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Electronic states in a cylindrical quantum lens: Quantum chaos for decreasing system symmetry
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The eigenvalue problem in a cylindrical lens geometry is studied. Using a conformal mapping method, the
shape of the boundary and the Hamiltonian for a free particle are reduced to those of a two-dimensional
problem with circular symmetry. The wave functions are separated into two independent Hilbert subspaces due
to the inherent symmetry of the problem. For small geometry deformations, the solutions are found by a
specially designed perturbation approach. Comparisons between exact and perturbative solutions are made for
different lens parameters. As the symmetry of the lens is reduced, the characteristics of the spectrum and the
corresponding spatial properties of the wave functions are studied. Our results provide a family of billiard
geometries in which the electronic level spectrum is well characterized. In analyzing the level spacing distri-
bution of the spectrum, a strong deviation from the Poisson and Wigner limiting distributions is found as the
boundary geometry changes. This intermediate distribution is indicative of a mixed phase space, also revealed
explicitly in the classical Poincanmaps we present.
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[. INTRODUCTION the height of the lensThis study represents then a family of
shapes with well-characterized level spectra and properties.
Advances in materials fabrication and lithographic tech- Another goal of the present paper is to study the appear-
nigues have given us a variety of experimental systemance of chaos in a cylindrical quantum lens in terms of its
where electronic properties are tested in different environgeometric parameters, by studying the details of the level
ments. Notable among these are the “quantum dots” whickspectrum spacings. We follow the general trends concerning
confine electrons to dimensions comparable to their charatche anticrossing between nearby energetic levels with the
teristic wavelengtti1,2]. Different approaches produce fully same symmetry, the increasing number of repulsion levels
confined electronic systems with a discrete energy spectrumvhen the problem transits from an integrable system to a
as well as quantum-wire-like geometries which have a conehaotic one, and how for a small geometric perturbation the
tinuum component in one directiofiout discrete otherwise states can be well described by perturbation theory. We find
on the plane perpendicular to the given directif8]. Simi-  that, as the lens becomes flatter, the energy level spacing
larly, effectively two-dimensional systems are produced indistribution reflects a transition from a purely “integrable”
semiconductor heterojunctions, where electrons are stronglyystem, described by a Poisson distribution function, to one
confined to a plane, while other potentials restrict their mo+that exhibits chaotic dynamics, and that, for large deforma-
tion on the plane to a region with finite size and definitetions of the semisphericdicirculan cap, the level statistics
shape. A number of micrometer and submicrometer two+eflects the complex character of a mixed phase space. In
dimensional “stadia” have been studied as prototypes of inwhat follows, we describe the geometry of an effectively
teresting electronic dynamical systems that reflect regulatwo-dimensional spectrum, either because the confinement in
and chaotic dynamics, depending on the specific boundarthe third direction is so extreme that its dynamics is “fro-
geometny[4,5]. The associated level spectra of these systemgen” [4,5], or because the system is a long cylindrical lens-
have been shown to exhibit characteristic features reflectinghaped “wire” [3], and thus has a continuous spectrum
the different degrees of integrability of the classical systemalong the long directionand a discrete two-dimensional
(see Ref[6] and references thergin manifold along the orthogonal plane
Furthermore, as electronic transport and optical properties The paper is organized as follows. Section Il is devoted to
are determined by the details of the energy spectrum, it ipresenting the cylindrical quantum lens geometry and the
important to know precisely the effects of geometrical con-conformal transformation mapping method valid for this
finement on the electronic states. Simple geometries witlproblem. In Sec. Ill, we describe our approach to obtaining
well-known spectra are few, while realistic systems withthe level spectrum and corresponding eigenfunctions, both
complex shapes are not as well characterized. In this workyy perturbation theory and by direct solution of the Sehro
we undertake the study of a set of circular cap lens geomdinger equation. Also, we analyze the chaotic behavior
etries that can be manufactured by a variety of different apthrough the level spacing distribution and the lens geometry,
proaches. It is particularly important that our method allowsand correlate this behavior with Poincanerfaces of section
the study of the corresponding spectrum as a function of howf the corresponding classical system. Finally, in Sec. IV, we
“flat” the circular cap lens is(i.e., the ratio of the radius to discuss the consequences of this work.
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(a) Quantum lens with n=1,2, ...,p=1,2,... ,wheren{" is thepth zero of
the Bessel function of orden. The normalization constant
A is given by

aym
An,p=%lan+1(u§,“>>|, 5)
and the eigenvalues,, ,=#2(u{")%/(2ma?).

The 2D quantum lens shape corresponds to the more gen-
eral case wheh<a. Here, we need to fulfill Eq.3) with the
condition =0 over the boundari,(a,b) (Dirichlet condi-
tion). As this problem does not present a semicircular geom-
etry, the wave functionﬁﬂyp given by Eq.(4) are no longer
the eigensolutions for this problem. To provide an analytical
solution, we will use a conformal mapping transform method
for partial differential equationf7]. It is convenient to per-

FIG. 1. (8 System with cylindrical lens shape geometry with form a conformal mapping to a circular domaRy(a,a)
heightb and width 2. (b) Two-dimensional lens domaiR,(a,b) with boundaryL,(a,a) where the Se{fg,p} of eigenfunc-
with boundarylL ,(a,b). tions (4) forms an orthonormal basis on this domain. Hence,
the mapping will enable us to solve the problem in a Hilbert
space where an orthonormal ba{sﬁ%yp} is known. We trans-

As described in the Introduction, a typical wirelike device form the 2D quantum lens domain and its boundary into a
produced in experiments is shown in Figall The domain sem|C|r'cuIar shape, so that thg lens defmgd by the domaln
of the system i space is given by an infinite cylinder with £=X~1Z & Rz(a,b) transforms into the semicircular domain
cross sectional lens shape given by a helghnd width 22, YV=U—1veRp(a,a). This is accomplished by the transfor-
as indicated. The states of a free carrier inside such devicdg8ation

II. CYLINDRICAL QUANTUM LENS

are described by the stationary Safirger equation 2a 4
V24 K2 -0 b W(Z)= —-a, a=————7—»
{Vi+k* g(r)=0, reRs(a,b), D 1+[(a—2)la+ Z]* arctarib/a)
whereR;z(a,b) denotes the domain with boundaly(a,b) ©®

obeying the boundary conditio=0 for reLs(a,b), and  in the }» domain, with the parameter equations p siné,
k?=2mE/#%, whereE is the energy andh is the carrier ef- v=pcosh, 0<p<a, and 0< #< 7. Using Eq.(6) the eigen-
fective mass. Taking advantage of the cylindrical symmetryyajue problem(3) is transformed into,

solutions of Eq(1) can be cast as

2 1.2 —
W)= (p)ez, @ Vo F(U0)+7,(u,0)k’F(u,v)=0, (uv)eRy(a,a),

(7)
wherep is a two-dimensional2D) vector andk, is the wave | i boundary condition
vector component along thedirection. Using the above so-
lution, Eq. (1) becomes F(U,0)](uv) e Ly(a.2)=0- )
{V,2,+?2}f(p)=0, peRy(a,b), Q) J,(u,v) is the Jacobian of the transformatidti( 2), given
. by
wherek?=k?—k? is the corresponding eigenvalue fbfp) ,
in the 2D domairR,(a,b) with boundaryl ,(a,b) [see Fig. T(r.0)= 16(1/e) ©

1(b)]. Solving Eq.(3) for such a 2D lens is clearly equivalent
to the solution of Eq(1) because of Eq2). We should also
notice that solutions of Eq3) yield theentirelevel spectrum  with the definitions
for a purelytwo-dimensional systeror one where the-axis _ _ 2 : _
confinement is so extreme that that degree of freedom is r=pla, f.=1tr°x2rsing, R=f.f_, (10
effectively frozen and
For the particular cask=a, Eq. (3) presents exact ana-

lytical solutions due to the semicircular symmetry. Here, the 2r cosé

arctar( ) , <l

R~ Ve fllay flay oR122coq ¢l ar)]?

boundary problem in Eq(3) is reduced to the conditions
f(a,0)=0, f(p,7)=0, andf(p,0)=0. The functionsf(p) ¢=
in polar coordinates are given by products of integer-order 2, r=1.
Bessel functions and sine functions,
1 M(n)
0 = 3 1ZP_ s
fn,p(p.ﬁ)—An‘pJn( 4 P|sinnd), (4)

(11)

The function J,(u,v) contains the information about the
lens geometry, and it should be noted that1, sinceb
=<a. Fora=1, 7, reduces to 1, as one would expect.
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The space of solutions where Q) is defined must ful-
fill the boundary condition{8). Hence, the functionk (u,v)
for a givenk, can be expanded in term of the $éﬁ’p} such
that

(a) Two dimensional lens

F.=n2p cOLid (p), (12)

where p=(p,0) is the polar parametrization ofu(v), as
described above, aridis a generic label for the new eigen-
states of Eq(7), which is related to ther(,p) indices by
numbering the ordered Bessel zemg), or energy levels,
for the case oa=h.

It can be shown that the functios form a complete set

Energy levels E (units of E)

of orthonormal functions{F,} with weighting factor R T R W WP SR L
J.(p,0), fulfilling the condition[8] 0.4 0.5 0.6 0.7 0.8 0.9 10
Ratio b/a
f T.FlFEd%p=4, . (13
Ry(a,a) T v T v T v T y T T T
Perturbation Theory

The latter implies the following normalization condition for 140 Exact Solution -
the expansion coefficien@ﬂ)p: ~ 1
' w120 i

S ot o S (mp)
,~ Cn,pcn',p'<np|«7a(P10)|n p >_1- (14 2 100} 1)
nepnne s 32 |
In the following, two different methods for calculating eigen- w 80 6.1)

values and eigenfunctions of E() are presented, and their 2 22)
results analyzed. 3 60 g;; ’
B 40 @)

Ill. ENERGY LEVELS AND WAVE FUNCTIONS o 2.1)
w 29 .

A. Exact diagonalization (1,1)

The variational method is a powerful tool to solve the — L
eigenvalue problem given by Eq&’) and (8). The coeffi- 075 080 08 080 08 100

cientsC{)), (wave functiongand the corresponding eigenval- Ratio b/a
ues can be obtained by direct substitution of expan&l@ FIG. 2. (a) The first 11 energy level§, obtained from Eq(17)
into Eq.(7), yielding as a function of the lens geometry paramdiéa. (b) Comparison
(M(n))z between second order perturbation theédgshed linesand the
E C%I)pfg p(p,9)<\7a(P:9)_ P =0. (15) variational method(solid lineg, as a function of the ratid/a.
np 7 k? States are labeled afa=1 (semicircular boundayyby the quan-

) ) ) tum numbers 1, p).
In matrix notation, the above equation can be cast as

_ _ It is possible to show that for small values lafa the func-
[(K%) "= y1]C=0, 18 fion (s|T.(p,0)|s") is proportional to b/a) 2.

An important aspect that must be taken into account is the
symmetry of the equation of motiofl6). The matrix
(s|T.(p,0)|s") couples states fulfilling the selection ryie
—n’|= even number. Hence, the symmetry present in the
operator(7) allows the separation of the eigenfunctions into
two Hilbert subspaces, which we will denote 8andA. The

def(k®~*J—y1|=0. (170 full Hilbert space is a combination of even-pdd and odd

(n-even functions for the subspaceésand A, respectively.

To solve this equation we have used a numerical diagonalas the given symmetry remains valid for abya value, we
ization procedure in a finite truncated basisff The first  will label the states fob/a< 1 with the same quantum num-
11 energy level€, as a function ob/a obtained from Eq. bers f1,p) as we use fob=a. In Fig. 2a) we see clearly the
(17) are shown in Fig. @). It can be seen that the energy level crossing between states with the different symmeS8ies
increases with decreasing rativa, an effect that is dictated andA. An example of such a crossing is foundda~0.7,
by the fact that the transformatidf) is not area preserving where the levels (1,2) and (4,1) fully cross. On the other
[9], and due physically to a stronger confinement geometryhand, nearby levels belonging to teameHilbert subspace

wherey=1/K2, k¢ ;= ()28, , 1is the unit matrix, and
Js.s =(S|T.(p,0)|s"), wheresrepresents the set of quantum
numbers 6, p), taken in increasing order WE)“) . The eigen-
valuesy and eigenvector€ are then obtained from the secu-
lar equation

056237-3



C. TRALLERO-HERRERCet al. PHYSICAL REVIEW E 64 056237

Ho(u,0) =K J,(u,0)— 1], (20)

where the operatdd , vanishes whema— 1 and can be con-
sidered as a small perturbation operator. In order to find the
solution of Eq.(18) as a function of the perturbatidt,, we

use a modified Rayleigh-Schiimger perturbation theory.

We note that the operatét, depends on the eigenvalké,

and as such requires a somewhat different approach from the
typical perturbation method used in quantum mechanics.
Substituting Eq(12) in Eq. (18) we get

Probability density (arb. units)

[(=k3) +(s|Hp(kA)[$)ICP+ X (s]Hy(k?)]s')CS=0,
s’ #s
(21)

where we have used a unique quantum nunsterlabel the

(n,p) states as previously mentioned. We can represent the
FIG. 3. Contour plots of the probability density,|* for (1,1),  coefficientsC, and the eigenvaluels? in a power series of

(1,2), and (4,1) states and different values of Wia ratio. The  the small parametex=.7,— 1. From Eq.(21) we obtain up

darker filling color indicates stronger spatial localization of the . . — .
Hing ger sp to second order i that the eigenvaluels® are given by
state. Size of lens has been rescaled in all panels.

b/a=0.8 b/a =0.71 b/a=0.4

1.2 _ 0.2 )\|2,|(k|0,|)2
present an anticrossing at certain valued/f, as observed ki'=(1=N; ) (ky)"+ —
between the level$1,2) and (5,1) at b/a~0.4, and more
clearly between levelg1,3) and (7,1) at b/a~0.7. One (kP2 —
should notice that the results presented have been achieved +|' | W(M,w) , =120,
using matrices of size at least 60600 and typically larger. #HE 1
The results are fully converged to high numerical accuracy. (22

Figure 3 shows contour plots for the probability density
|F\|? for different energy levels antt/a values. In Figs.
3(a)—3(c) the ground statél,1) extends increasingly over the o MiLo (kD)2
entire domain as the ratio/a decreases. Figuresd—3(f), Fi=fi——fi— E
on the other hand, represent the contour plots for the state !
labeled with quantum numbei4,2) at b/a=1. Similarly,  where
Figs. 3g)—3(i) correspond to the energy level with labels _ ,
(4.1) atb/a=1. In Figs. 3d)—3(f) we see that the “flatter” A= (1 Ta(p, )= 1]1"). (24)
lens geometry has a stronger effect on the probability density comparison for the first nine energy levels between second
|F||? for the (1,2) level, provoking its rapid variation as a order perturbation theorfdashed lines as expressed in Eq.
function of the decreasing ratlw'a. Otherwise, as shown in  (22), and the exact solutiogsolid lineg is shown in Fig.
Figs. 39)-3(i), a smooth dependence on théa ratio is  2(b). We can see an excellent agreement between the two
observed for théF|* function of some states, such @1)  methods folb/a>0.9 (at least for these levelswhile for the
shown here. This different behavior is explained by its endirst three levels the agreement remains acceptable up to
ergy dependencg¢see Fig. 2a)], as the state (1,2) goes b/a~0.85. It is clear that the perturbatiqfi,— 1 has more
higher in energy than (4,1) and experiences a stronger repuhfluence on the upper levels than in the lower ones, as one
sion from the boundary surface defining the lens. This stronwould anticipate, and that the perturbation due to the lens
ger repulsion results in the nodal structure shown in Fif). 3 geometry is stronger as the ratita decreases. For the wave

functions calculated from Eq23), we find that the agree-
B. Perturbation theory ment with the exact solutions is excellent, exhibiting the
same behavior as that discussed for the energy levels.

and the wave functions up to first order are given by

——\ ,fo,, 23
R U 29

The coefficientsC{)), in Eq. (12) and the eigenvalues®

can be obtained by perturbation theorpifa, i.e.,a—1. In C. Onset of chaotic signatures

this case, the 2D lens represents a perturbation from the ) ) o

semicircular geometry. In other words, the opera®rcan In Fig. 3 we should also notice the localization of_ all

be rewritten in the form states toward the plane, leading Fo a strong chgnge in the

nodal structure of the wave function, as the réti@ de-
(Ho+Hp)F(u,0)=0, (18) creases. The in-plane localization effect is highly correlated
. with the transition to chaof9], as will be described below.
with Another aspect emerges from the energy spectrum as a
5 — strong signature of quantum chaos, i.e., the level repulsion or

Ho(u,0)=V{, )Tk, (19 avoided crossing between levels with the same symmetry, as
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was discussed previously. To clarify this behavior, we pro- ¢ . r & = T T 1
ceed with a study of the level spacing of the energy spectrun

n
-
o

T

P

()

-~

in terms of the ratido/a. This analysis is commonly used to -% PE -
characterize the spectrum, and has been utilized as an indg 0 pral e bja=0.8
cator of chaotic behavior in a systel,9,10. We analyze 3 [ g S e b/a=0.4
the probability densityP(v) of finding an energy level £ 2 ba=03
(nearest-neighbpispacingy in a fixed intervaldv, and nor- § 06 }_}/ i
malized by §_ ,",’ *~Poisson distribution
1% -} (,//
J’ maxP( »dv=1, (25) g 04 I;l).’J |
0 g I ,;' rody distribution («=0.28)
i

wherev,,,,is the maximum level spacing and the variable = 92 [}, T
in units of Eq=7%2/(2ma?) is given by

vi=(E—Ei-1)/Eq. (26) 1 2z 3 a1 s
Since we have to deal with a bounded and finite subset of the Vi
energy spectrum where the infinitesintht becomes a dis-
crete set of numberglv— Av, the distributionP(v») needs -t
to be represented by a histogram functi® v). Although I (b) I b/a=0.3
this has been the most commonly used procedure, we findi_. '¢r || --—= p,=0.1 7
is preferable to compute the integrated or cumulative prob& L - ,‘1232
ability function[6,11] s I ~—-—-- Poisson

:.3 12 H 0o ——— Wigner ]
14 = -
I(v)=f P(v")dv'. (27 2 f
0 £ I
@ 08 T o
The main advantage of working with EQ7) is that the _?_»’ I3
function! (v) does not depend on the specific binning used tog
create the histograms &¥(Av). Either of these functions, L 7
[(v) or P(v), is compared with limiting distribution func-
tions [12-16. A typically used distribution is the Brody . L
function[12] 04 08 12 16 2.0 24 2.8
Pu(v)=(1+a)Bvexp—B,v"" ), (29 Vi<

derived empirically to interpolate between the known limits  FIG. 4. (a) Integrated probability as a function of normalized
studied in random matrix theofRMT) by Wigner[6,17]. In level spacing for a cylindrical quantum lens and values of the ratio
Eq. (28), a is a phenomenological paramet@r s given by b/a=0.8, 0.4, and 0.3. The Poisson and Brody distributions are also
indicated.(b) Normalized level spacing histogram fofa=0.3. For
B.=[T A1+ a)+1)]"e, (299 comparison, the Berry-Robnik, Poisson, and Wigner functions are

. L ) also plotted.
to provide proper normalization, and(x) is the Gamma

function [18]. For =0, P,(v) is nothing but the Poisson . .
distribution typical of classically integrable systems, while€NS: b/a=0.7 and lower, the integrated probabilit7)
for a=1 it reduces to the Wigner distribution obtained from C/€arly departs from the monotonic behavior predicted by the
the Gaussian orthogonal ensembles of RMTLZ]. In Fig. Brody gllstnbunon. Thl_s can be seen in Figbftwhere the
4(a) the integrated probability functiol( ) is shown for the ~normalized level spacing histograR(Av) for b/a=0.3 is
case of eigenstates with even symmetry, as a function ofhown and the distribution obtained is obviously neither
vl(v) for different values of the lens deformation parameterPoisson-like nor fully Wigner-like. As thé/a ratio de-
b/a, and wherg v) is the mean level spacing. For the sake ofcreases, a further spreading of the distribution funcRg¢m)
comparison, the Poisson and Brody distributions are alsés obtained, with a clear change in its characteristics. It is
shown. remarkable tha(v=0)#0 for strong deformationsh/a

As stated above, if we are dealing with a semicircular<1, indicating the possibility of a mixed phase spdsee
geometry p/a=1), the energy levels are given by the zerosbelow).
of the Bessel function, and their spacing distribution function  To further explore the properties of the spectrum, the nor-
is well described by the Poisson distribution, as expected fomalized functionP(Av) is also compared with the Berry-
an integrable systeri9]. For b/a=0.8 the system is no Robnik distribution(BRD) proposed for mixed phase space
longer integrable andi(») can be fitted reasonably well by systemd13,16], and which for the particular case of a two-
the distribution function(28), with «=0.28. For a flatter component phase space has the form
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+|2p1p2

N
P,(v,p1) = plexp( — plv)erfc( 5 P2V

y

AL v SR 30
2 TPV |EXP —p1v— TPV, (30)

where erfck) is the complementary error function ampg
andp, are the Liouville measures for the regular and chaotic
regions of the phase space on the Poinearéace of section
(PSOS, respectively. These parameters fulfill the condition

(31

b/a=0.3

p1tp2=1,

since the phase space volume is preserved. In Fim, the
BRD function for several values gf; is shown. As can be
seen, a certain degree of agreement is reachegdfe10.6,
mainly in thev~0 region, since bott? and P, are finite in
this region. We should also comment that the integrated
probability functionl,(v) obtained from integrating the dis- . ,
tribution P,(v,p,) fits well the results of Fig. @ (not —(b)
shown) for b/a=0.8 with p;=0.6, while poorer or no agre-
ment is obtained for ratiob/a smaller than 0.7.

Similar results showing a strong departure from RMT
have been reported ifil9] for electrons interacting via a
Coulomb potential in a semiconductor quantum dot in ane [~ N
external magnetic field. Although in many systems the g : : : : '

Poincare Surface of Section (V vsy)

x

b/a=1

B

Section (V_vs x)

P (v) distribution function is well described by the phenom-
enological power law of the Brody function, this is not al-
ways the appropriate description for all parameter values

[}

urfac

1]

The nature of the level repulsion due to the confinement of%
the lens geometry appears not to follow this simple interpo- 2
lation scheme in general, especially as the rdtia de- g
creases. However, the interpolation works quite well for the . ‘ . ) . e
case of small deformations of the lens from the semispherica e e e o e e s
(-circulan shape, as can be seen in Figa)4for b/a=0.8;
our calculations show that this behavior is indeed exhibited FIG. 5. (@) Poincafesurface of sections for a quantum lens bil
for both families of distributions considered, as longbda ) Y _ )
>0.7. In the case of strong departures from the semicircul I}ar_d and values of the rat|b/a:_1, 0.9, 0.7, and 0._3(.a) Vy ve-
geometry, a more complex description of the energy anti-i%'ty component versus normalized lengeib gtx—o and Vi
. . . ST . (b) Vyx velocity component versus normalized lengtha at

Crossings Is needed. Other phenomenologlcal dlStI’IbutIOQ,:O andVy>0. The velocities are given in arbitrary units where
functions have been proposed by Izrailev and by Casal. 2, \2_,
for the level spacind20,21). All of these have the form ~* "
P(v)= 1!, wheret is a model parameter. This does not agree
with our results, since we hav®(»=0)#0. As reported in deformation b/a=0.9) a great deal of mixing already
the literature, this more complex distribution is indicative of émerges. A lens strongly deformeth/@=0.3), however,
a mixed phase space, where different regions are classicalgresents more of a regular pattern located mainly at the cen-
integrable or quasiperiodic, while others are chaotic. This iger, together with the chaotic regionxia~ *=1. In the case
the case of Fig. 4 fob/a<1 where the distribution would of the PSOSV vs X, Fig. 5b), the picture is quite similar
never reactP(v=0)=0, since the regular component has afor small deformations but quite different for a flatter lens
nonzero probability for the#— 0 spacing in agreement with shape. Here, it is noted that for deformations as small as
the Berry-Robnik scenaridl3,16. In order to elucidate this b/a=0.7 all the classical periodic orbits are broken and for
behavior explicitly for different lens geometries, we analyzeextremely deformed lens geometrids/§=0.3) wide cha-
below the classical dynamics hsa decreases from unity.  otic zones appear. Nevertheless, it is clear that a great deal of

Figure 5 shows Poincarsections(PSOS’$ for the lens  complexity exists forb/a<1. The resulting mixed phase
billiard in different projections. These plots are generated foispace was anticipated from the level spacing analysis in the
30 initial conditions near periodic orbits in the nondeformedquantum system above, and an estimate of the parameters in
geometry p/a=1) with a constant velocity modulus; all the BRD function is not far fronp,;=0.6 forb/a=0.8. For
trajectories are followed up for 5000 rebounds at the boundsmallerb/a values, however, the evaluation pf is not as
aries. As can be seen in Fig(h there is a clear regular clear, and requires more detailed studies which we plan to
motion for the semicircular lens geometry, while for a smallpresent elsewhere. We should also mention, however, that
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other systems with complex geometry do also exhibit mixeccrossing points, and the splitting increase$&s decreases,
space behavidr22]. while the system moves from fully integrable to a noninte-
grable dynamical problem, i.e., to a quantum chaotic behav-
V. CONCLUSIONS ior in the sense of its level spacing statistics. In the case of
] ) ] semicircular geometry, the level spacing distribution is char-
We have formally obtained analytical solutions for the 5¢terized by a Poisson distribution and follows the Brody
energy spectra and wave functions of a 2D or cylindrical lengynction continuously for small lens deformations within the
geometry. The eigenenergies and eigenfunctions of a particl,%giOn 0.%b/a<1 (the exponential parameterranges be-
moving in this geometry are given in terms of the lens paywyeen 0 and 0.28 We have found that the level spacing
rameterb/a which characterizes the lens deformation with gistripution departs more strongly from the Poisson and
respect to the semicircular case. This set of lens-cap shapqﬁgner limits as the 2D lens becomes flatter, and the two-
represents stadia fqr the dynamics of mesoscopic 3|eCtr0n§omponent Berry-Robnik distribution function or the phe-
We have also provided a complete set of orthogonal waveomenological power law suggested in RMT fail to fully
functions to describe a Dirichlet problem to characterizegescripe the level repulsion. This complex behavior of the
physical problems within the lens boundary, and it has beefye| spacing distribution is characteristic of systems with
shown that the space of solutions is divided into two H"be”classically mixed dynamics, and this is clearly the case for
subspaces with well-defined symmetry. We found that fofine |ens, ‘as shown in the Poincamections presented in Fig.
small deformations /a>0.9) a modified Rayleigh- 5 Notice that the appearance of quantum chaos in the quan-
Schralinger perturbation method provides accurate solutiongym |ens as a consequence of level anticrossing and the
for the lower eigenstates in the quantum lens. For smalleghanging nodal structure of the wave functions is character-

by the exact solution given by E@16). The reported ener- deformation.

gies in units ofE, [Fig. 2@] have a universal character in

terms of the parametds/a and, due to the breaking of cir- ACKNOWLEDGMENTS
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