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Turbulence of polymer solutions

E. Balkovsky,1 A. Fouxon,2 and V. Lebedev2,3

1The James Franck Institute and the Department of Mathematics, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 6
2Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

3Landau Institute for Theoretical Physics, Kosygina 2, Moscow 117940, Russia
~Received 2 May 2001; published 12 October 2001!

We investigate high-Reynolds-number turbulence in dilute polymer solutions. We show the existence of a
critical value of the Reynolds number, which separates two different regimes. In the first regime, below the
transition, the influence of the polymer molecules on the flow is negligible, so they can be regarded as
passively embedded in the flow. This case admits a detailed investigation of the statistics of the polymer
elongations. The second state is realized when the Reynolds number is larger than the critical value. This
regime is characterized by the strong back reaction of polymers on the flow. We establish some properties of
the statistics of the stress and velocity in this regime and discuss its relation to the drag reduction phenomenon.
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I. INTRODUCTION

In this paper we present a theoretical investigation of t
bulence in dilute polymer solutions. As opposed to Newto
ian fluids, such solutions possess additional macroscopic
grees of freedom related to the elasticity of the polym
molecules. Relaxation times of elastic stresses can be c
parable with time scales of the flow, which means that
relation between the stress and velocity gradient is nonlo
Due to the nontrivial interaction of inertial and elastic d
grees of freedom, the polymer solutions exhibit a variety
regimes. For example, a turbulentlike state has been rece
observed at very low Reynolds numbers@1#. Here we will
consider the more familiar situation of turbulence at hi
Reynolds numbers. Probably, the most striking effect
polymers on the high-Reynolds-number flows is the drag
duction phenomenon. The addition of long-chain polym
in concentrations as small as 1025 by weight can induce a
substantial reduction of the drag force needed to push a
bulent fluid through a pipe@2–4#.

The reason why small amounts of polymer can sign
cantly modify properties of the fluid is the flexibility of poly
mer molecules. At equilibrium a polymer molecule coils
into a spongy ball of a radiusR0. The value ofR0 depends
on the number of monomers in the molecule, which is u
ally very large. For a dilute solution with the concentratio
n, satisfyingnR0

3!1, the influence of equilibrium size mol
ecules on the hydrodynamic properties of the fluid can
neglected. When placed in a nonhomogeneous flow, su
molecule is deformed into an elongated structure that can
characterized by its end-to-end distanceR. If the number of
monomers in a typical polymer molecule is large, the elo
gation R can be much larger thanR0. The influence of the
molecules on the flow increases with their elongation a
may become substantial whenR@R0.

The deformation of the molecule is determined by tw
processes, the stretching by the velocity gradients and
relaxation due to the elasticity of the molecule. To und
stand how a molecule resists deformation by the flow, le
consider its relaxation. Recent experiments with DNA m
ecules indicate that the relaxation is linear in a wide reg
1063-651X/2001/64~5!/056301~14!/$20.00 64 0563
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of scalesR0!R!Rmax, whereRmax is the maximum exten-
sion @5#. In the case of polymer molecules, theoretical arg
ments and numerics presented in@6# support the linear relax-
ation. These results can be understood if we assume th
R@R0, the role of excluded volume and hydrodynamic i
teractions between the monomers becomes negligible. T
the random walk arguments suggest that the entropy of p
mer molecules is quadratic in the rangeR0!R!Rmax imply-
ing linear relaxation. Whether the polymers are excited
the flow is determined by the softest relaxation mode t
describes the dynamics of the elongationR. In the absence of

stretching, the relaxation ofR is described byṘ52R/t,
wheret is the largest of the polymer relaxation times. T
relaxation time isR independent atR0!R!Rmax. If the end-
to-end distanceR is of the order of the maximum extension
t starts to depend onR and the dynamics of the molecul
becomes nonlinear.

The behavior of the molecule in an inhomogeneous ste
flow depends on the value of the Weissenberg number
defined as the product of the characteristic velocity grad
andt. When a polymer molecule is placed in a flow, smoo
at the scaleR, the velocity difference between the end poin
is proportional toR multiplied by the characteristic value o
velocity gradient. At Wi!1 relaxation is fast as compare
to the stretching time and the polymer always relaxes to
equilibrium size,R0. The behavior of the polymer at W
*1 depends on the geometry of the flow. For purely elo
gational flows the molecule gets aligned along the princi
stretching direction. If the velocity gradient is larger than t
inverse relaxation time, i.e., Wi*1, the elastic response be
comes too slow in comparison with the stretching and
molecule gets substantially elongated@7#. The sharp transi-
tion from the coiled state to the strongly extended state
called the coil-stretch transition. Rotation can suppress
transition and even damp it completely since the molec
does not always point in the stretching direction~see, e.g.,
@8#!. For example, no coil-stretch transition occurs in t
case of a shear flow, which is a combination of elongatio
and rotational flows.

In contrast to the steady flows, a polymer molecule mo
©2001 The American Physical Society01-1
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ing in a smooth random flow alternately enters regions
high and low stretching. As the intensity of the flow in
creases, the effect of the stretching becomes more
nounced. One can generally assert the existence of the
stretch transition. This has been first demonstrated
Lumley @8#, who considered the situation where the char
teristic time of variations of the velocity gradient is muc
larger than the inverse of the characteristic value of the g
dient. He showed that if the amplitude of velocity gradie
fluctuations is large enough, the expectation value ofR2

grows with time, which signifies the coil-stretch transitio
We have demonstrated in@9# that the coil-stretch transition
occurs in any random flow and have established a gen
criterion for the transition. In particular, the transition occu
in the situation where the time of velocity gradient variati
is of the order of the inverse of its characteristic value, wh
is likely to be the case for real flows. The coil-stretch tra
sition in random flows is controlled by the parameterl1t,
where l1 is the average logarithmic divergence rate
nearby Lagrangian trajectories, to be referred to as the p
cipal Lyapunov exponent. It is positive for an incompressi
flow @10,11#. The molecules are weakly stretched ifl1t
,1 and strongly stretched otherwise. Therefore, for rand
flows the parameterl1t plays the role of the Weissenber
number.

To describe the behavior of a polymer molecule in turb
lent flows, let us briefly review the basic properties of turb
lence of incompressible Newtonian fluids. A high-Reynold
number flow consists of chaotic motions from a wide inter
of scales,h!r !L, whereL is the scale at which the flow i
excited andh is the viscous scale. The energy pumped at
scaleL cascades down to the scaleh, where it is dissipated
The size of polymer molecules is usually much smaller th
the viscous scale. Viscosity makes the flow smooth atr !h,
i.e., the velocity difference between two points is given
the velocity gradient multiplied by the distance. Then, t
stretching of molecules is determined by the gradient of
locity, which should be considered random in a turbule
flow. The Lyapunov exponent can be estimated as the c
acteristic value of the velocity gradient, which is determin
by the eddies at the viscous scale. As the Reynolds num
increases, the velocity gradient increases, and so doesl1t.
At some value of the Reynolds number it reaches the valu
and the coil-stretch transition occurs.

Several mechanisms can limit the stretching of polyme
The first one is the internal non-linearity of the elasticity
the polymer molecules. If this mechanism dominates, t
above the transition the molecules are stretched up to
maximal elongationRmax. An alternative explanation ha
been proposed by Tabor and de Gennes@12#. It is based on
the fact that if the elongation of a polymer molecule is larg
than the viscous length of turbulence,h, the elastic force
always wins over the stretching. Estimates using the par
eters of typical polymer solutions show that this situation
difficult to realize. Therefore we assume that the inequa
R!h is satisfied. It will also enable us to write local equ
tions describing the dynamics of elastic stresses. Ano
mechanism is the back reaction of the polymers on the fl
It is caused by the collective contribution of coherently d
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formed polymer molecules into the stress tensor. This ela
part of the stress grows with the elongation of the molecu
When it becomes of the order of the viscous stresses exis
in the flow, the polymers modify the flow around them a
the stretching diminishes. As a result, a dynamic equilibri
is realized at a characteristic elongation,Rback. The total
polymer stress is proportional tonR2, so thatRback depends
on the polymer concentrationn. Therefore if the concentra
tion is large enough, the value ofRback is much smaller than
Rmax. We will consider the effect of the back reaction und
the assumptionRback!Rmax. Probably, the conditionRback
!Rmax is necessary for the existence of a stationary st
because the polymer molecules stretched up toRmax are in-
tensively destroyed by the flow.

Above the coil-stretch transition, the back reaction mo
fies the small-scale properties of turbulent flows, which lea
to the emergence of a new scale,r * .h. Large-scale eddies
with the sizesr .r * do not excite elastic degrees of freedom
so that the usual inertial energy cascade is realized at t
scales. At smaller scales inertial and elastic degrees of f
dom exchange energy, which is dissipated mainly due to
polymer relaxation. The energy cascade terminates atr * , so
that r * plays the role of a new dissipation scale.

The plan of the paper is as follows. In Sec. II we intr
duce a system of equations describing the coupled dynam
of inertial and elastic degrees of freedom. In Sec. III w
study the situation when the back reaction of polymers
small and can be disregarded. We find the probability dis
bution function of the elastic stress tensor and examine
correlation functions. In Sec. IV we study the influence
the back reaction on the flow and establish some prope
of the velocity and stress statistics. In the Conclusion
summarize our results and discuss their implications for
drag reduction phenomenon. In Appendix A we presen
detailed derivation of the probability density function fro
Sec. III. Appendix B is devoted to a simple model illustra
ing some aspects of the interaction between the flow
polymers. Preliminary results of this work have been pu
lished in @9#.

II. BASIC RELATIONS

Following Hinch @13# let us consider the dynamics of
polymer molecule in a smooth velocity field. The degree
freedom related to the elongation of the molecule is
scribed by the vectorR, connecting the end points of th
molecule. The equation describing the dynamics ofR in the
absence of a surrounding flow is

] tRi1G
]E

]Ri
5z i , ~2.1!

whereE is the free energy of the molecule,z i is the thermal
noise, andG is the kinetic coefficient, which determines th
relaxation of the molecule. The correlation function ofz is

^z i~ t !z j~ t8!&52kBT Gd i j d~ t2t8!, ~2.2!

whereT is temperature andkB is the Boltzmann constant. I
the size of molecules is much smaller than the visco
1-2
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TURBULENCE OF POLYMER SOLUTIONS PHYSICAL REVIEW E64 056301
length, which we assume, the molecule moves in a spat
constant gradient flow. Its influence is described by the eq
tion

] tRi2Rj“ jv i1G
]E

]Ri
5z i , ~2.3!

where the stretching term2Rj“ jv i is added to Eq.~2.1! The
velocity derivative must be evaluated at the position of
molecule. To avoid misunderstanding, note that we mean
flow that is ‘‘external’’ to the molecule, excluding the veloc
ity induced by the relative motions of its chains.

The entropy of the molecule has a quadratic depende
on the elongationR in a wide interval@14#. It implies that the
molecule can be treated in terms of elasticity theory with
Hook modulusK0 so thatE5K0R2/2. This expression is
correct providedR!Rmax, where Rmax is the maximum
elongation of the molecule. The equilibrium size of the m
ecule,R0, can be estimated from the conditionE;kBT as
AkBT/K0. Substituting the energy into Eq.~2.3! we get

] tRi2Rj“ jv i1Ri /t5z i , ~2.4!

where t5(GK0)21. We see thatt is the molecular relax-
ation time.

Generally, the kinetic coefficientG or the relaxation time
t is a function ofR, which reflects the nonlinear character
the molecule relaxation@15# related to such effects as inte
nal hydrodynamic interaction of chains in the polymer m
ecule. For example, the finitely extendible nonlinear ela
model @15# assumest}12R2/Rmax

2 . One expects that a de
pendence ofG and t on R can be disregarded atR!Rmax.
Below we study this situation. Possible statistical con
quences of the non-Hookean dependence of the free en
on R have been investigated in@16#.

Equations~2.3! and~2.4! assume thatR is the only mode
related to the molecular deformation, which is an ideali
tion. Actually, the molecule has many deformational degr
of freedom that have different relaxation times. They ha
been observed experimentally@5#. Nevertheless, in the tur
bulent flows, only the mode with the largest relaxation tim
can be strongly excited whereas other modes are at m
weakly excited. Thus, Eq.~2.4! should be considered as th
equation describing the principal mode.

A. Continuous media equations

To study the dynamics at scales much larger than
interpolymer distance, the polymer solution can be regar
as a continuous medium. The appropriate description is d
in terms of macroscopic quantities, which are averages
microscopic variables over the volume. The polymer m
ecules are characterized by the average conformation te

Ai j 5^RiRj&. ~2.5!

The volume of averaging should contain a large numbe
polymer molecules and be smaller than the character
scales of the processes under consideration. The tensorA can
05630
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also be interpreted as the average over the statistics o
thermal noisez. The equation forAik follows from Eqs.~2.2!
and ~2.4!

] tAi j 1~v•“ !Ai j 5Ak j“kv i1Aik“kv j2
2

t
~Ai j 2A0d i j !,

~2.6!

whereA05kBT/K0. Equation~2.6! is linear in A, which is
correct providedA!Rmax

2 .
Equation~2.6! should be supplemented by the equati

for the fluid velocity. This equation is a consequence of
momentum conservation law. In order to derive it, o
should take into account the contribution of the inner elas
forces of polymer molecules to the total stress tensor of
fluid. If P ik is the elastic stress tensor per unit mass,
polymer contribution is%P ik , where% is the mass density
of the fluid. In the Hookean approximation

P ik5
K0n

%
Aik2P0d ik , ~2.7!

whereP05K0A0n/%5(n/%)kBT originates from the ther-
mal noisez in Eq. ~2.4!. Heren is the concentration of the
polymer molecules. If the flow is incompressible, i.e.,% is a
constant and“•v50, the momentum conservation la
reads

] tv i1~v•“ !v i1%21
“ i P5n“2v i1“kP ik1 f i .

~2.8!

Here P is the pressure,n is the kinematic viscosity of the
solvent, andf is the external force~per unit mass! driving the
flow. Equation~2.8! is a generalization of the Navier-Stoke
equation to the case of viscoelastic fluids. To simplify t
consideration we assume thatf is homogeneously distribute
over space. It is a common belief that this case does
differ qualitatively from that realized for real experiment
setups, where pumping is usually related to the boundar

The applicability condition of Eq.~2.6! is A!Rmax
2 . It can

be rewritten in terms of elastic stress tensor asP!Pmax

[K0n%21Rmax
2 . We assume that this condition is satisfie

for relevant fluctuations. The interaction betweenv and P
turns on if P exceeds the viscous stress,n“ jv i . The latter
can be estimated asnl1, wherel1 is the average logarithmic
divergence rate of nearby Lagrangian trajectories. Under
conditionPmax!nl1 the polymer molecules exert no influ
ence on the flow except for a small renormalization of t
viscosity of the solution. Thus, the inequalityPmax@nl1 is a
necessary condition for the polymers to have nontrivial
fects.

The free energy of the viscoelastic fluid is the sum of t
kinetic and elastic contributions

F5E dr H%

2
v21

nK0

2
@Tr A2A0ln~detA/A0!#J ,

where the second term represents the entropy of the m
ecules. Then we find from Eqs.~2.6!–~2.8!
1-3
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]F
]t

5%E dr f•v2%E dr H n~“ iv j !
21

1

t
Tr @P~P0

1P!21P#J . ~2.9!

This equation provides a mathematical formulation of
energy balance: the force supplies the energy, which is t
dissipated due to viscosity and relaxation of polymers. N
that the second integral in Eq.~2.9! has a definite sign, as i
should be for a dissipative term. Relative contributions of
viscous and the elastic terms to the energy dissipation ca
different.

If the forcing is statistically homogeneous, then a stati
cally homogeneous steady state is realized. It can be
scribed in terms of correlation functions ofv andA ~or v and
P), which are averages over the statistics of the pump
force f or over space. In the steady state the average valu
]F/]t is equal to zero. Therefore we get from Eq.~2.9!

n^~“ iv j !
2&1

1

t
^Tr @P ~P1P0!21P#&5e, ~2.10!

wheree5^f•v& is the mean energy injection rate~per unit
mass! by the external force.

Generally, the diffusion termk¹2A should also be adde
to the right-hand side of Eq.~2.6!. The diffusion coefficient
k is small due to a large number of monomers. It is poss
to show that the limitk→0 is regular, so we can disregar
the diffusion. The diffusion term can play a minor role f
scalesr &Ak/l1. If Ak/l1 is smaller than the intermolecula
distance, then the diffusivity is irrelevant in the whole regi
of applicability of the macroscopic approach.

B. Lagrangian description

Equation~2.6! can formally be solved in the Lagrangia
reference frame. Let us introduceÃ(t,r)5A@ t,x(t,r)#,
wherex(t,r) is the Lagrangian trajectory defined by the r
lations

] tx5v~ t,x!, x~ t0 ,r!5r. ~2.11!

The conditionx(t0 ,r)5r ensures that the fieldsA and Ã
coincide att5t0. The pointr plays the role of a Lagrangia
marker. The tensorÃ(t,r) satisfies the matrix equation fo
lowing from Eq.~2.6!,

] tÃ5sÃ1ÃsT2
2

t
~Ã2A0!, ~2.12!

s i j ~ t,r!5“ jv i@ t,x~ t,r!#. ~2.13!

Here s is the tensor of the velocity derivatives in the L
grangian frame and the superscriptT denotes a transpose
matrix. Due to causality, the value of the fieldA(t,r) is de-
termined by its dynamics at timest8,t. Therefore we will
be interested in the backward in time Lagrangian evolut
of A described by Eqs.~2.11! and ~2.12!.
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A solution of Eq. ~2.12! can be written in terms of the
Lagrangian mapping matrixW defined by the relations

] tW~ t,t8!5s~ t !W~ t,t8!, W~ t8,t8!51. ~2.14!

The matrix W is defined for a given Lagrangian trajecto
and therefore it depends on its markerr. For brevity we omit
the argumentr in W. The matrixW describes the deformatio
of infinitesimal fluid volumes. For example, the separati
dx between two close Lagrangian particles changes acc
ing to

dx~ t !5W~ t,t8! dx~ t8!. ~2.15!

It follows from Eq. ~2.15! that Wi j (t,t0 ,r)5]xi(t,r)/]r j .
The incompressibility condition“•v50 is formulated in
terms ofs as trs50. A consequence of incompressibility

detW51. ~2.16!

Using Eqs.~2.12! and ~2.14! we obtain

Ã~ t,r!5
2A0e22t/t

t E
2`

t

dt8 W~ t,t8,r!WT~ t,t8,r!e2t8/t.

At t5t0 this equation gives

A~ t0 ,r!5
2A0

t E
0

`

dt W~ t0 ,t02t,r!WT~ t0 ,t02t,r!e22t/t.

~2.17!

It is easy to understand the meaning of Eq.~2.17!. The poly-
mers are advected along the Lagrangian trajectories b
stretched by the velocity gradient and relaxing to their eq
librium shape due to elasticity. The value of the conform
tion tensorA is determined by the sum of the contribution
of these processes at earlier times picked along the Lagr
ian trajectory arriving atr. The termWWT describes the
stretching and the exponential factor accounts for relaxat

Expression~2.17! shows that when calculating correlatio
functions, the volume averages can be substituted by a
ages over the statistics ofW.

III. PASSIVE ELASTIC TENSOR IN A RANDOM
VELOCITY FIELD

In this section we consider the polymer molecules as p
sive objects, i.e., we assume that the inertial properties of
fluid are not perturbed by the polymer elasticity. In oth
words, we assume that the term“kP ik in Eq. ~2.8! can be
disregarded so that the dynamics ofv is independent of the
polymer dynamics. Equation~2.6! determines the statistics o
the conformation tensorA provided the statistical propertie
of v are known. We consider a high-Reynolds-number fl
and assume that its statistics is stationary, spatially homo
neous, and isotropic.

One might think that in order to examine the correlati
functions ofA one needs to know the precise statistics of
velocity field described by the Navier-Stokes equation. Ho
ever, we will show that the statistics ofA is universal, i.e., it
does not depend on the details of the velocity statistics.
1-4
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TURBULENCE OF POLYMER SOLUTIONS PHYSICAL REVIEW E64 056301
crucial property underlying the universality is a finite L
grangian correlation time of the velocity derivatives matrixs
@17#.

Equation~2.6! shows that the Lagrangian dynamics of t
polymer stress tensor is determined by velocity gradie
which are related to the viscous scaleh of the turbulence. A
typical value of the velocity gradient can be estimated asl1,
where l1 is the logarithmic divergence rate of nearby L
grangian trajectories. Then it follows from Eq.~2.8! that the
feedback of the polymers on the flow can be neglecte
P!nl1. This is the applicability condition of the passiv
approach. As we show below, the conditionP!nl1 is sat-
isfied for typical fluctuations ifl1t,1.

A formal solution of Eq.~2.6! is given by Eq.~2.17!. The
conditionl1t,1 means that the exponentially decaying fa
tor exp(22t/t) in Eq. ~2.17! dominates over the produc
WWT;exp(2l1t). In this case, for a typical velocity fluctua
tion the integral overt converges att;t and thereforeA
fluctuates nearA0. In addition to the strong peak atA;A0,
the probability distribution function ofA has a power tail.
This has been demonstrated in@9# in terms of the molecule
elongationR. The fluctuationsA@A0 are formed if the prod-
uct WWT in Eq. ~2.17! is anomalously large for a long time
Such events can be described in terms of a universal sch
~see Ref.@18#! shortly presented below.

A. Long-time Lagrangian statistics

Let us briefly review the long-time statistical properties
the Lagrangian mapping matrixW, determined by Eqs
~2.13! and~2.14!. We considerW(t1 ,t2) at t1.t2 and as-
sume thatt12t2 is much larger than the Lagrangian corr
lation timets of the velocity derivatives matrix~2.13!. If the
velocity statistics is homogeneous in time, the probabi
distribution ofW(t1 ,t2) depends on the differencet12t2

only. Equation~2.14! implies that att12t2@ts the matrix
W is a product of a large number of independent matric
This is the main reason for the universality in the statistics
W.

It is convenient to decompose the matrixW as

W~ t1 ,t2!5MLN, ~3.1!

whereL is a diagonal matrix, andM andN are orthogonal
matrices@19#. We denote the diagonal elements ofL aser1,
er2, ander3, and assume that they are ordered:r1.r2.r3.
As a consequence of the constraint~2.16! we haver11r2
1r350. Equation~2.14! can be rewritten in terms ofr i and
the matricesM andN. The equations forr i are

]r i

]t1
5s̃ i i , ~3.2!

wheres̃5MTsM and no summation over the repeating i
dex i is implied. The matricesM and N satisfy ] tN5V1N
and] tM5MV2, where

V1ik5
s̃ ik1s̃ki

2 sinh~r i2rk!
, V2ik5

s̃ ike2rk1s̃kie
2r i

e2rk2e2r i
,

05630
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for iÞk andV1ik5V2ik50 for i 5k. It is possible to show
that the eigenvalues ofW repel each other, so that the in
equalitieser1@er2@er3 are satisfied att12t2@ts @18#.
Then the matrixV1 tends to zero exponentially fast, i.e.,N is
determined by times of the order ofts in the vicinity of t2 .
The matrixV2 becomesr independent att12t2@ts and
the evolution ofM is decoupled from that ofr i . Then the
value of M is determined by the time of the order ofts at
t't1 , i.e., att12t2@ts it becomest2 independent.

The solution of Eq.~3.2! is

r i5E
t2

t1

dt8 s̃ i i ~ t8!, ~3.3!

where the right-hand side of Eq.~3.3! is an integral of a
random process independent ofr i . Equation ~3.3! shows
that the variablesr i fluctuate around their average valu
l i(t12t2). Here the constantsl i are equal tô s̃ i i &. They
are called the Lyapunov exponents of the flow. Genera
the spectrum of the Lyapunov exponents is nondegene
l1.l2.l3, which is a necessary condition for the forma
ism to be self-consistent. The incompressibility condition e
sures the identityl11l21l350, which impliesl1.0 and
l3,0. Using the relation~2.15! one can show thatl1 is
indeed the average logarithmic divergence rate of two nea
Lagrangian trajectories,

^d lnudxu/dt&5l1 .

Similarly, l11l252l3 is the average logarithmic rate o
the area growth.

Under the conditiont12t2@ts the quantityr i can be
considered as a sum of a large number of independent
dom variables. It is known from statistical mechanics~see,
e.g.,@20#! that the distribution of such quantities is given b
the exponent of an extensive function. In our case the pr
ability distribution function~PDF! of r i is

P~ t,r1 ,r2 ,r3!}
1

t
expF2tSS r12l1t

t
,
r32l3t

t D G
3d~r11r21r3!, ~3.4!

wheret5t12t2 andr1.r2.r3 is implied @18#. The main
exponential factor of the PDF has a self-similar form d
scribed by the functionS, which can be called the entrop
function ~see @18,21,22#!. It is positive, convex and has
minimum at zero values of its arguments. The precise fo
of S is determined by details of the velocity statistics. T
PDF has a sharp maximum atr i5l i t. In its vicinity the
function S has a quadratic expansion, i.e., the distribution
r is Gaussian. However, if one is interested in the expe
tion values of exponential functions ofr i , they are deter-
mined by the wings of the PDF where the Gaussian appr
mation is invalid. This entails the use of the whole entro
function.

To average the functions ofr1 only, one can introduce the
reduced probability distribution function,
1-5
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P~ t,r1!}
1

At
expF2tS1S r12l1t

t D G , ~3.5!

which is an integral ofP(t,r1 ,r2 ,r3) over r2 and r3. At
small x the functionS1(x) can be written as

S1~x!'
x2

2D
. ~3.6!

HereD5*dt ^^s̃11(t)s̃11(0)&& ~where double brackets des
ignate irreducible correlation function! determines the dis
persion ofr1 : ^(r12l1t)2&'tD. Expansion~3.6! is suffi-
cient to describe typical fluctuations ofr1, whereas the
whole functionS is needed to describe rare events.

In the passive regime the statistics of velocity gradient
determined by the fluctuations at the viscous scaleh. The
Lagrangian correlation timets is the turnover time at this
scale. It can also be estimated asl1

21. Using the expression
e5n^(“ jv i)

2& for the energy dissipation rate one can wr
the estimatesl1;Ae/n andD;l1 for the Lyapunov expo-
nent and the dispersion.

B. Single-point statistics

In this section we examine the single-point statistics
the conformation tensorA at l1t,1. As explained above
most of the timeA fluctuates nearA0. We are interested in
large valuesA@A0 because it is only for large values ofA
that the polymers can possibly lead to noticeable effe
Large values are determined by the velocity fluctuations s
that the productWWT is anomalously large for a long time
To find the tail of the PDF ofA let us substitute decompos
tion ~3.1! into Eq. ~2.17!. We obtain

MTAM5
2A0

t E
0

`

dt L2~ t !expF2
2t

t G ,
where we have used thet independence ofM at large t.
Under the conditioner1@er2@er3 the tensorA is uniaxial,

Ai j 'Tninj . ~3.7!

Heren is a unit vector,ni5Mi1, uniformly distributed over a
sphere andT[tr A,

T'
2A0

t E
0

`

dt expF2r1~ t !2
2t

t G . ~3.8!

Thus the matrixA is expressed via the scalarT, which is
independent ofr2 and r3. The statistics ofT cannot be di-
rectly examined in terms of the single-time probability d
tribution function~3.5! because integral~3.8! involves differ-
ent times. Nevertheless, it is possible to use PDF~3.5! to find
the asymptotic behavior of the PDF ofT at T@A0. A rigor-
ous derivation is presented in Appendix A~cf. @23,24#!. Be-
low we use a simple semiqualitative method.

For a typical fluctuation of the velocity, integral~3.8! con-
verges att;t, which givesT;A0. To find the probability
distribution for large deviations ofT one should analyze rar
05630
is

f

s.
h

events leading to a given valueT@A0, and find the event
with the maximum probability. Let us establish the structu
of such fluctuations. It is obvious thatr1 should initially
grow faster thant/t during some interval of time. To ensur
nonzero value of the probability of such a configuration,r1
should then return to its average value,l1t. Sincel1,1/t,
the differencer1(t)2t/t has a maximum at some timet
5t* . At T@A0 the maximum is sharp and integral~3.8! is
determined by its vicinity with the logarithmic accuracy

ln~T/A0!'2r1~ t* !22t* /t. ~3.9!

The probability of the event is also determined by a vicin
of r1(t* ) because it corresponds to the maximal deviat
from the average value ofr1. In accordance with Eq.~3.5! it
can be estimated as

ln P'2t* S1Fr1~ t* !

t*
2l1G .

Substituting herer1(t* ) expressed viaT from Eq.~3.9!, and
maximizing the result overt* we get the condition

S1S b1
1

t
2l1D2bS18S b1

1

t
2l1D50, ~3.10!

whereb5(2t* )21ln(T/A0). Using the convexity ofS1, one
can show that Eq.~3.10! together with the conditionb.0
uniquely determinesb. Then one finds

ln P'2
a

2
ln~T/A0!, a5S18S b1

1

t
2l1D . ~3.11!

One can verify that the convexity ofS1 ensures the condition
a.0 if l1,1/t. Expression~3.11! determines the probabil
ity density function of ln(T/A0). For the PDF ofT we obtain

P~T!;
A0

a/2

T11a/2
. ~3.12!

SinceA}R2, the power-law distribution ofA can be used to
obtain the power-law distribution of the molecular elong
tion R @9#.

We see that the PDF is a power-law function with t
exponent 11a/2 that can be expressed via the entropy fun
tion S1. Since the precise form ofS1 is generally unknown, it
is impossible to find the precise dependence ofa on the
parameters of the flow. However, some general proper
can still be inferred. Asl1 increases, i.e., when the Reynold
number increases,a decreases and tends to zero whenl1
→1/t. One can easily establish the behavior ofa in this
region since then the approximation~3.6! is correct. Substi-
tuting Eq.~3.6! into Eqs.~3.10! and ~3.11! we obtain

a5
2

D F1

t
2l1G .

Note that the only characteristics of the flow entering t
expression are the average value ofr1 and its dispersion.
1-6
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Power tail ~3.12! means a slow decay of the probabili
distribution ofT5tr A, which results in infinite values of its
high moments. Namely, the moments^Tn&5*dTP(T)Tn di-
verge if n.a/2. Moreover, the normalization integra
*dTP(T) converges at largeT only if a.0. Therefore an
attempt to extend the passive consideration tol1.1/t leads
to the divergence of the normalization integral. It can
interpreted as the tendency of the polymer molecules to
stretched, i.e., the coil-stretch transition, and the breakdo
of the passive approach.

As we have seen, thenth moment of the conformation
tensorA formally diverges atn>a/2. It signals the break-
down of the passive approach, i.e., the main contribution
the diverging moments comes from the configurations of
velocity such that the feedback of the polymers on the fl
cannot be disregarded. As explained in the beginning of
section, the molecules can be considered as passiveP
!nl1. An account of the back reaction of the polymers
the flow leads to a much faster decrease of the PDF ofP at
P*nl1, which ensures that the moments have finite val
~in the framework of the simple model presented in Appe
dix B one can find the precise form of the PDF!. Let us
estimate the value of the diverging moments taking the fe
back into account. It is more convenient to discuss the m
ments ofP, which are proportional to the moments ofA @see
Eq. ~2.7!#. If a,2 then Eq.~3.12! modified by the cutoff at
P;nl1 gives

^Tr P&;P0
a/2~nl1!12a/2. ~3.13!

Note that^Tr P&@P0 because we assumed thatP0!nl1.
The equations~2.10! and~3.13! show that the elastic contri
bution to the energy dissipation,t21^Tr P&, can be esti-
mated ast21P0

a/2(nl1)12a/2. It becomes comparable to th
viscous contribution,;nl1

2 just at the point of the coil-
stretch transition, wherea50.

C. Correlation functions

Here we investigate simultaneous many-point correlat
functions of A. Let us start with the two-point correlatio
function

G2~r!5^T~ t0 ,r11r!T~ t0 ,r1!&, ~3.14!

whereT5Tr A. The value ofA at a given point is determine
by the Lagrangian trajectory arriving at this point att5t0.
Polymers separated by distances smaller than the vis
scale,h, are stretched coherently, whereas at larger sep
tions the correlation is largely lost. Thereforeh is the corre-
lation length ofA. For distancesr *h, the quantitiesT in Eq.
~3.14! become weakly correlated and the correlation funct
tends to the product of averages^T&. Nontrivial correlations
occur at distances smaller thanh. The correlation function is
a monotonically decreasing function of the distancer.

Note thatG2 cannot be calculated in the framework of th
passive approach ifa,2. Indeed, we can writeG2'^T&2 at
r @h. Formal calculation of̂ T& using PDF~3.12! gives an
infinite result. The same is true forG(0)5^T2&. SinceG2(r )
is a decreasing function ofr, it follows thatG2(r ) is infinite
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in the framework of the passive approach. It means that
main contribution to the correlation function comes fro
configurations such that the back influence of the polym
on the flow is not small. On the other hand, ifa.4 the
calculation of botĥ T&2 and ^T2& in the passive framework
gives a value of the order ofA0

2. HenceG2(r );A0
2 for all r,

which means that the main contribution is made by the c
figurations where the polymers are close to the equilibri
state.

Let us consider the most interesting case 2,a,4. Then
^T&;A0 is finite ~and small!, whereaŝ T2& is infinite if cal-
culated using the ‘‘passive’’ PDF~3.12!. It means that at
small distances the back reaction must be taken into acco
whereas at larger distances the passive approach works
If we calculate the correlation function in the framework
the passive approach, the result is valid for distances la
than some characteristic scale of the back reaction.

To calculate correlation function~3.14! one can substitute
expression~2.17! for A(r11r) and A(r1) and then average
over r1, which can be considered as averaging over spa
The distance between Lagrangian trajectories terminatin
the pointsr11r and r1 is an increasing function oft. It can
be found from Eq.~2.15!,

dx~ t02t !5W~ t02t,t0!r5W21~ t0 ,t02t !r. ~3.15!

Expression~3.15! is correct providedudxu,h. Under the
same condition the matricesW entering the expression~2.17!
for A(r11r) and A(r1) are identical, as follows from Eq
~2.14!. Using the decomposition~3.1!, rewritten as
W21(t0 ,t02t)5NTL21MT, and the inequalitieser1@er2

@er3 we obtainudxu'e2r3r .
At r !h we haveG2@A0

2, i.e., the main contribution to
G2 is due to the rare events when the productWWT is
anomalously large during a long time. Then one can use
uniaxial approximation~3.7!. The functionsr1(t) in A(r1
1r) and A(r1) are identical as long asudxu,h. When the
separationdx becomes larger thanh, the correlation between
the Lagrangian trajectories becomes weak. The contribu
of this stage toG2 is given by the product of independen
averages,̂T&2;A0

2, and can be neglected. We conclude th
the main contribution toG comes from times whenudxu
,h. Using the expressionudxu'e2r3r we get

G;K A0
2

t2 H E
0

s

dt exp~2r122t/t!J 2L , ~3.16!

wherer3(s)5 ln(r/h). Since bothr1 and r3 enter the inte-
gral, to evaluateG2 one needs the joint PDF~3.4!.

To ensure a large value ofG2, the functionr1 in Eq.
~3.16! should first increase faster thant/t and then return to
its average valuel1t. Thusr12t/t should have a maximum
at t* ,s. A vicinity of t5t* makes the main contribution to
G2. In the absence of the constraintt* ,s the value ofG2
grows exponentially ast* increases, which corresponds to
formally infinite value of the second moment ata,4.
Therefore the optimum is achieved att* 's. It gives the
estimate
1-7
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G2;A0
2E dr1exp~4r124s/t!

3expH 2sSS r12l1s

s
,
ln@r /h#2l3s

s D J , ~3.17!

where s is determined from the conditionr3(s)5 ln(r/h).
The integral can be calculated in the saddle-point appr
mation with the saddle pointr1* }s. Next, one should opti-
mize overs, which givess} ln(r/h). The proportionality co-
efficients depend on the form ofS. The substitution of the
optimal values gives

G2;A0
2~h/r !j2. ~3.18!

The exponentj2 in Eq. ~3.18! can be found if the precise
form of the entropy functionS is known. We observe tha
G2;A0

2 if r;h. It is natural sinceG2 at r;h can be esti-
mated aŝ T&2. We also see thatG2 tends to infinity atr
→0. This corresponds to a formally infinite value of th
second moment.

All the conclusions concerning the pair correlation fun
tion of T are valid for correlation functions of separate co
ponents ofA too, which follows from the single-axis subst
tution ~3.7!. Indeed,n is uniformly distributed over the uni
sphere, which reduces correlation functions ofA to correla-
tion functions of its traceT.

Let us discuss the casea.4. Then the main contribution
~3.14! to G2(r ) at small r is equal to the second mome
^T2&;A0

2. One can examine ther-dependent correction to
the second moment̂T2&2G2(r ). It can be done as above
The correction behaves as a positive power ofr at r !h.

The proposed scheme can be generalized to higher-o
correlation functions

Gn5^A~r1! . . . A~rn!&. ~3.19!

The behavior ofGn is similar to that ofG2. If the moment
^Tn& calculated with the PDF~3.12! is infinite, the function
Gn is a scaling function of the coordinates. The scaling
ponent is negative, so the correlation function formally
verges at small distances. On the other hand, if the mom
^Tn& is finite then the differenceGn2^An& scales with a
positive exponent and is thus a small correction to^An&.

Since the moments ofP are finite, we can assert that th
growth of the correlation functions ofP observed at fusing
points in Eq.~3.19! has to be saturated. For example, at
,a,4 the pair correlation function~3.14! saturates atG2

;A0
2P0

22^P2&;A0
2 P0

a/222(nl1)22a/2. One can say that the
back reaction regularizes the correlation functions at sm
scales.

IV. STRONG BACK REACTION

Here we consider the dynamics of the polymer solutio
above the coil-stretch transition, when the Reynolds num
exceeds a critical value. Depending on the concentratio
polymer molecules, two situations are possible. If the c
centration is small, the elastic stresses are small in comp
05630
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son with the viscous stresses. Then the polymers
stretched to their maximal elongationRmax and the properties
of the fluid do not differ significantly from those of the pur
solvent. Below we consider the more interesting case wh
the concentration of polymers is large enough, so that ela
stresses can be larger than the viscous stresses. The
feedback due to the polymers substantially modifies the fl
The condition for the existence of the back reaction regim
Pmax@n/t, wherePmax is the maximal value of the elasti
stress tensor. It can be expressed in terms of microsc
parameters and the concentration of the polymers asPmax

5K0n%21Rmax
2 ~see Sec. II A!. Using estimates for the mi

croscopic parameters proposed in Ref.@13# one can rewrite
the condition asn@(R0Rmax

2 )21.
Whereas in a pure solvent, typical gradients of the vel

ity grow unlimited as the Reynolds number increases,
polymer solutions the balance of inertial and elastic degr
of freedom fixes the characteristic value of the gradient
1/t. Indeed, if the instantaneous velocity gradient exce
1/t, it extends the polymers, so that the elastic stress gr
and damps the gradient. On the other hand, if the velo
gradient is much smaller than 1/t, the molecules contract an
do not produce any effect on the flow. Then the veloc
gradients tend to grow to the value characteristic of the p
solvent, which is larger than 1/t above the transition. This
explains the steady state realized above the transition.
now establish some general properties of this steady sta

Turbulence of Newtonian fluids can be characterized
two length scales: the integral scaleL and the dissipation
scaleh. Energy pumped at the integral scale cascades w
out dissipation from larger to smaller eddies~coherent mo-
tions of the fluid! in the rangeh,r ,L called the inertial
interval. Velocity difference between two points separa
by the distancer from the inertial range diminishes slowe
thanr, so that the characteristic value of the velocity gradie
at the scaler grows downscales reaching a maximum ar
;h @25#. We assumeVt/L!1, whereV is the velocity at
the integral scale, then the gradient related to large eddie
smaller thant21. Therefore, large eddies do not excite pol
mers, which means that the elastic stress tensor is not co
lated at these scales. Since only coherent excitations of
elastic stress tensor can influence the velocity, we concl
that the elasticity is negligible for large eddies. The intera
tion of inertial and elastic degrees of freedom becomes
sential at the scaler * , determined from the condition“v
;1/t. The fluctuations ofP are correlated over the sca
r * . Because the value of the gradient cannot exceed 1/t, the
velocity difference scales linearly withr at r &r * , i.e., the
flow is smooth. Near the coil-stretch transition characteris
velocity gradient is determined by the viscous scale and i
the order of 1/t, hencer * ;h. As the Reynolds numbe
increases, velocity fluctuations increase, so that the scalr *
grows. Thus above the coil-stretch transition a new scaler *
separating the inertial and viscoelastic intervals arises. It i
the order ofh near the transition and grows as the ener
input increases.

Near the transition the viscous and elastic terms in
~2.8! are of the same order, which givesP;n/t. For dilute
solutionsn/t is much larger thanP0, therefore all the terms
1-8
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in the energy balance equation~2.10! are of the order ofn/t2

near the transition. The energy pumping rate per unit m
e, can be estimated asV3/L. Equating it to the dissipation
rate, estimated asn/t2, one finds the estimate Rec
5@L2/(nt)#2/3 for the value of the Reynolds number at th
transition. As the energy input increases the energy diss
tion rate due to viscosity,n(“ j v i)

2, remains of the order o
n/t2. Therefore far above the transition, the principal part
the energy is dissipated by the polymer relaxation. Then
viscous term in Eq.~2.10! can be neglected and we obtain

^Tr P&5et. ~4.1!

We conclude that the energy is dissipated mainly by
elastic relaxation. Relation~4.1! means that the typical valu
of P grows as the energy input increases, which can
interpreted as the increase in the effective~‘‘elastic’’ ! viscos-
ity. It is defined as the proportionality coefficient betwe
the polymer stress tensorP and the strain tensor“ ivk
1“kv i , which remains of the order 1/t. Using Eq.~4.1! one
can estimate the ratio of the elastic term to the nonlin
inertial term in Eq.~2.8! asVt/L!1, which shows that the
elasticity is indeed negligible at large scales.

The strong interaction between the elastic and inertial
grees of freedom imposes a restriction on the Lagrang
statistics of velocity. To demonstrate it, observe that E
~2.6! gets simplified under the conditionP@P0 satisfied in
the strong back reaction regime. Neglecting the terms p
portional toA0 andP0 in Eqs.~2.6! and ~2.7! we obtain

] tP i j 1~v•“ !P i j 5Pk j“kv i1P ik“kv j2
2

t
P i j .

~4.2!

Expressing the solution of Eq.~4.2! in terms of the Lagrang-
ian quantitiesx andW introduced by Eqs.~2.11! and ~2.14!
we obtain

P~ t,r!5W~ t,0,r!P@0,x~0,r!#WT~ t,0,r!e22t/t. ~4.3!

The Lagrangian correlation time at the scaler * is t. There-
fore at t@t the eigenvalues ofW are strongly separated s
that P is uniaxial,

P i j 5ninj tr P, ~4.4!

wheren is a unit vector. Then Eq.~4.3! gives

2r15
2t

t
1 ln@Tr P~ t,r!#2 ln@Tr P~0,x~0,r!!#. ~4.5!

The stationarity ofP implies thatr12t/t has a stationary
distribution. In particular, we conclude that the princip
Lyapunov exponentl1 of the flow is equal to 1/t exactly.
The stationarity ofr12t/t is very different from the situa-
tion for the Newtonian fluids, described by Eq.~3.5!. The
reason is the anticorrelations in the temporal dynamics os
due to its interaction withP, which were qualitatively de-
scribed in the beginning of the section. They lead to vani
05630
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ing dispersionD of r12t/t, D5* dt^^s̃11(t)s̃11(0)&&,
which is nonzero for Newtonian turbulence.

Averaging Eq.~4.2! one can obtain the exact relation

^P ik~r!“kv i~r!&5
^TrP&

t
. ~4.6!

Consider noŵ P ik(r)“kv i(r8)& as a function of the separa
tion l 5ur2r8u. Its value atl 50 is given by Eq.~4.6! and can
be shown to be much larger than the value at the pump
scale,l;L. Indeed, consider the correlation function ave
aged over a ball of sizeL centered at r, i.e.,
^P ik(r)*Vdr8“kv i(r8)&/V. The velocity gradient average
over the scaleL is determined by the external forces. Usin
Eq. ~4.1! one can estimate the value of the averaged corr
tion function aseVt/L!e. It follows that ^P ik(r)“kv i(r8)&
decays at scales larger thanr * . Below r * the fluctuations of
P and“v are strongly correlated. The decay of the corre
tion function atr * ,r ,L can be used to derive Kolmogor
ov’s four-fifths law@25# at these scales. The latter states th
the third order longitudinal structure function is equal t
24e l /5 in the inertial interval. All the above conclusions a
in agreement with the general picture presented in the be
ning of the section.

Expression~4.1! gives the typical value of the stress te
sor. As we argued above, the fluctuations withP@et relax
rapidly due to the back reaction, which leads to a fast
crease of the PDF ofP at P@et. On the other hand, the
probability to haveP!et is also small. The rough details o
the behavior of the PDF can be understood on the basis
simple model presented in Appendix B. The solution of t
model shows that the PDF ofP has an exponential tail a
large values ofP and power-law behavior at small values
P. We believe that a similar qualitative behavior is realiz
for the stress described by Eqs.~2.8! and ~4.2!. The model
also explicitly demonstrates the finite value of the Lagran
ian correlation time ofP and“v. This property holds de-
spite a strong modification of the Lagrangian dynamics d
to the back reaction.

Note, that the concentration of the polymer moleculesn,
does not enter the system of equations~2.8! and~4.2!. There-
fore the dynamics of polymer solutions with different valu
of n will be identical in the strong back reaction regim
Moreover, using the equation] tn1(v•“)n50 for the con-
centration, it is possible to show that Eq.~4.2! is also valid
for n being inhomogeneous in space. Thus the hydrodyna
properties of spatially inhomogeneous solutions do not di
from the homogeneous ones. This assertion holds if localn is
large enough forPmax(n) to be larger than the local value o
P prescribed by the dynamics.

The uniaxial form~4.4! of the tensorP allows one to
rewrite Eqs.~2.8! and ~4.2! in the form similar to the equa
tions of the magnetic hydrodynamics. The fieldn̂ ATr P sat-
isfies the induction equation with linear damping. In additi
one can show that the field is solenoidal. This analogy he
understand the dynamics of fluctuations at the scaler
!r * , which occur on the background of the relatively slo
stresses excited atr;r * . These small-scale fluctuations a
1-9
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elastic waves similar to the Alfven waves propagating in
presence of a large-scale magnetic field in magnetic hy
dynamics@26,27#. The dispersion relation of the waves
v5(k•n̂)ATr P. Thus the velocity of these waves isATr P,
which can be estimated asAet. There exist two mechanism
of the elastic waves attenuation: polymer relaxation and
cous dissipation. The first mechanism leads to the sc
independent attenuationt21, which is smaller than the fre
quency, atkr* @1. The second mechanism produces
attenuation;nk2, which is much smaller than the frequenc
for kh* !1 whereh* 5n(et)21/2. Thus the elastic wave
are well defined in the intervalr

*
21&k&h

*
21 . This interval

can be called the elastic dissipation range.
Our equations are valid as long asP!Pmax. The relation

~4.1! allows us to reformulate this condition ase!Pmax/t.
Another limitation of our scheme is related to the inequa
R!r * , under which the flow is smooth at the scaleR. Using
Eqs. ~2.5!, ~2.7!, and ~4.1! one can write the estimateR2

;%et(K0n)21 for the typical size of a polymer molecule,R.
Let us estimate the parameters introduced above wi

the framework of Kolmogorov’s theory~K41! @28#. Though
the theory is, rigorously, incorrect@25#, it is satisfactory for
rough estimates. The characteristic velocity differenced rv
between two points separated by the distancer from the in-
ertial interval is given in K41 by (er )1/3, where e is the
energy input. Writingu¹vu;d rv/r;e1/3r 22/3, one findsr *
;Aet3. In the K41 theory the conditionR!r * can be re-
written as%(K0nt2)21!1. Note that in the framework o
K41 theory the ratioR/r * is independent of the Reynold
number.

Our analysis assumes that the characteristic size of
molecules,R, is much smaller than their maximal sizeRmax.
As Re increases, the typical elongations eventually beco
of the order ofRmax, and further elongation becomes impo
sible. In this case the molecules behave as hard rods, m
fying the effective viscosity of the fluid@29#. Therefore at
large enough Re we return to the case of Newtonian flu
However, this regime is expected to be unstable beca
polymer molecules are intensively destroyed by strong flo

We have shown that in the steady state the velocity g
dients in the bulk do not exceedt21. Consider now the situ-
ation where the boundary forces tend to produce gradi
larger than 1/t at r;L. Then the elastic reaction should lea
to formation of a boundary layer where the value of veloc
gradient diminishes from the value imposed by the forcing
the valuet21 in the bulk. Thenr * ;L, i.e., the inertial range
and energy cascade are absent. This situation is similar to
elastic turbulence regime@1#.

Finally, let us consider the role of other modes of t
polymer molecules relaxation. They are characterized by
relaxation timest i,t. We have shown that the interaction
the fluid with the principal relaxation mode fixes the value
the principal Lyapunov exponent atl15t21. The inequality
l1t i,1 then implies that other modes are always o
weakly excited by the flow, so the interaction is fully dete
mined by the softest relaxation mode. We conclude that E
~2.8! and~4.2!, based on the single relaxation mode appro
mation correctly describe the solution hydrodynamics ab
the coil-stretch transition.
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V. CONCLUSION

We have examined properties of turbulence in dilute po
mer solutions. Our results support the theory of Lumley@8#
who argued the existence of the coil-stretch transition in t
bulent flows, which occurs at a critical Reynolds numb
Rec. The polymer molecules are typically weakly stretche
so that their elasticity only weakly influences the flow in t
regime realized below the transition, at Re,Rec. At Re
.Rec the polymer molecules are substantially stretched
strongly modify the small-scale flow.

At Re,Rec the polymer molecules are passively advec
and stretched by the flow. This regime occurs under the c
dition l1t,1 wheret is the polymer relaxation time andl1

is the principal Lyapunov exponent. The Lyapunov expon
is defined as the logarithmic rate of the divergence of nea
Lagrangian trajectories and can be estimated as the inv
turnover time at the viscous scale of turbulence. The ma
ity of the molecules in this regime fluctuates near the eq
librium. There also exists a small number of strongly elo
gated molecules, which appear due to rare large fluctuat
in the rate of strain. Even though the number of substanti
elongated molecules is small, they may be relevant in so
situations due to the relatively slow power-law decrease
the probability density function of elongations of molecul
Eq. ~3.12!.

In the second regime, at Re.Rec, most of the molecules
are substantially elongated. It leads to a strong interac
between the elasticity and the flow, which modifies the flo
below the scaler * . At r *r * the properties of turbulence
are the same as in Newtonian fluids. The energy casca
downscales from the pumping scale and dissipates du
polymer relaxation atr;r * . The scale can be considered
a new dissipation scale. The flow is smooth atr &r * with the
Lyapunov exponentl1 fixed at the value 1/t by the interac-
tion.

The smoothness of the flow atr &r * leads to the conclu-
sion that the velocity spectrumE(k) decreases faster tha
k23 at kr* *1. The precise form ofE(k) in this interval is
related to the elastic waves propagating at these scales
both spectral transfer time and the decay time are scale
dependent one can expect a power-law spectrum.

The properties of the polymer statistics near Rec were
examined numerically by Kronja¨ger and Eckhardt@30# in the
framework of Eqs.~2.6! and ~2.8!. The results indicate the
power PDF tail for the polymer elongations at Re,Rec and
a substantial modification of the PDF at Re.Rec, in agree-
ment with our results.

Let us discuss implications of our results for the dr
reduction. A description of the experimental situation can
found in the works@2–4#. It has been observed that the ons
of the drag reduction at increasing Re depends on the c
centration of the polymer molecules, whereas asymptotic
the friction force falls on a curve, which is independent
the concentration. This curve is usually referred to as
MDR ~maximum drag reduction! asymptote. A discussion o
the MDR can be found in the recent work@31#. A natural
explanation of then independence of the MDR asympto
can be formulated in the framework of Eqs.~2.8! and ~4.2!
1-10
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describing the strong back reaction regime. Indeed, the
tem contains non-dependent parameters. Then-dependence
of the onset can also be explained in our scheme. The
force is formed in the boundary layer, which has a comp
cated structure@32#. Whereas gradients of the average velo
ity grow toward a wall, the amplitude of the velocity fluc
tuations decreases. Therefore one can expect that
polymer molecules are strongly extended in bulk and wea
extended near the walls. Then the structure of the bound
layer will be sensitive to the polymer concentrationn. The
situation corresponds to the transient regime~which is sen-
sitive to the polymer concentration! from the Newtonian be-
havior to the MDR asymptote. The asymptote itself cor
sponds to the case when the polymer molecules are stro
extended everywhere.

A striking property of polymer solutions is the so-calle
elastic turbulence regime discovered by Groisman and St
berg @1#. It is a chaotic state that is realized at small Re
nolds numbers Re. Its existence is made possible by the l
value of Weissenberg number Wi5tV/L, which implies a
strong nonlinearity of the system. This state can also be
vestigated in the framework of our scheme. The results
be published elsewhere.

Let us give numerical values of parameters appearing
our theory for a typical experimental arrangement. For
number of monomers 1062107 one hasR0;1025 cm,
Rmax;1022 cm, and t;102221021 s. Then usingnc

;(Rmax
2 R0)21 one can obtain 0.1 ppm for the concentrati

nc below which polymers have no effect on the flow. Let
assume that the polymer concentration is 10 ppm, the i
gral length isL;10 cm, and take the water viscosity,n
;1022 cm2/s. Then the critical Reynolds number Rc
;@L2/(nt)#2/3 is of the order of 104. Above the coil-stretch
transition the characteristic size of polymers is given byR
;R0ARe3%tn3/(kBTnL4);1025R0Re3/2. We obtain thatR
;102R0 in the vicinity of the transition, which is in agree
ment with the assumptionR0!R!Rmax. Using Kolmogor-
ov’s estimateh;LRe23/4 we find that at the transitionh
;1022 cm, which is of the order ofRmax. Thus the assump
tion R!h is satisfied. These estimates seem to fit the ex
ing experimental data.
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APPENDIX A

Here we consider the statistical properties of the integ

I 5E
0

`

dt expF E
0

t

dt8 j~ t8!G , ~A1!
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wherej(t) is a random process with a finite correlation tim
tj and a negative averagej0,0. For this purpose it is con
venient to introduce the auxiliary object

I ~ t !5E
t

`

dt8expF E
t

t8
dt9j~ t9!G .

Due to the stationarity ofj, the statistics ofI (t), it is inde-
pendent oft. Separating the integration interval one finds t
relation

I ~ t2dt !5I ~ t !expF E
t2dt

t

j~ t8!dt8G
1E

t2dt

t

dt8expF E
t2dt

t8
j~ t9!dt9G .

It follows that

ln I ~ t2dt !5 ln I ~ t !1E
t2dt

t

j~ t8!dt8

1 lnH 11

E
t2dt

t

dt8expF E
t2dt

t8
j~ t9!dt9G

I ~ t !expF E
t2dt

t

j~ t8!dt8G J .

~A2!

If I (t) is sufficiently large, it is possible to neglect the la
term on the left-hand side. The exact condition is formula
below. Observe that lnI(t) depends on the values of the noi
at times larger thant so that the second term is independe
of the first provideddt@tj . Therefore the probability distri-
bution functionP(z) of z(t2dt)[ ln I(t2dt) is given by the
convolution of the distributions ofz(t) @which is also equal
to P(z)] and * t2dt

t j(t8)dt8. The latter has a probability
function similar to Eq.~3.5!. We thus obtain the integra
equation

P~z!5E dz8

A2ptD
P~z8!expF2dtSjS z2z82j0dt

dt D G ,
wherej05^j& andSj is the entropy function characterizin
j(t). Since the kernel of the integral operator depends on
differencez2z8 only, the solution of this equation isP(z)
}exp@2az#. We obtain the following expression for the ta
of the PDF ofI[ez

P~ I !;I 2a21. ~A3!

Herea is determined from the condition

E dx

A2ptD
expFax2dtSjS x2j0dt

dt D G51. ~A4!

The solutiona50 should be rejected. This integral can b
evaluated by the saddle-point method so that its value
determined by the maximum of the exponent. Taking
1-11
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value atx5j0dt we conclude that in order to satisfy cond
tion ~A4!, a and j0 must have different signs. Thus ifj0
,0, thena.0 and the normalization integral for PDF~A3!
converges atI→`. On the other hand, ifj0.0, there exists
no well-defined distribution ofI.

The two equations that implicitly definea are given by
the saddle-point condition

a5Sj8~b2j0!,

where b is the saddle-point value of (z2z8)/dt, and the
condition

Sj~b2j0!2bSj8~b2j0!50,

which follows from the condition that the integral~A4! is
equal to 1. One should reject the formal solutionb5j0 of
these equations corresponding toa50. It is easy to see tha
b is positive together witha. Now we may formulate the
condition for the applicability of the power tail. It is valid
provided the third term in Eq.~A2! is indeed much smalle
than the second for thoseI (t) that determine the PDF o
I (t2dt). From z2z85bdt it follows that I (t)5I (t
2dt)exp@2bdt#, so that we arrive at the conditionI
@exp(bdt)/(b2dt) (j is estimated asb). The incrementdt is
constrained by the conditiondt@tj . There are two cases t
be considered. Ifb21@tj one can use the choice minimizin
the above ratiodt;b21, so that Eq.~A3! is valid for I
@b21. In the opposite caseb21<tj the power tail is valid
for I @exp@btj#/(b

2tj).
At small j0 one can use quadratic expansion forSj(x)

'x2/(2D), which gives

b52j0 , a52
2

D
j0 . ~A5!

The entropy function becomes quadratic in the limittj→0.
Thus the expression~A5! is valid for anyj0 in the case of a
short-correlated processj ~cf. @23#!.

APPENDIX B: MODEL OF THE BACK REACTION

Let us introduce a simple model that captures the m
robust features of the interaction between elastic and ine
degrees of freedom. The model is formulated in terms of
system of equations for two variabless andx. The equations
are

dx

dt
5sx1x0 , s52x1j, ~B1!

^j&5a, ^^j~ t1!j~ t2!&&52d~ t12t2!, ~B2!

where double brackets denote the irreducible part of the
relation function. The variables models the rate of strain
subtracted by 1/t and x models the elastic stress. The tim
derivative in Eq. ~B1! represents the full derivative] t
1v•“, i.e., we consider the Lagrangian dynamics. T
productsx represents the combination on the right-hand s
of Eq. ~4.2! and x0 stands forA0 in Eq. ~2.6!. The second
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equation in system~B1! represents the Navier-Stokes equ
tion ~2.8!. Since we consider dynamics at the scaler * , all
the spatial derivatives can be estimated as 1/r * . The term
2x describes the back reaction andj models the influence o
larger scales, exciting the motion atr;r * . The averagea
[^j& is negative below the coil-stretch transition and po
tive above. Ifa.0 the termx0 on the right-hand side of the
first equation in Eq.~B1! can be disregarded.

Starting from the system of equations~B1! and ~B2! one
can derive the Fokker-Planck equation for the PDF ofx

] tP5]x@x]x~xP!#2]x@$x01~a2x!x%P#. ~B3!

The normalized stationary solution of Eq.~B3! is

P0~x!5
1

Z
xa21expS 2x2

x0

x D , ~B4!

whereZ52x0
a/2Ka(2Ax0) is the normalization factor. Here

Ka is the MacDonald function.
At a,0, which corresponds to systems~2.6!–~2.8! below

the transition, the properties ofs are only insignificantly
modified by the interaction with the variablex. For example,
in the limit x0!1 one finds that̂s&5a, which is the same
value as without the back reaction. However, the back re
tion is important for rare events whenj is large. The inter-
action leads to the exponentially decaying tail, which mak
all the moments ofx finite. This corresponds to the pictur
presented in the main body of the text. Note that the pow
tail is universal, i.e., force-independent, whereas the ex
nential tail is an artifact of a zero correlation time ofj @18#.

In the casea.0, i.e., above the transition, the limitx0
→0 is regular. One obtains

P0~x!5
xa21exp~2x!

G~a!
, ~B5!

whereG(x) is the EulerG function. We observe that all the
positive moments ofx exist because the back reaction sto
the growth ofx. The average value ofx is given by^x&5a so
that ^s&50. These facts correspond to the statements^P&
5et andl15t21 from Sec. IV.

Let us now investigate nonsimultaneous correlation fu
tions ofx above the transition, i.e., whena.0. Then we can
assumex050. We need the Green functionG(t,x,y) of Eq.
~B3!, which satisfies

] tG2]x@x]x~xG!#1]x@~a2x!xG#5d~ t !d~x2y!,
~B6!

with the conditionG(t,0)50. The Green function should
be regular atx50 and decrease faster than any power ofx at
x→`. Using G one can find nonsimultaneous correlatio
functions ofx in the steady state,

^ f 1@x~ t !# f 2@x~0!#&5E dx dyP0~y!G~ t,x,y! f 1~x! f 2~y!,

where f 1 and f 2 are arbitrary functions andP0(x) is defined
by Eq. ~B5!.
1-12
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The Laplace transform ofG(t,x,y) is

G~l,x,y![E
0

`

dt exp~2lt !G~ t,x,y!. ~B7!

It satisfies the equation

lG5]x@x]x~xG!#2]x@~a2x!xG#1d~x2y!, ~B8!

following from Eqs.~B6! and~B7!. The solution of Eq.~B8!
can be expressed in terms of two independent solution
the homogeneous equation

lG1,25]x@x]x~xG1,2!#2]x@~a2x!xG1,2#. ~B9!

Two independent solutions of Eq.~B9! are

G15xk1e2xF~2k221,k12k211,x!, ~B10!

G25xk2e2xC~2k121,k22k111,x!, ~B11!

where

C~a,b,x!5
G~12b!

G~a2b11!
F~a,b,x!1

G~b21!

G~a!
x12b

3F~a2b11,22b,x!. ~B12!

andF(a,b,x) is the confluent hypergeometric function@33#.
The functionsG1 andG2 satisfy the boundary conditions a
x50 andx→` correspondingly. The parametersk1,2 are

k1,25
a226Aa214l

2
. ~B13!

Matching functions~B10! and~B11! at x5y one obtains the
Green’s function

G~l,x,y!5
y12aey

Aa214l

G~212k2!

G~k12k2!
@u~y2x!G1~x!G2~y!

1u~x2y!G1~y!G2~x!#, ~B14!

whereu(x) is the Heaviside step function.
Expression~B14! allows one to establish analytical prop

erties ofG as a function ofl. The function is analytic in the
half plane Rel.0. There is a branch point atl52a2/4
with the cut going along the axis Iml50 from the branch
point to 2`. In addition to the branch point there also ex
poles located atl5n(n2a), wheren is an integer numbe
~including zero!, such thatn,a/2. Thus the poles lie be
tween the origin and the branch point. One can easily fi
the pole contribution toG near l50 corresponding ton
50. Using Eq.~B14! we obtain

G~l,x,y!5
xa21exp~2x!

G~a!l
1•••, ~B15!

where dots mean terms regular inl.
05630
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The Green functionG is expressed via its Laplace tran
form as

G~ t,x,y!5E
A2 i`

A1 i` dl

2p i
exp~lt !G~l,x,y!, ~B16!

where the integration contour lies on the right of all sing
larities of G(l). Shifting the integration contour in Eq
~B16! to the left we find that the first term in the right-han
side of Eq.~B15! producesP0(x), while additional contribu-
tion is given by

G1~ t,x,y!5E
2e2 i`

2e1 i` dl

2p i
exp~lt !G~l,x,y!, ~B17!

wheree.0 is a small number andG1 is defined by the rela-
tion

G1~ t,x,y!5G~ t,x,y!2P0~x!. ~B18!

Shifting the integration contour in Eq.~B17! to the left we
encounter the branch pointl52a2/4 if a,2 or the polel
512a if a.2. Therefore at larget thet dependence ofG1 is
exp(2a2t/4) if a,2 and exp@(12a)t# if a.2. Since

^ f 1@x~ t !# f 2@x~0!#&5^ f 1& ^ f 2&

1E dx dyP0~y!G1~ t,x,y! f 1~x! f 2~y!,

~B19!

the correlations ofx decay exponentially in time.
One can write the asymptote ofG1(t,x,y) at larget ex-

plicitly. Let us first considera,2. Then the integration con
tour in Eq.~B17! can be deformed into a curve going arou
the cut starting froml52a2/4. Calculating the jump on the
cut we get the expression

G1~ t,x,y!'
2 ln~y/x!c11c1

2

16t3/2Ap
xa/221y2a/2e2a2t/4,

~B20!

valid for smallx, y. Herec152c(1)2c(2a/2) andc(z) is
the logarithmic derivative of theG function. At a.2 with
the exponential accuracy, the functionG1(t,x,y) is given by
the residue atl512a,

G1~ t,x,y!'
~a21!F~21,a21,x!F~21,a21,y!

G~a22!y

3e(12a)txa22e2x.

The finite correlation time ofs follows from ^s(t)s(0)&5
2] t

2^ ln x(t)ln x(0)&. The expectation value of x(t)
5exp@*0

t s(t8)dt8# grows exponentially with time at time
much larger than the correlation time ofs unless
*dt^s(t)s(0)&50. Thus the back reaction stops the grow
of x and gives rise to this peculiarity of the statistics ofs.
1-13
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