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Turbulence of polymer solutions
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We investigate high-Reynolds-number turbulence in dilute polymer solutions. We show the existence of a
critical value of the Reynolds number, which separates two different regimes. In the first regime, below the
transition, the influence of the polymer molecules on the flow is negligible, so they can be regarded as
passively embedded in the flow. This case admits a detailed investigation of the statistics of the polymer
elongations. The second state is realized when the Reynolds number is larger than the critical value. This
regime is characterized by the strong back reaction of polymers on the flow. We establish some properties of
the statistics of the stress and velocity in this regime and discuss its relation to the drag reduction phenomenon.
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. INTRODUCTION of scalesRy<R<Rp.., WhereR . is the maximum exten-
sion[5]. In the case of polymer molecules, theoretical argu-
In this paper we present a theoretical investigation of turments and numerics presented i support the linear relax-
bulence in dilute polymer solutions. As opposed to Newton-ation. These results can be understood if we assume that at
ian fluids, such solutions possess additional macroscopic deys. Ro, the role of excluded volume and hydrodynamic in-
grees of freedom related to the elasticity of the polymereractions between the monomers becomes negligible. Then

molecules.. Rglaxanon times of elastic stresses can be COMke random walk arguments suggest that the entropy of poly-
parable with time scales of the flow, which means that th er molecules is quadratic in the rargg<R<R....imply-
max

relation between the stress and velocity gradient is nonlocaIhg linear relaxation. Whether the polymers are excited by

Due to the nontrivial interaction of inertial and elastic de-fthe flow is determined by the softest relaxation mode that

grees of freedom, the polymer solutions exhibit a variety o . )
regimes. For example, a turbulentlike state has been recentﬂ}:"sc”beS the dynamics of the elongaifarin the absence of

observed at very low Reynolds numbéfg. Here we will ~ stretching, the relaxation oR is described byR=—R/7,
consider the more familiar situation of turbulence at highwhere 7 is the largest of the polymer relaxation times. The
Reynolds numbers. Probably, the most striking effect ofrelaxation time iR independent eRy<R<R,. If the end-
polymers on the high-Reynolds-number flows is the drag reto-end distanc® is of the order of the maximum extension,
duction phenomenon. The addition of long-chain polymersr starts to depend oR and the dynamics of the molecule
in concentrations as small as T0by weight can induce a becomes nonlinear.
substantial reduction of the drag force needed to push a tur- The behavior of the molecule in an inhomogeneous steady
bulent fluid through a pip&2—4]. flow depends on the value of the Weissenberg number Wi
The reason why small amounts of polymer can signifi-defined as the product of the characteristic velocity gradient
cantly modify properties of the fluid is the flexibility of poly- andz. When a polymer molecule is placed in a flow, smooth
mer molecules. At equilibrium a polymer molecule coils up at the scaldR, the velocity difference between the end points
into a spongy ball of a radiuBy. The value ofR, depends is proportional toR multiplied by the characteristic value of
on the number of monomers in the molecule, which is usuvelocity gradient. At Wi<1 relaxation is fast as compared
ally very large. For a dilute solution with the concentration, to the stretching time and the polymer always relaxes to the
n, satisfyingn R8<1, the influence of equilibrium size mol- equilibrium size,R,. The behavior of the polymer at Wi
ecules on the hydrodynamic properties of the fluid can be=1 depends on the geometry of the flow. For purely elon-
neglected. When placed in a nonhomogeneous flow, such gational flows the molecule gets aligned along the principal
molecule is deformed into an elongated structure that can bstretching direction. If the velocity gradient is larger than the
characterized by its end-to-end distarRRelf the number of  inverse relaxation time, i.e., Wi1, the elastic response be-
monomers in a typical polymer molecule is large, the elon-comes too slow in comparison with the stretching and the
gationR can be much larger thaR,. The influence of the molecule gets substantially elongate]. The sharp transi-
molecules on the flow increases with their elongation andion from the coiled state to the strongly extended state is
may become substantial wh&»R,. called the coil-stretch transition. Rotation can suppress the
The deformation of the molecule is determined by twotransition and even damp it completely since the molecule
processes, the stretching by the velocity gradients and th&éoes not always point in the stretching directi@ee, e.g.,
relaxation due to the elasticity of the molecule. To under{8]). For example, no coil-stretch transition occurs in the
stand how a molecule resists deformation by the flow, let ugase of a shear flow, which is a combination of elongational
consider its relaxation. Recent experiments with DNA mol-and rotational flows.
ecules indicate that the relaxation is linear in a wide region In contrast to the steady flows, a polymer molecule mov-
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ing in a smooth random flow alternately enters regions oformed polymer molecules into the stress tensor. This elastic
high and low stretching. As the intensity of the flow in- part of the stress grows with the elongation of the molecules.
creases, the effect of the stretching becomes more pro&/hen it becomes of the order of the viscous stresses existing
nounced. One can generally assert the existence of the coiR the flow, the polymers modify the flow around them and
stretch transition. This has been first demonstrated byhe stretching diminishes. As a result, a dynamic equilibrium
Lumley [8], who considered the situation where the characis realized at a characteristic elongatidR,acc. The total
teristic time of variations of the velocity gradient is much polymer stress is proportional toR?, so thatR,,, depends
larger than the inverse of the characteristic value of the graen the polymer concentratiom Therefore if the concentra-
dient. He showed that if the amplitude of velocity gradienttion is large enough, the value B, is much smaller than
fluctuations is large enough, the expectation valueR6f Rmax. We will consider the effect of the back reaction under
grows with time, which signifies the coil-stretch transition. the assumptiorRp,c<Rmax. Probably, the conditiorRp,e
We have demonstrated [©] that the coil-stretch transition <Rnay iS necessary for the existence of a stationary state,
occurs in any random flow and have established a generdlecause the polymer molecules stretched uR g, are in-
criterion for the transition. In particular, the transition occurstensively destroyed by the flow.
in the situation where the time of velocity gradient variation =~ Above the coil-stretch transition, the back reaction modi-
is of the order of the inverse of its characteristic value, whichfies the small-scale properties of turbulent flows, which leads
is likely to be the case for real flows. The coil-stretch tran-to the emergence of a new scalg> . Large-scale eddies
sition in random flows is controlled by the paramekgrr,  with the sizeg >r, do not excite elastic degrees of freedom,
where \; is the average logarithmic divergence rate ofso that the usual inertial energy cascade is realized at these
nearby Lagrangian trajectories, to be referred to as the prirscales. At smaller scales inertial and elastic degrees of free-
cipal Lyapunov exponent. It is positive for an incompressibledom exchange energy, which is dissipated mainly due to the
flow [10,11. The molecules are weakly stretchedNfr  polymer relaxation. The energy cascade terminateg aso
<1 and strongly stretched otherwise. Therefore, for randonthatr, plays the role of a new dissipation scale.
flows the parametek 7 plays the role of the Weissenberg  The plan of the paper is as follows. In Sec. Il we intro-
number. duce a system of equations describing the coupled dynamics
To describe the behavior of a polymer molecule in turbu-of inertial and elastic degrees of freedom. In Sec. Il we
lent flows, let us briefly review the basic properties of turbu-study the situation when the back reaction of polymers is
lence of incompressible Newtonian fluids. A high-Reynolds-small and can be disregarded. We find the probability distri-
number flow consists of chaotic motions from a wide intervalbution function of the elastic stress tensor and examine its
of scales,p<r <L, whereL is the scale at which the flow is correlation functions. In Sec. IV we study the influence of
excited andy is the viscous scale. The energy pumped at théhe back reaction on the flow and establish some properties
scaleL cascades down to the scaje where it is dissipated. of the velocity and stress statistics. In the Conclusion we
The size of polymer molecules is usually much smaller tharsummarize our results and discuss their implications for the
the viscous scale. Viscosity makes the flow smooth<at),  drag reduction phenomenon. In Appendix A we present a
i.e., the velocity difference between two points is given bydetailed derivation of the probability density function from
the velocity gradient multiplied by the distance. Then, theSec. Ill. Appendix B is devoted to a simple model illustrat-
stretching of molecules is determined by the gradient of veing some aspects of the interaction between the flow and
locity, which should be considered random in a turbulentpolymers. Preliminary results of this work have been pub-
flow. The Lyapunov exponent can be estimated as the chatished in[9].
acteristic value of the velocity gradient, which is determined
by the eddies at the viscous scale. As the Reynolds number Il. BASIC RELATIONS

increases, the velocity gradient increases, and so Hees lowi inch . .
At some value of the Reynolds number it reaches the value 1 Following Hinc _[13] let us con5|d_er t_he dynamics of a
polymer molecule in a smooth velocity field. The degree of

and the coil-stretch transition occurs. freed lated he el . ¢ th lecule is d
Several mechanisms can limit the stretching of polymers.ree om related to the elongation of the molecule Is de-

The first one is the internal non-linearity of the elasticity of SC"iPeéd by the vectoR, connecting the end points of the

the polymer molecules. If this mechanism dominates, theﬁ“OIeCUIe' The equation descnbmg the dynamic&ah the
above the transition the molecules are stretched up to th@PSence of a surrounding flow is

maximal elongationR,,,. An alternative explanation has 9E

been proposed by Tabor and de Genf. It is based on IR+ —==¢, (2.1
the fact that if the elongation of a polymer molecule is larger IR;

than the viscous length of turbulencs, the elastic force | oo is the free energy of the moleculé, is the thermal

always wins_ over the stretching. Estimates using t_he para."}ioise, and’” is the kinetic coefficient, which determines the
eters of typlca! polymer solutions show that this situation 'Srelaxation of the molecule. The correlation function/ois
difficult to realize. Therefore we assume that the inequality

R< 7 is satisfied. It will also enable us to write local equa- (G(DE(E)=2kgTT 5 8(t—t"), (2.2
tions describing the dynamics of elastic stresses. Another

mechanism is the back reaction of the polymers on the flomwhereT is temperature anklg is the Boltzmann constant. If

It is caused by the collective contribution of coherently de-the size of molecules is much smaller than the viscous
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length, which we assume, the molecule moves in a spatiallplso be interpreted as the average over the statistics of the
constant gradient flow. Its influence is described by the equathermal noisel. The equation foA;, follows from Eqs.(2.2)
tion and (2.4

JE 2
(9tRi_RjVJUi+Fﬁ=§i, (2.3 5tAij+(U'V)Aij:AijkUi+AikaUj—;(Aij—Ao5ij),
|

(2.6
where the stretching term R;V;v; is added to Eq(2.1) The _ . L . L
velocity derivative must be evaluated at the position of theVN€réAo=KgT/Ko. E2c1uat|on(2.6) is linear in A, which is
molecule. To avoid misunderstanding, note that we mean thg0ect providedA <R _
flow that is “external” to the molecule, excluding the veloc-  Equation(2.6) should be supplemented by the equation
ity induced by the relative motions of its chains. for the fluid velocity. This equation is a consequence of the

The entropy of the molecule has a quadratic dependend®omentum conservation law. In order to derive it, one
on the elongatiom in a wide interva[14]. It implies that the ~ Should take into account the contribution of the inner elastic
molecule can be treated in terms of elasticity theory with g0rces of polymer molecules to the total stress tensor of the
Hook modulusK, so thatE=K,R?/2. This expression is fluid. If II;, is the elastic stress tensor per unit mass, the
correct providedR<R.,, where R, is the maximum polymer gontribution isoIly, Where_g is_the mass density
elongation of the molecule. The equilibrium size of the mol-©f the fluid. In the Hookean approximation
ecule,R,, can be estimated from the conditi®~kgT as

VkgT/K,. Substituting the energy into ER.3) we get Hik:%Aik_HO‘Sih (2.7

Ri—RiVivi+ R /1=¢;, 2.4 -
RITRViviFRIT=4 29 whereIl,=KyAn/@=(n/@)kgT originates from the ther-

mal noise{ in Eq. (2.4). Heren is the concentration of the
polymer molecules. If the flow is incompressible, ig.is a
constant andV-v=0, the momentum conservation law
reads

where 7= (I'Ko) "1. We see thatr is the molecular relax-
ation time.

Generally, the kinetic coefficiedi or the relaxation time
7 is a function ofR, which reflects the nonlinear character of
the molecule relaxatiofil5] related to such effects as inter-
nal hydrodynamic interaction of chains in the polymer mol-
ecule. For example, the finitely extendible nonlinear elastic

model[15] assumes>1—R?/Rf,,. One expects that a de- Here P is the pressurey is the kinematic viscosity of the
pendence of" and 7 on R can be disregarded &<Rpya.  solvent, and is the external forcéper unit masgdriving the
Below we study this situation. Possible statistical conseflow. Equation(2.8) is a generalization of the Navier-Stokes
quences of the non-Hookean dependence of the free energyuation to the case of viscoelastic fluids. To simplify the
on R have been investigated [16]. consideration we assume tHas homogeneously distributed

Equations(2.3) and(2.4) assume thaR is the only mode  over space. It is a common belief that this case does not
related to the molecular deformation, which is an idealizaitfer qualitatively from that realized for real experimental
tion. Actually, the molecule has many deformational degreesetups, where pumping is usually related to the boundaries.
of freedom that have different relaxation times. They have Tne applicability condition of Eq2.6) is A< R2...Itcan

been observed experimentally]. Nevertheless, in the tur- pe reyyritten in terms of elastic stress tensorTR&1T
bulent flows, only the mode with the largest relaxation tlmeEKonQ—lR%aX. We assume that this condition is satisfied

can be strqngly excited whereas other mod_es are at Mogly rejevant fluctuations. The interaction betweerand IT
z:vqet?:tli)gr?)élceltsecdrib-li—r?;;sgﬁf():isgfumlg dt;e. considered as the turns on if_H exceeds the viscogs stressVjv;. The I_atter_
can be estimated as\ 1, where\  is the average logarithmic
divergence rate of nearby Lagrangian trajectories. Under the
A. Continuous media equations conditionII < v\, the polymer molecules exert no influ-
To study the dynamics at scales much larger than th&NC€ on the flow except for a smgll renormalizatioq of the
interpolymer distance, the polymer solution can be regardediscosity of the solution. Thus, the inequallflyz,> v\, is a
as a continuous medium. The appropriate description is dorf@@cessary condition for the polymers to have nontrivial ef-
in terms of macroscopic quantities, which are averages ofeCts- i o
microscopic variables over the volume. The polymer mol- The free energy of the viscoelastic fluid is the sum of the
ecules are characterized by the average conformation tenskinetic and elastic contributions

A =(RiR)). (2.9 fzf dr{gv
2

&tvi-l—(v 'V)Ui+ QilviP: VVZUi+VkHik+fi .
(2.8

nKO
2+ T[TrA—AOM(detA/Ao)] ’

The volume of averaging should contain a large number of
polymer molecules and be smaller than the characteristizhere the second term represents the entropy of the mol-
scales of the processes under consideration. The ténsaim ~ ecules. Then we find from Eq&.6)—(2.8)
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af—fdf fd
—r=e| drf-o—g | dr

+H)1H]]. 2.9

, 1 A solution of Eq.(2.12 can be written in terms of the
v(Vivj)“+ _TrII(IL, Lagrangian mapping matri¥ defined by the relations

W(t,t")=o(t)W(t,t"), W(t',t")=1. (2.19

The matrixW is defined for a given Lagrangian trajectory

and therefore it depends on its markeFor brevity we omit

This equation provides a math_ematical formulatic_)n c_)f thethe argument in W. The matrixW describes the deformation
energy balance: the force supplies the energy, which is theg jnfinitesimal fluid volumes. For example, the separation

dissipated due to viscosi_ty and relaxation O.f _poly_mers. N_Oteﬁx between two close Lagrangian particles changes accord-
that the second integral in E€R.9) has a definite sign, as it ing to

should be for a dissipative term. Relative contributions of the
viscous and the elastic terms to the energy dissipation can be SX(t)=W(t,t") ox(t"). (2.15
different.

If the forcing is statistically homogeneous, then a statisti-It follows from Eg. (2.15 that Wj;(t,ty,r)=adx;(t,r)/dr;.
cally homogeneous steady state is realized. It can be dd&-he incompressibility conditiorW.-v=0 is formulated in
scribed in terms of correlation functionsefandA (orv and  terms ofo as tro=0. A consequence of incompressibility is
IT), which are averages over the statistics of the pumping
forcef or over space. In the steady state the average value of detw=1. (218

dFl ot is equal to zero. Therefore we get from Eg.9) Using Eqs.(2.12 and (2.14 we obtain

ZAOe—Zt/T

1
W((Vivj)?)+ —(Tr(ll (II+1Ip) 'I])=¢, (2.10 A(t,r)= .

t ’
f dt’ W(t,t’,r)W'(t,t’,re?’.

where e=(f-v) is the mean energy injection raper unit At t=t, this equation gives
mass by the external force.
Generally, the diffusion ternkV2A should also be added 2Ag [~ - ot/
to the right-hand side of Eq2.6). The diffusion coefficient ~ A(to.)=—"— fo dtW(to, to=t,NWi(to, to—t,re ="
k is small due to a large number of monomers. It is possible (2.17)
to show that the limit—0 is regular, so we can disregard
the diffusion. The diffusion term can play a minor role for Itis easy to understand the meaning of E2117. The poly-
scales < \k/\;. If \k/\{ is smaller than the intermolecular Mers are advected along the Lagrangian trajectories being

distance, then the diffusivity is irrelevant in the whole regionStretched by the velocity gradient and relaxing to their equi-
of applicability of the macroscopic approach. librium Shape due to elast|C|ty. The value of the conforma-

tion tensorA is determined by the sum of the contributions
of these processes at earlier times picked along the Lagrang-
) . ~ian trajectory arriving at. The termWW' describes the
Equation(2.6) can formally be solved in the Lagrangian stretching and the exponential factor accounts for relaxation.

B. Lagrangian description

reference frame. Let us introducg\(t,r)=A[t,x(t,r)], Expression(2.17) shows that when calculating correlation
wherex(t,r) is the Lagrangian trajectory defined by the re-functions, the volume averages can be substituted by aver-
lations ages over the statistics .

dx=v(t,x), X(to,r)=r. (219 lll. PASSIVE ELASTIC TENSOR IN A RANDOM

- _ - VELOCITY FIELD
The conditionx(ty,r)=r ensures that the fieldd and A

coincide att=to. The pointr p_)la_ys the role qf a Lagr.angian In this section we consider the polymer molecules as pas-
marker. The tensoA(t,r) satisfies the matrix equation fol- sive objects, i.e., we assume that the inertial properties of the

lowing from Eq.(2.6), fluid are not perturbed by the polymer elasticity. In other
) words, we assume that the tefI1;, in Eq. (2.8 can be
R RLR = disregarded so that the dynamicswofs independent of the
=cA+AcT— —(A— . ) ; . L
IA=TAT AT T(A Ao, 212 polymer dynamics. Equatioi2.6) determines the statistics of

the conformation tensoh provided the statistical properties
aij(t,r)=Vu[t,x(t,n)]. (2.13  of v are known. We consider a high-Reynolds-number flow
and assume that its statistics is stationary, spatially homoge-
Here o is the tensor of the velocity derivatives in the La- neous, and isotropic.
grangian frame and the superscriptdenotes a transposed  One might think that in order to examine the correlation
matrix. Due to causality, the value of the fieddt,r) is de-  functions ofA one needs to know the precise statistics of the
termined by its dynamics at tima$<t. Therefore we will  velocity field described by the Navier-Stokes equation. How-
be interested in the backward in time Lagrangian evolutiorever, we will show that the statistics Afis universal, i.e., it
of A described by Eq92.11) and(2.12. does not depend on the details of the velocity statistics. The
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crucial property underlying the universality is a finite La- for i#k andQ ;= Q=0 fori=Kk. It is possible to show
grangian correlation time of the velocity derivatives matrix that the eigenvalues AV repel each other, so that the in-
[17]. equalitiesef1>ef2>e’3 are satisfied at, —t_>r, [18].
Equation(2.6) shows that the Lagrangian dynamics of the Then the matriX), tends to zero exponentially fast, i.8ljs
polymer stress tensor is determined by velocity gradientsgetermined by times of the order &f in the vicinity oft_ .
which are related to the viscous scajef the turbulence. A The matrix), becomesp independent at, —t_>r, and
typical value of the velocity gradient can be estimated gs the evolution ofM is decoupled from that of;. Then the
where\ is the logarithmic divergence rate of nearby La- value of M is determined by the time of the order of at
grangian trajectories. Then it follows from E@.8) that the t~t_, i.e., att, —t_>r_ it becomed_ independent.
feedback of the polymers on the flow can be neglected if The solution of Eq(3.2) is
II<wh,. This is the applicability condition of the passive
approach. As we show below, the conditibirg v\ ; is sat- b~
isfied for typical fluctuations ik, 7<1. Pi:Jt dt’ oy (t'), @3
A formal solution of Eq.(2.6) is given by Eq.(2.17). The N
condition\ ; 7<<1 means that the exponentially decaying fac-

tor exp(=2t/7) in Eqg. (2.17 dominates over the product . ;
WW' ~exp(2\4t). In this case, for a typical velocity fluctua- random process independent pf. Equation (3.9 shows

. : i i fluctuate around their average values
tion the integral overt converges at~ 7 and thereforeA that the variables; g

fluctuates neaA,. In addition to the strong peak at~A,,  Mi(t+—t.). Here the constants; are equal to(o7;). They

the probability distribution function oA has a power tail. a'€ called the Lyapunov exponents of the flow. Generally,
This has been demonstrated[Bi in terms of the molecule th€ spectrum of the Lyapunov exponents is nondegenerate:
elongatiorR. The fluctuationsA> A, are formed if the prod- A1~X2>\3, Which is a necessary condition for the formal-
uct WW in Eq. (2.17) is anomalously large for a long time. 1SM 0 be self-consistent. The incompressibility condition en-

Such events can be described in terms of a universal schergt€S the identity; + X, +A3=0, which impliesk,>0 and
(see Ref[18]) shortly presented below. \3<<0. Using the relation2.15 one can show thak; is
indeed the average logarithmic divergence rate of two nearby

Lagrangian trajectories,

where the right-hand side of E@3.3 is an integral of a

A. Long-time Lagrangian statistics

Let us briefly review the long-time statistical properties of (dIn|&x|/dty=X\.
the Lagrangian mapping matrixV, determined by Egs.

(2.13 and(2.14. We consideiV(t, ,t_) att,>t_ and as-  gimilarly, \;+\,=—\ is the average logarithmic rate of
sume that, —t_ is much larger than the Lagrangian corre- the area growth.

lation time 7, of the velocity derivatives matrit2.13). If the Under the conditiort, —t_> 7, the quantityp; can be
velocity statistics is homogeneous in time, the probabilityconsidered as a sum of a large number of independent ran-
distribution of W(t, ,t_) depends on the differende —t_  dom variables. It is known from statistical mechanisse,

only. Equation(2.14 implies that att . —t_> 7, the matrix e g, [20]) that the distribution of such quantities is given by
Wiis a product of a large number of independent matricesihe exponent of an extensive function. In our case the prob-
This is the main reason for the universality in the statistics ofapility distribution function(PDP of p; is
W.

It is convenient to decompose the matvikas

1~ At P3_7\3t”

1 p
P(t!plvp21p3)oc?ex —tS t t

W(t, ,t_)=MAN, (3.0
where A is a diagonal matrix, an and N are orthogonal X 3(p1tp2tp3), 34
matrices[19]. We denote the diagonal elements/ofase’1, o _
e’2, anders, and assume that they are orderpgs p,>p,.  Wheret=t,—t_ andp,>p,>p3 is implied [18]. The main
As a consequence of the constrai@t1l6 we havep;+ p, exponential factor of the PDF has a self-similar form de-
+ps=0. Equation(2.14) can be rewritten in terms gf, and  Scribed by the functior§, which can be called the entropy

the matricesvl andN. The equations fop; are fungtion (see[18,21,22). It i; positive, convex and 'has a
minimum at zero values of its arguments. The precise form
i ~ of Sis determined by details of the velocity statistics. The
i~ i (3.2 PDF has a sharp maximum af=\;t. In its vicinity the
n

function Shas a quadratic expansion, i.e., the distribution of

p is Gaussian. However, if one is interested in the expecta-
n- .. . .

tion values of exponential functions @f , they are deter-

mined by the wings of the PDF where the Gaussian approxi-

mation is invalid. This entails the use of the whole entropy

wherec=MToM and no summation over the repeating i
dexi is implied. The matrice and N satisfy 9;N=Q N
and ;M =MQ,, where

L = ek o e2h) function.
Q= Tk g JTE TTOKE To average the functions gf, only, one can introduce the
2 sinh(p; — pk) e%Pk— g2 reduced probability distribution function,
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1 gt
P(t,pl)ocﬁex;{—tsl(’”%”, 3.5

which is an integral ofP(t,p1,p,,p3) Over p, and pz. At
small x the functionS;(x) can be written as
2

X

Here A= [dt((o,(t)011(0))) (where double brackets des-

ignate irreducible correlation functiprdetermines the dis-
persion ofp;: {(p—\1t)?)~tA. Expansion(3.6) is suffi-
cient to describe typical fluctuations gf;, whereas the
whole functionSis needed to describe rare events.

PHYSICAL REVIEW E 64 056301

events leading to a given value>A,, and find the event
with the maximum probability. Let us establish the structure
of such fluctuations. It is obvious that; should initially
grow faster than/r during some interval of time. To ensure
nonzero value of the probability of such a configuratipn,
should then return to its average valugt. Since;<1/7,
the differencep,(t) —t/7 has a maximum at some tinte
=t, . At T>A, the maximum is sharp and integrd.8) is
determined by its vicinity with the logarithmic accuracy
IN(T/Ag)~2pq(t,)—2t, /7. (3.9
The probability of the event is also determined by a vicinity
of p4(t,) because it corresponds to the maximal deviation
from the average value @f;. In accordance with E(3.5) it

In the passive regime the statistics of velocity gradients isan be estimated as

determined by the fluctuations at the viscous scalelhe
Lagrangian correlation time,, is the turnover time at this

scale. It can also be estimated)e{sl. Using the expression
€= v((Vjvi)Z) for the energy dissipation rate one can write

the estimated ;~e/v and A~ for the Lyapunov expo-
nent and the dispersion.

pl(t*)
ty

InP%_t*Sl _)\l

Substituting here4(t, ) expressed vid from Eq.(3.9), and
maximizing the result over, we get the condition

B. Single-point statistics S,

,3"‘%—7\1)—,881 ,8+%—7\1)=0, (3.10

In this section we examine the single-point statistics of
the conformation tensoh at A,7<<1. As explained above, \here g=(2t,) In(T/Ay). Using the convexity ofS;, one

most of the timeA fluctuates neaA,. We are interested in  c3n show that Eq(3.10 together with the conditiofg>0
large valuesA> A, because it is only for large values &f uniquely determinegs. Then one finds

that the polymers can possibly lead to noticeable effects.
Large values are determined by the velocity fluctuations such
that the producWWW' is anomalously large for a long time.
To find the tail of the PDF oA let us substitute decomposi-

1
InP~—%In(T/A0), a=S] B+;—M)- (3.1

tion (3.1) into Eq.(2.17). We obtain
2A, (= 2t
MTAM= —OJ thZ(t)exp{ - —},
T 0 T

where we have used theindependence oM at larget.
Under the conditiore’1>e’2>e”3 the tensorA is uniaxial,

3.7

Heren is a unit vectorn;= M4, uniformly distributed over a
sphere and =tr A,

2A, [ 2t
T~—f dtexg 2p,(t)— —|.
T 0 T

Thus the matrixA is expressed via the scaldr which is
independent op, and p;. The statistics oflf cannot be di-

Aij%Tninj .

(3.9

One can verify that the convexity & ensures the condition
a>0 if A\;<1/7. Expression(3.11) determines the probabil-
ity density function of In{/Ay). For the PDF ofT we obtain

al2
0

P(T)N Tl+ al2’

(3.12

SinceAxR?, the power-law distribution oA can be used to
obtain the power-law distribution of the molecular elonga-
tion R[9].

We see that the PDF is a power-law function with the
exponent } «/2 that can be expressed via the entropy func-
tion S;. Since the precise form &; is generally unknown, it
is impossible to find the precise dependenceacbn the
parameters of the flow. However, some general properties
can still be inferred. A3, increases, i.e., when the Reynolds
number increasesy decreases and tends to zero when

rectly examined in terms of the single-time probability dis- —1/7. One can easily establish the behavior wfin this

tribution function(3.5) because integrdB.8) involves differ-
ent times. Nevertheless, it is possible to use PRB) to find
the asymptotic behavior of the PDF ®fat T>A,. A rigor-
ous derivation is presented in Appendix(éf. [23,24)). Be-
low we use a simple semiqualitative method.

For a typical fluctuation of the velocity, integred.8) con-
verges att~ 7, which givesT~A,. To find the probability

region since then the approximati¢®.6) is correct. Substi-
tuting Eq.(3.6) into Egs.(3.10 and(3.11) we obtain

! A
s M

a= -

A

Note that the only characteristics of the flow entering this

distribution for large deviations of one should analyze rare expression are the average valuepgfand its dispersion.
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Power tail(3.12 means a slow decay of the probability in the framework of the passive approach. It means that the
distribution of T=tr A, which results in infinite values of its main contribution to the correlation function comes from
high moments. Namely, the momeg®")=[dTP(T)T"di-  configurations such that the back influence of the polymers
verge if n>a/2. Moreover, the normalization integral on the flow is not small. On the other hand,df>4 the
JdTP(T) converges at larg& only if «>0. Therefore an calculation of bot(T)? and(T?) in the passive framework
attempt to extend the passive consideration {o- 1/7 leads ~ gives a value of the order @3. HenceG,(r)~Aj for all r,
to the divergence of the normalization integral. It can bewhich means that the main contribution is made by the con-
interpreted as the tendency of the polymer molecules to bfigurations where the polymers are close to the equilibrium
stretched, i.e., the coil-stretch transition, and the breakdowstate.
of the passive approach. Let us consider the most interesting case®<4. Then

As we have seen, theth moment of the conformation (T)~A, is finite (and small, whereag T?) is infinite if cal-
tensorA formally diverges ain=«/2. It signals the break- culated using the “passive” PDKF3.12. It means that at
down of the passive approach, i.e., the main contribution temall distances the back reaction must be taken into account,
the diverging moments comes from the configurations of thavhereas at larger distances the passive approach works well.
velocity such that the feedback of the polymers on the flowlf we calculate the correlation function in the framework of
cannot be disregarded. As explained in the beginning of thishe passive approach, the result is valid for distances larger
section, the molecules can be considered as passi¥é at than some characteristic scale of the back reaction.
<w\. An account of the back reaction of the polymers on To calculate correlation functiof8.14) one can substitute
the flow leads to a much faster decrease of the PDH @t  expression2.17) for A(r,+r) and A(r,) and then average
IT=wv\4, which ensures that the moments have finite valuesver r,, which can be considered as averaging over space.
(in the framework of the simple model presented in Appen-The distance between Lagrangian trajectories terminating at
dix B one can find the precise form of the PDREet us the pointsr;+r andr, is an increasing function df It can
estimate the value of the diverging moments taking the feedbe found from Eq(2.15),
back into account. It is more convenient to discuss the mo-

ments ofll, which are proportional to the momentsAfsee MX(tg—t)=W(ty—t,to)r=W(ty,to—t)r. (3.15
Eqg. (2.7)]. If <2 then Eq.(3.12 modified by the cutoff at
IT~w\; gives Expression(3.15 is correct provided éx|<#. Under the
same condition the matric&¥ entering the expressid2.17)
(TrI)~I1§"%(wny) P2, (313  for A(ry;+r) and A(r,) are identical, as follows from Eq.

(2.14. Using the decomposition(3.1), rewritten as
Note that(TrIl)>1I, because we assumed tHag<v\;. W Y(to,to—t)=NTA"IMT, and the inequalities’1> er2
The equation$2.10 and(3.13 show that the elastic contri- ! '
bution to the energy dissipation; }(TrII), can be esti-
mated asr 'T13%(vA 1)1~ %2 It becomes comparable to the

viscous contribution,~ v)\'f just at the point of the coil-

>eP3 we obtain|Sx|~ePar.

At r<7 we haveG,>A3 i.e., the main contribution to
G, is due to the rare events when the prodM¢w' is
anomalously large during a long time. Then one can use the

stretch transition, where=0. uniaxial approximation(3.7). The functionsp,(t) in A(ry
_ _ +r) andA(r,) are identical as long d®x|< . When the
C. Correlation functions separationsx becomes larger tham, the correlation between

Here we investigate simultaneous many-point correlatiorfhe Lagrangian trajectories becomes weak. The contribution

functions of A. Let us start with the two-point correlation Of this stage G, is given by the product of independent
function averages(T)2~Aj, and can be neglected. We conclude that

the main contribution toG comes from times whemdx|
Go(r) =(T(tg,r1+1)T(tg,r1)), (3.14 <. Using the expressiofdx|~e "3 we get

whereT=Tr A. The value ofA at a given point is determined AZ( rs 2

by the Lagrangian trajectory arriving at this pointtatto. G~<—§‘ f dtexp(2p1—2t/r)] > , (3.16

Polymers separated by distances smaller than the viscous ™| Jo

scale,n, are stretched coherently, whereas at larger separa-

tions the correlation is largely lost. Thereforeis the corre-  where ps(s)=In(r/7). Since bothp, and p; enter the inte-

lation length ofA. For distances= 7, the quantitied in Eq.  gral, to evaluatés, one needs the joint PD{.4).

(3.14 become weakly correlated and the correlation function To ensure a large value @,, the functionp, in Eq.

tends to the product of averag€E). Nontrivial correlations  (3.16 should first increase faster thatr and then return to

occur at distances smaller thgn The correlation function is  its average valug t. Thusp,—t/7 should have a maximum

a monotonically decreasing function of the distance att, <s. A vicinity of t=t, makes the main contribution to
Note thatG, cannot be calculated in the framework of the G,. In the absence of the constrait<s the value ofG,

passive approach i#<2. Indeed, we can writ€,~(T)2at  grows exponentially a&, increases, which corresponds to a

r> 5. Formal calculation of T) using PDF(3.12 gives an formally infinite value of the second moment at<4.

infinite result. The same is true f@&(0)=(T?). SinceG,(r) Therefore the optimum is achieved gt~s. It gives the

is a decreasing function of it follows thatG,(r) is infinite  estimate
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5 son with the viscous stresses. Then the polymers are
Gz“Aoj dpiexp(4py—4s/7) stretched to their maximal elongati®y,,, and the properties
of the fluid do not differ significantly from those of the pure
p1—N1S In[r/n]—N\3s solvent. Below we consider the more interesting case where
xexp[—s% pr— S )] (3.17

the concentration of polymers is large enough, so that elastic
stresses can be larger than the viscous stresses. Then the
where s is determined from the conditiops(s)=In(r/z). feedback due to the polymers substantially modifies the flow.
The integral can be calculated in the saddle-point approxiThe condition for the existence of the back reaction regime is
mation with the saddle poini} «s. Next, one should opti- Hma& ¥/ 7, wherell ., is the maximal value of the elastic
mize overs, which givessxIn(r/»). The proportionality co- Stress tensor. It can be expres_sed in terms of microscopic
efficients depend on the form & The substitution of the Parameters and the concentration of the polymer$lag,

optimal values gives =Kone 'R%,, (see Sec. Il A Using estimates for the mi-
croscopic parameters proposed in Héf3] one can rewrite
Go~AG(nlT)%2. (3.18  the condition as>(RoR%,) L.

) ) ) Whereas in a pure solvent, typical gradients of the veloc-

The exponent, in Eq. (3.18 can be found if the precise ity grow unlimited as the Reynolds number increases, in
form of the entropy functior§ is known. We observe that polymer solutions the balance of inertial and elastic degrees
G,~Aj if r~7. Itis natural sinceG, atr~ 7 can be esti- of freedom fixes the characteristic value of the gradient at
mated as(T)?. We also see thaB, tends to infinity atr 1/, Indeed, if the instantaneous velocity gradient exceeds
—0. This corresponds to a formally infinite value of the 1/7, it extends the polymers, so that the elastic stress grows
second moment. and damps the gradient. On the other hand, if the velocity

All the conclusions concerning the pair correlation func-gradient is much smaller thanzthe molecules contract and
tion of T are valid for correlation functions of separate com-do not produce any effect on the flow. Then the velocity
ponents ofA too, which follows from the single-axis substi- gradients tend to grow to the value characteristic of the pure
tution (3.7). Indeed,n is uniformly distributed over the unit splvent, which is larger than 4/above the transition. This
sphere, which reduces correlation functionsAofo correla-  explains the steady state realized above the transition. We
tion functions of its tracd. now establish some general properties of this steady state.

Let us discuss the case>4. Then the main contribution  Turbulence of Newtonian fluids can be characterized by
(3.14 to G,(r) at smallr is equal to the second moment two length scales: the integral scaleand the dissipation
(T2)~A3. One can examine the-dependent correction to scales. Energy pumped at the integral scale cascades with-
the second momenr(T2) — G,(r). It can be done as above. out dissipation from larger to smaller eddi@oherent mo-

The correction behaves as a positive power afr <. tions of the fluid in the rangen<r<L called the inertial
The proposed scheme can be generalized to higher-ordétterval. Velocity difference between two points separated
correlation functions by the distance from the inertial range diminishes slower
thanr, so that the characteristic value of the velocity gradient
Gnr=(A(ry) ... A(rp)). (319  at the scale grows downscales reaching a maximunr at

~ 7 [25]. We assume/7/L<1, whereV is the velocity at

The behavior ofG,, is similar to that ofG,. If the moment ; ; .
' o2 ; the integral scale, then the gradient related to large eddies is

Tn

(T") calculated with the PD3.12) is infinite, the function smaller thanr~ 1. Therefore, large eddies do not excite poly-

Gnis a §cal|ng funct|on of the coor_dmates. The scaling e?('mer:s, which means that the elastic stress tensor is not corre-
ponent is negative, so the correlation function formally di-

. . lated at these scales. Since only coherent excitations of the
vegge_s at _smaII d|stance_s. On the othernhand, i the_ MOMEIYastic stress tensor can influence the velocity, we conclude
(T > S finite then the .dn‘ferencé}n—(A ) SC?"GS with a that the elasticity is negligible for large eddies. The interac-
posmve exponent and is thus a _smaII correctioAS). tion of inertial and elastic degrees of freedom becomes es-

Since the moments dil are finite, we can assert that the

. . ) sential at the scale, , determined from the conditioNv
growth of the correlation functions dil observed at fusing

X in EQ.(3.19 h b d F | 2~1/T. The fluctuations ofll are correlated over the scale
points in Eq.( N 9 has t.o € satgrate - For example, at r, . Because the value of the gradient cannot exceectli¢
<a<4 the pair correlation functioi3.14) saturates a6,

PP, > of2? P velocity difference scales linearly withatr=r, , i.e., the
~Aplly (%) ~Ag II5™ “(vA4) - One can say that the ¢,y is'smooth. Near the coil-stretch transition characteristic
back reaction regularizes the correlation functions at Smal\llelocity gradient is determined by the viscous scale and is of
scales. the order of 1#, hencer, ~ 7. As the Reynolds number
increases, velocity fluctuations increase, so that the sgale
IV. STRONG BACK REACTION grows. Thus above the coil-stretch transition a new scale
separating the inertial and viscoelastic intervals arises. It is of
Here we consider the dynamics of the polymer solutionghe order ofy near the transition and grows as the energy
above the coil-stretch transition, when the Reynolds numbeinput increases.
exceeds a critical value. Depending on the concentration of Near the transition the viscous and elastic terms in Eq.
polymer molecules, two situations are possible. If the con{2.8) are of the same order, which givek~ v/ 7. For dilute
centration is small, the elastic stresses are small in comparsolutionsy/ r is much larger thail, therefore all the terms
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in the energy ba}lance equati@h 10 are .of the order Of//.7'2 ing dispersionA of p;—t/7, A= dt((o14(t)T11(0))),
near the transition. The energy pumping rate per unit massyhich is nonzero for Newtonian turbulence.

e, can be estimated a¢*/L. Equating it to the dissipation  Averaging Eq.(4.2) one can obtain the exact relation
rate, estimated asv/7?, one finds the estimate Re

=[L?/(v7)]?? for the value of the Reynolds number at the (TrIT)

transition. As the energy input increases the energy dissipa- (I (N Vwi(r)y= ——-. (4.6
tion rate due to viscosityu(Vjvi)Z, remains of the order of T

vl 2. Therefore far above the transition, the principal part of ) ,

the energy is dissipated by the polymer relaxation. Then th&onsider nowIL(r)Viw;(r')) as a function of the separa-

viscous term in Eq(2.10 can be neglected and we obtain tion!=[r—r'|. Its value al =0 is given by Eq(4.6) and can
be shown to be much larger than the value at the pumping

(Tril)=er. (4.1 scale,|~L. Indeed, consider the correlation function aver-
aged over a ball of sizeL centered atr, i.e.,
We conclude that the energy is dissipated mainly by theITj(r)Svdr'V,v;(r'))/V. The velocity gradient averaged
elastic relaxation. Relatiof#.1) means that the typical value over the scalé is determined by the external forces. Using
of I grows as the energy input increases, which can b&d. (4.1 one can estimate the value of the averaged correla-
interpreted as the increase in the effectiVelastic” ) viscos-  tion function aseV7/L<e. It follows that(I1;(r)V,v;(r"))
ity. It is defined as the proportionality coefficient betweendecays at scales larger thep. Belowr,, the fluctuations of
the polymer stress tensdl and the strain tensoW;v, Il andVu are strongly correlated. The decay of the correla-
+V,v;, which remains of the order 4/Using Eq.(4.1) one tion function atr, <r<L can be used to derive Kolmogor-
can estimate the ratio of the elastic term to the nonlineapVv’s four-fifths law[25] at these scales. The latter states that
inertial term in Eq.(2.8) asVr/L<1, which shows that the the third order longitudinal structure function is equal to
elasticity is indeed negligible at large scales. —4el/5 in the inertial interval. All the above conclusions are
The strong interaction between the elastic and inertial dein agreement with the general picture presented in the begin-
grees of freedom imposes a restriction on the Lagrangianing of the section.
statistics of velocity. To demonstrate it, observe that Eq. Expression4.1) gives the typical value of the stress ten-
(2.6) gets simplified under the conditidd>II, satisfied in  sor. As we argued above, the fluctuations Witk e 7 relax
the strong back reaction regime. Neglecting the terms prorapidly due to the back reaction, which leads to a fast de-
portional toA, andIl, in Egs.(2.6) and(2.7) we obtain crease of the PDF ofl at [I>e7. On the other hand, the
probability to havdI<er is also small. The rough details of
2 the behavior of the PDF can be understood on the basis of a
el + (v V)T =11 Vi + My Vv — ;Hij . simple model presented in Appendix B. The solution of the
(4.2  model shows that the PDF df has an exponential tail at
large values ofl and power-law behavior at small values of
Expressing the solution of E¢4.2) in terms of the Lagrang- II. We believe that a similar qualitative behavior is realized
ian quantitiesx and W introduced by Eqgs(2.11) and(2.14  for the stress described by Edq2.8) and (4.2). The model
we obtain also explicitly demonstrates the finite value of the Lagrang-
ian correlation time ofll and Vv. This property holds de-
II(t,r)=W(t,0n)II[0,x(0,)JW'(t,0r)e V7. (4.3 spite a strong modification of the Lagrangian dynamics due
to the back reaction.

The Lagrangian correlation time at the scejeis 7. There- Note, that the concentration of the polymer molecuigs,
fore att> 7 the eigenvalues oW are strongly separated so does not enter the system of equatié28) and(4.2). There-
thatIT is uniaxial, fore the dynamics of polymer solutions with different values
of n will be identical in the strong back reaction regime.
ITj;=nin; trII, (4.4 Moreover, using the equatiahn+ (v-V)n=0 for the con-
centration, it is possible to show that Ed.2) is also valid
wheren is a unit vector. Then Eq4.3) gives for n being inhomogeneous in space. Thus the hydrodynamic

properties of spatially inhomogeneous solutions do not differ
from the homogeneous ones. This assertion holds if local
large enough fofl,5,(Nn) to be larger than the local value of
I1 prescribed by the dynamics.

The stationarity ofI implies thatp; —t/7 has a stationary ~ The uniaxial form(4.4) of the tensorll allows one to
distribution. In particular, we conclude that the principal rewrite Egs.(2.8) and(4.2) in the form similar to the equa-
Lyapunov exponenk  of the flow is equal to X exactly. tions of the magnetic hydrodynamics. The field TrII sat-
The stationarity ofp, —t/7 is very different from the situa- isfies the induction equation with linear damping. In addition
tion for the Newtonian fluids, described by E@.5. The one can show that the field is solenoidal. This analogy helps
reason is the anticorrelations in the temporal dynamics of understand the dynamics of fluctuations at the scales
due to its interaction witHI, which were qualitatively de- <r, , which occur on the background of the relatively slow
scribed in the beginning of the section. They lead to vanishstresses excited at-r, . These small-scale fluctuations are

2p1—2t+In[TrH(t,r)]—In[TrH(O,X(OJ))]- (4.5

T
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elastic waves similar to the Alfven waves propagating in the V. CONCLUSION
presence of a large-scale magnetic field in magnetic hydro-
dynamics[26,27. The dispersion relation of the waves is

= (k-n)JTrII. Thus the velocity of these wavesyaTrII, . . - TR
o= (k-n) us yeoelty S€ waves T who argued the existence of the coil-stretch transition in tur-

which can be estimated a& 7. There exist two mechanisms bulent f hich ical |
of the elastic waves attenuation: polymer relaxation and visPulent flows, which occurs at a critical Reynolds number,
cous dissipation. The first mechanism leads to the scald3&- The polymer molecules are typically weakly stretched,

independent attenuation , which is smaller than the fre- SO that their elasticity only weakly influences the flow in the
quency, atkr,>1. The second mechanism produces theregime realized below the transition, at RRe.. At Re
attenuation~ vk?, which is much smaller than the frequency > Re, the polymer molecules are substantially stretched and
for k, <1 where , =v(e7) Y2 Thus the elastic waves strongly modify the small-scale flow.

are well defined in the interval;ls k= 77;1. This interval At Re<Re. the polymer molecules are passively advected
can be called the elastic dissipation range. and stretched by the flow. This regime occurs under the con-

Our equations are valid as long Hs<Il,,,. The relation  dition A ;7<1 wherer is the polymer relaxation time and,

(4.1) allows us to reformulate this condition @s<Il /7. is the principal Lyapunov exponent. The Lyapunov exponent
Another limitation of our scheme is related to the inequalityis defined as the logarithmic rate of the divergence of nearby
R<r, , under which the flow is smooth at the scReUsing  Lagrangian trajectories and can be estimated as the inverse
Egs. (2.5, (2.7), and (4.1) one can write the estimat@?® turnover time at the viscous scale of turbulence. The major-
~per(Kon) 1 for the typical size of a polymer moleculg, ity of the molecules in this regime fluctuates near the equi-

Let us estimate the parameters introduced above withitibrium. There also exists a small number of strongly elon-
the framework of Kolmogorov’'s theor{k41) [28]. Though  gated molecules, which appear due to rare large fluctuations
the theory is, rigorously, incorre§®5], it is satisfactory for in the rate of strain. Even though the number of substantially
rough estimates. The characteristic velocity differedge  elongated molecules is small, they may be relevant in some
between two points separated by the distané®m the in-  situations due to the relatively slow power-law decrease of
ertial interval is given in K41 by €r)*3 wheree is the the probability density function of elongations of molecules
energy input. Writing Vo |~ 8,v/r~ €Y ~25, one findsr,  Eq. (3.12.
~Je7. In the K41 theory the conditioR<r, can be re- In the second regime, at Re&Re,, most of the molecules
written aso(Kon72) "1<1. Note that in the framework of are substantially elongated. It leads to a strong interaction
K41 theory the ratioR/r, is independent of the Reynolds between the elasticity and the flow, which modifies the flow
number. below the scaleg, . At r=r, the properties of turbulence

Our analysis assumes that the characteristic size of thare the same as in Newtonian fluids. The energy cascades
moleculesR, is much smaller than their maximal siRg,,,. ~ downscales from the pumping scale and dissipates due to
As Re increases, the typical elongations eventually becompolymer relaxation at~r, . The scale can be considered as
of the order ofR,,,«, and further elongation becomes impos- a new dissipation scale. The flow is smooth =tr, with the
sible. In this case the molecules behave as hard rods, modiyapunov exponenk ; fixed at the value X by the interac-
fying the effective viscosity of the fluidi29]. Therefore at tion.
large enough Re we return to the case of Newtonian fluid. The smoothness of the flow efsr, leads to the conclu-
However, this regime is expected to be unstable becausgon that the velocity spectruri(k) decreases faster than
polymer molecules are intensively destroyed by strong flowsk 2 at kr, =1. The precise form oE(k) in this interval is

We have shown that in the steady state the velocity grarelated to the elastic waves propagating at these scales. As
dients in the bulk do not exceed . Consider now the situ- both spectral transfer time and the decay time are scale in-
ation where the boundary forces tend to produce gradientdependent one can expect a power-law spectrum.
larger than 1# atr ~L. Then the elastic reaction should lead The properties of the polymer statistics near. Rere
to formation of a boundary layer where the value of velocityexamined numerically by Krongeer and Eckhardt30] in the
gradient diminishes from the value imposed by the forcing tdramework of Eqs(2.6) and (2.8). The results indicate the
the valuer ! in the bulk. Therr, ~L, i.e., the inertial range power PDF tail for the polymer elongations at RRe. and
and energy cascade are absent. This situation is similar to tleesubstantial modification of the PDF at:RRe., in agree-
elastic turbulence regim]. ment with our results.

Finally, let us consider the role of other modes of the Let us discuss implications of our results for the drag
polymer molecules relaxation. They are characterized by theeduction. A description of the experimental situation can be
relaxation times, < 7. We have shown that the interaction of found in the work§2—4]. It has been observed that the onset
the fluid with the principal relaxation mode fixes the value ofof the drag reduction at increasing Re depends on the con-
the principal Lyapunov exponent &{=7"1. The inequality ~ centration of the polymer molecules, whereas asymptotically
N 7i<1 then implies that other modes are always onlythe friction force falls on a curve, which is independent of
weakly excited by the flow, so the interaction is fully deter-the concentration. This curve is usually referred to as the
mined by the softest relaxation mode. We conclude that EqSVIDR (maximum drag reductiorasymptote. A discussion of
(2.8) and(4.2), based on the single relaxation mode approxi-the MDR can be found in the recent wofR1]. A natural
mation correctly describe the solution hydrodynamics abovexplanation of then independence of the MDR asymptote
the coil-stretch transition. can be formulated in the framework of Eq2.8) and (4.2

We have examined properties of turbulence in dilute poly-
mer solutions. Our results support the theory of Lunilgy
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describing the strong back reaction regime. Indeed, the sysvhereé(t) is a random process with a finite correlation time
tem contains na-dependent parameters. Thalependence 7, and a negative averagg<0. For this purpose it is con-
of the onset can also be explained in our scheme. The dragenient to introduce the auxiliary object
force is formed in the boundary layer, which has a compli-
cated structur€32]. Whereas gradients of the average veloc- I(t)= f * dt’ ex{ f t/ At £(t")
ity grow toward a wall, the amplitude of the velocity fluc- ¢ t '
tuations decreases. Therefore one can expect that the
polymer molecules are strongly extended in bulk and weaklyDue to the stationarity of, the statistics of(t), it is inde-
extended near the walls. Then the structure of the boundamgendent ot. Separating the integration interval one finds the
layer will be sensitive to the polymer concentrationThe  relation
situation corresponds to the transient regifwdich is sen- :
sitive to the polymer concentratipfrom the Newtonian be- oSt — f "Nt
havior to the MDR asymptote. The asymptote itself corre- (t=2y I(t)exp{ t_&f(t ot }
sponds to the case when the polymer molecules are strongly . /
extended everywhere. _ _ +f dt’exp{ ft §(t”)dt”}.
A striking property of polymer solutions is the so-called t— ot t— ot
elastic turbulence regime discovered by Groisman and Stein-
berg[1]. It is a chaotic state that is realized at small Rey-It follows that
nolds numbers Re. Its existence is made possible by the large .
value of W_elsse_nberg number WIrV/_L, which implies a _ Inl(t—é‘t)=lnl(t)+f £(t))dt!
strong nonlinearity of the system. This state can also be in- t— ot
vestigated in the framework of our scheme. The results will

be published elsewhere. ft dt’ex;{ f" é_‘(t/r)dtn}
Let us give numerical values of parameters appearing in Ry -5t

our theory for a typical experimental arrangement. For the +ing 1+ t

number of monomers $6-10" one hasR,~10"° cm, I(t)exp{f §(t’)dt’}

Rmax~10"2 cm, and 7~10 2-10"' s. Then usingn, t-at

~(R3_,Ro) ! one can obtain 0.1 ppm for the concentration (A2)
n. below which polymers have no effect on the flow. Let us

assume that the polymer concentration is 10 ppm, the intdf 1(t) is sufficiently large, it is possible to neglect the last
gral length isL~10 cm, and take the water viscosity, te€rm on the left-hand side. The exact condition is formulated

~10"2 cn?/s. Then the critical Reynolds number Re below. Observe that Ii{t) depends on the values of the noise
~[L%(v7)]??is of the order of 16, Above the coil-stretch  at times larger than so that the second term is independent

transition the characteristic size of polymers is givenrby Of the first providedst> ... Therefore the probability distri-
~Ry\VRE0 73 (kgTNLY) ~ 10 5R,Re¥2. We obtain thaR bution fu_nct|onP(z) pf z_(t—_5t)EIn I(t—ﬁt) is given by the

~10%R, in the vicinity of the transition, which is in agree- convolution of tthe distributions af(t) [which is also qugl
ment with the assumptioRy<R<Ry. Using Kolmogor- {0 P(2)] and [;_5&(t)dt’. The latter has a probability
ov's estimaten~LRe ¥+ we find that at the transition, ~ function similar to Eqg.(3.5. We thus obtain the integral
~10"2 cm, which is of the order oR . Thus the assump- €guation

tion R< 7 is satisfied. These estimates seem to fit the exist- dz st
. . z z—7'—

ing experimental data. P(z)=J P(z’)ex;{ _ &Sg( 0

V2mtA ot

' whereé,= (&) andS; is the entropy function characterizing
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dx X—&pot
APPENDIX A f exr{ax_&sg( & ) _1 (A
V2mtA ot

Here we consider the statistical properties of the integral

. . The solutione=0 should be rejected. This integral can be
|=J dtex J dt’ &(t") (A1) evaluated by the saddle-point method so that its value is
0 0 ’ determined by the maximum of the exponent. Taking its

056301-11



E. BALKOVSKY, A. FOUXON, AND V. LEBEDEV

value atx= ¢yt we conclude that in order to satisfy condi-

tion (A4), a« and &, must have different signs. Thus &
<0, thena>0 and the normalization integral for POHR3)
converges at—o0. On the other hand, i§,>0, there exists
no well-defined distribution of.

The two equations that implicitly define are given by
the saddle-point condition

a=Sy(B~ &),

where B is the saddle-point value ofz(-z')/6t, and the
condition

Sg(ﬁ_go)_ﬁsé(ﬁ_fo):(),

which follows from the condition that the integréd4) is
equal to 1. One should reject the formal soluti@r &, of
these equations correspondingde- 0. It is easy to see that
B is positive together withw. Now we may formulate the
condition for the applicability of the power tail. It is valid
provided the third term in Eq(A2) is indeed much smaller
than the second for thoddt) that determine the PDF of
[(t—ot). From z—z'=pB6t it follows that I(t)=I(t
—ot)exd —B48t], so that we arrive at the conditioh
> expBa)/(B2&) (¢ is estimated ag). The increment is
constrained by the conditioft> 7,. There are two cases to
be considered. IB~ 1> T one can use the choice minimizing
the above ratiost~ B~ -, so that Eq.(A3) is valid for |
> B~ In the opposite casp™ <7, the power tail is valid
for 1> exy Br/(BTy).

At small £, one can use quadratic expansion 84(x)
~x2/(2A), which gives

2
B=—¢o, a:_Kgo- (A5)

The entropy function becomes quadratic in the limit-0.
Thus the expressiofA5) is valid for any&, in the case of a
short-correlated process(cf. [23]).

APPENDIX B: MODEL OF THE BACK REACTION

Let us introduce a simple model that captures the most
robust features of the interaction between elastic and inertiaHO
degrees of freedom. The model is formulated in terms of the

system of equations for two variablesandx. The equations
are

dx
aZO‘X—FXO, o=—X+§, (B1)
(&)=a, ((&(t)é&(tp)))=28(t1—ty), (B2

PHYSICAL REVIEW E 64 056301

equation in systeniB1) represents the Navier-Stokes equa-
tion (2.8). Since we consider dynamics at the scale all
the spatial derivatives can be estimated ag 1/The term
—x describes the back reaction afidhodels the influence of
larger scales, exciting the motion t-r, . The averaga
=(¢) is negative below the coil-stretch transition and posi-
tive above. Ifa>0 the termx, on the right-hand side of the
first equation in Eq(B1) can be disregarded.

Starting from the system of equatiofB1) and (B2) one
can derive the Fokker-Planck equation for the PDF of

I P= 0y X (XP)]— dy[{Xg+ (a— X)X} P]. (B3)
The normalized stationary solution of E@®3) is
Po(X)= Ex""*lex —X— Xo (B4)
0 Z X 1

where Z=2x3?K ,(2\/x,) is the normalization factor. Here
K, is the MacDonald function.

At a<0, which corresponds to syster{%s6)—(2.8) below
the transition, the properties af are only insignificantly
modified by the interaction with the varialbke For example,
in the limit x,<1 one finds thato)=a, which is the same
value as without the back reaction. However, the back reac-
tion is important for rare events whehis large. The inter-
action leads to the exponentially decaying tail, which makes
all the moments ok finite. This corresponds to the picture
presented in the main body of the text. Note that the power
tail is universal, i.e., force-independent, whereas the expo-
nential tail is an artifact of a zero correlation time $f18].

In the casea>0, i.e., above the transition, the limi
—0 is regular. One obtains

X2~ texp( —x)

7Do(X):T,

(B5)

wherel'(x) is the Eulerl” function. We observe that all the
positive moments ok exist because the back reaction stops
the growth ofx. The average value afis given by(x)=a so
that (o)=0. These facts correspond to the stateméhts

er and\;=7"! from Sec. IV.

Let us now investigate nonsimultaneous correlation func-
ns ofx above the transition, i.e., whex»>0. Then we can
assumex,=0. We need the Green functi@i(t,x,y) of Eq.
(B3), which satisfies

9G— A X(XG) ]+l (a—X)xG]= (1) 6(X—Y),
(B6)

with the conditionG(t<0)=0. The Green function should
be regular ak=0 and decrease faster than any powex af
x—o, Using G one can find nonsimultaneous correlation

where double brackets denote the irreducible part of the cofynctions ofx in the steady state,

relation function. The variable models the rate of strain

subtracted by I and x models the elastic stress. The time

derivative in Eq. (B1) represents the full derivative),

(DX = [ dxdyPyIGEx Y (0

+v-V, i.e.,, we consider the Lagrangian dynamics. The
productox represents the combination on the right-hand sidevheref, andf, are arbitrary functions an®y(x) is defined

of Eq. (4.2 andx, stands forA, in Eq. (2.6). The second

by Eg. (B5).
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The Laplace transform df(t,x,y) is

G()\,x,y)Efxdtexp(—)\t)g(t,x,y). (B7)
0
It satisfies the equation

NG =4[ XIx(XG)]—d,[ (a—x)xG]+ 8(x—y), (BY)

following from Egs.(B6) and(B7). The solution of Eq(B8)
can be expressed in terms of two independent solutions
the homogeneous equation

NGy 2= [ Xx(XG1 ) ]~ [ (a=X)XGy].  (BI)
Two independent solutions of EB9) are
G=x"e F(—k,—1k;—k,+1,x), (B10)
G,=x"2e W (—k;—1k,—k;+1,x), (B11)
where
V(a,B,X)= l{;i—x)l)F(a,ﬁ,x)+ %xlﬁ
XF(a—B+1,2—B,X). (B12)

andF(a,8,x) is the confluent hypergeometric functi@s].
The functionsG; and G, satisfy the boundary conditions at
x=0 andx—o correspondingly. The parametess, are

(B13)

Matching functiongB10) and(B11) at x=y one obtains the
Green’s function

yi %Y T(—1—k,)
JaZ+an Tki—ky) [6(Yy —X)G1(X)G2(y)

+ 0(X—Y)G1(y)Ga(x) ],

where 0(x) is the Heaviside step function.

ExpressionB14) allows one to establish analytical prop-
erties ofG as a function ol. The function is analytic in the
half plane R&.>0. There is a branch point at=—a?/4
with the cut going along the axis Ik=0 from the branch

G(\,X,y)=

(B14)

point to — . In addition to the branch point there also exist

poles located ak=n(n—a), wheren is an integer number
(including zerg, such thatn<a/2. Thus the poles lie be-

tween the origin and the branch point. One can easily find

the pole contribution toG near A=0 corresponding tom
=0. Using Eq.(B14) we obtain
x3" lexp —x)

G(\,X,y)= NENY +.-

(B15)

where dots mean terms regularNn

PHYSICAL REVIEW B4 056301

The Green functiorg is expressed via its Laplace trans-
form as

A+ie g\

—exXpAt)G(\,X,Y),

27i (B16)

Q(t,X,Y)Zf

Ao
where the integration contour lies on the right of all singu-
larities of G(\). Shifting the integration contour in Eq.

(B16) to the left we find that the first term in the right-hand
§ide of Eq.(B15) producesPy(x), while additional contribu-

Yon is given by

—etiw

A
gl(t,x,y)zf ?exp()\t)G()\,x,y), (B17)

—€e—i»

wheree>0 is a small number and, is defined by the rela-
tion

gl(taxry) = g(taX:Y) - PO(X)'

Shifting the integration contour in E4B17) to the left we
encounter the branch point=—a?/4 if a<2 or the polex
=1-—aif a>2. Therefore at largethet dependence df, is
exp(—a’t/4) if a<2 and exp(1—a)t] if a>2. Since

(Falx(0)TF2[x(0) 1) =(F1) (f2)

(B18)

N f dx dyPo(y)G1(tx,y) 100 oY),
(B19)

the correlations ok decay exponentially in time.

One can write the asymptote ¢f(t,x,y) at larget ex-
plicitly. Let us first considea<2. Then the integration con-
tour in Eq.(B17) can be deformed into a curve going around
the cut starting from\ = — a?/4. Calculating the jump on the
cut we get the expression

2
2 In(y/x)c,+c3 -1

~_ - - = —al2

e a2t/4

(B20)

valid for smallx, y. Herec,;=2y(1)— ¢(—al/2) andy(z) is
the logarithmic derivative of th&' function. At a>2 with
the exponential accuracy, the functign(t,x,y) is given by
the residue akh=1-a,

(a—1)F(-1a—-1,x)F(—1a—-1y)
I'(a—2)y

Gi(t,x,y)~
X e(lfa)txaf 2e7x_

The finite correlation time oé follows from (o (t)o(0))=
—af(ln X(®)Inx(0)). The expectation value of x(t)
=exf [Lo(t')dt'] grows exponentially with time at times
much larger than the correlation time of unless
Jdt{a(t)a(0)y=0. Thus the back reaction stops the growth
of x and gives rise to this peculiarity of the statisticsoaf
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