial range, the value decreases from
V|des_ theP part of the pressure term in E(B4). The P, about 0.42 to about 0.29. The uncertainty in this estimate
part in Eq.(34) may be modeled by does not allow us to be definitive but we shall proceed with
an average value dfl=0.37 in the inertial range of in what
——H AuAv, _ Av, (39) follows. Once the pressure terms are accounted for by the
Y r (Pr)23’ model just evaluated, the remaining imbalance in equations
for odd orders must come from dissipative contributions
whereH andB are unknown constants, am] as before, is alone.
the rate of forcing. The second term is chosen in order that Consider one such odd-order structure function equation
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(983’2 4 8
o TS Sa 2(PAu(Av)?)

—2(Py(Au,)?Av,)+D. (44)
We now follow a similar procedure as before. With known

values forG and H in the mean-field model, the pressure
terms are

G
—2(Py(Au)(Av)?) = —2—( S5~ i351,4) ,

r So,2
H Sio
—2<7’y(Aur)2Avr>=27(Ss,z— STZS”) (49

@ rm We have already seen in Fig. 9 that the RHS of @q)
pmmaes preerirae balances the LHS up to about 80% in the inertial range. The

imbalance of about 20% is due to a possible mix of pressure
and dissipation terms, both of which are now included in Eqg.
(44), thus completing Eq(17). The pressure term computed
from Egs.(45) is shown in Fig. 2(a). It makes a 10% con-
tribution in the inertial range. The dissipation term from the
remainder is plotted in Fig. Zf); while it shows significant
scatter, it is clearly small in the inertial rangef the order of
15% or lesg while increasing, as it must, toward dissipative
scales. On the whole, it appears that both pressure and dis-
sipation are relatively small compared to the RHS of Eq.
(17), with dissipation terms taking over towards the small
scales.

From the above two examples it appears that the mere
knowledge of the overall order of the structure functiam
this case the fifthis not enough to prescribe the importance
] of the pressure and dissipation terms. The equations that re-

FIG. 20. (@) The LHS and pressure terms of E@d3) with n  |ate differentcomponentsf the fifth-order structure function
=2 andH=0.37 in the pressure model; the ratio indicates that theansor have different structures. While equation )
pressure term as computed from the model is about 10—15% of th§eems to balance more or less without pressure and dissipa-

balance(b) The terms of Eq(43) with n=2, H=0.37; the differ- . . i . _
ence LHS-1,, [where |, is calculated as ifa)], indicates the mag- tion terms, in Eq.(43) the dissipation term is overwhelm

nitude of the dissipation term. ingly large.
VIIl. CONCLUDING REMARKS
S m 2+2n o1
o T ST —2n(Py(Av,)"""H)+D. (43 Our experimental results are assessed in the context of a

mean-field model due to Yakhot, using as framework the
new equations derived for structure functions of all orders.
The model allows us to write the pressure terms that we
. ) . . cannot measure directly, in terms of the velocity structure
(43 W'.th n=2 [_|.e., Eq.(18) W'th pressure and dissipation functions that we can measur@he pressure terms appear

terms included| in order to estimate the only unknown term pere in 4 different form from those used in turbulence mod-
D; we useH=0.37 andB given by Eq.(40) in the substitu-  gjing and so the value of the present work to that endeavor is

tion. Figure 2@a) shows that the pressure teimcomputed  ynclear) Among the assumptions made, the most drastic one
in this manner contributes between 10 and 15% to the baks the use of the same pressure model fdrahd 3 turbu-

ance. Figure 2®) shows that the dissipation term, being the |ence.
remainder D=LHS—RHS—1;), dominates the right-hand  Nevertheless, if we adopt the pressure model in (B4)
side of the equation, and is much larger than the pressuii@ which the dissipation terms are thought to be negligible
term; it alone balances about 85 to 90% of the LHS of Eq(see Refs[2] and[3] for symmetry and asymptotic argu-
(43). ments as to why this might be sdhe coefficientdd and G

There is another equation, E@7), for fifth-order struc- can be obtained, and thus the pressure terms can be modeled.
ture functions that contains both kinds of contributidRs  We can now proceed to analyze odd-order equations that
and Py in the pressure term. In full, it has the form have the same structure for pressure terms. Since the pres-

We now substitute the pressure model of E2p) into Eq.
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function has a different structure, and there, the dissipation
term is relatively small. This is a new and interesting state-
ment about the inertial range dynamics, but its validity de-
pends on the pressure model used. At least one outcome of
the calculations is tautologically correct: in all the cases con-
sidered here, the dissipation range is always dominated by
the dissipation ternD.

Yakhot's theory postulates the existence of a critical di-
mension,d.. This, in itself, is not implausibl¢24]. How-
ever, the precise numerical valuedy, the analytic structure
of the NS equations in the neighborhooddgfand the extent
of its “neighborhood” remain unclear. The theory yields
certain exponents for the vicinity af;, but the details on
which they are based need closer scrutiny; at least to us,
some of the steps remain unclear. Thus, while the numerical
values of the exponents, as well as thatlgitself, are prob-

o ably not to be taken literally, we should be interested in
: drawing some qualitative conclusions.

Such conclusions come from a few independent sources.
First, the prediction of the theory for the PDF &b, for 2d
turbulence is in good agreement with simulations and experi-
ments[17,18. Second, the conditional expectation of the
pressure terms in® simulations[29] appear to follow the
mean-field theory, at least for modest values of the velocity
increments. Third, shell model calculatiof5] show that
the behavior expected near the critical dimension can be ob-
served as one varies a coupling parameter. Finally, the
present comparisons with experimental data at high Rey-
: x  x LHS nolds numbers reveal that the scaling of the PDR of for
----- : ‘ e e e small and large\v, are in some measure of agreement with

i i i the theory. All these are positive developments. However,
since many details are unclear, it remains to be seen as to
whether the theory will evolve into a rational framework. For

FIG. 21. (@ The LHS and pressure ternhs of Eq. (44) with now, we find it to be both interesting and worthy of some
their ratio showing that the pressure only accounts for about 10-attention.

12% of the balance, less as one approaches the dissipative scales

and large scalegb) The LHS and dissipation terni® of Eq. (44) ACKNOWLEDGMENTS

with the dissipation computed by subtracting the RHS and the pres-
sure[see(a)] from LHS; the ratio ofD to LHS indicates a large
scatter but shows that the dissipation contributes in the inertiaYV
range only about 10%, but that it increases significantly towards th%v
dissipative scales. 10
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