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Dynamical mechanisms of dc current generation in driven Hamiltonian systems
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Recent symmetry consideratioffdachet al, Phys. Rev. Lett84, 2358(2000 ] have shown that dc currents

may be generated in the stochastic layer of a system describing the motion of a particle in a one-dimensional
potential in the presence of an ac time-periodic drive. In this paper we explain the dynamical origin of this
current. We show that the dc current is induced by the presence and desymmetrization of ballistic channels
inside the stochastic layer. The existence of these channels is due to resonance islands with nonzero winding
numbers. The characterization of the flight dynamics inside ballistic channels is described by distribution
functions. We obtain these distribution functions numerically and find very good agreement with simulation
data.
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Transport in driven systems has received widespread in- Let us consider the canonical example of a particle mov-
terest for several years because of its potential applicabiliting in a spatially periodic nonlinear potentidl (x)=
to nonequilibrium processdd]. One canonical model re- —cosx under the influence of a time-periodic zero-mean
duces to the motion of a particle in a one-dimensional spacgorce E(t). The Hamiltonian and the equation of motion are
periodic potential in the presence of friction and a time-given by
dependent stochastic forcey(t). If x(t) contains 5
correlations, a nonzero current may be realized even in the b e
case of zero averagéy(t))=0 [1]. Despite an enormous H=Z —cosx=xE(D), x=-sinx+E(D. (1)
accumulation of results in this ar¢2] we are still lacking a
full understanding of thenicroscopicmechanisms of current Herep andx are the canonically conjugated momentum and
occurrence. If such an understanding is realizable, it shouldgordinate and=d2x/dt2.
make use of the true dynamical evolution of the system \we restrict our consideration to the choice
rather than of properties of equations for probabilities. A first
step in this direction requires separation of the essential time E(t)=E; cogt)+E,coq2t+ ¢). 2
correlations from the pure Gaussian white noisg(t). The
simplest way is to assume that(t)=E(t)+ &(t) where  According to[3] for E,#0 and¢# 0,7 all possible symme-
E(t)=E(t+T) is a time-periodic function with zero mean tries that yield zero dc current are broken. Note that the
(E(t))=0 and{(t) is a Gaussian white noise term. phase space dimensiahof Eq. (1) is d=3.

The next step is to skip th&t) term which leaves us with In the case of a nonzero fiel(t) the phase space of Eq.
a regular dynamical problem. (8] such a case was consid- (1) is characterized by the presence of a stochastic layer
ered and the relevant space-time symmetries of the dynamivhich originates from the destroyed separatrix of the un-
cal problem were obtained. It was shown that a breaking ofiriven systen{5]. For ¢=0,7 this layer is invariant under
those symmetries leads to a nonzero dc current. The mechtie transformationg— — p,t— —t,x—x). At the same time
nism of current occurrence for the dissipative case was iderthe average velocity for any trajectory in this layer vanishes,
tified with a desymmetrization of attractor basins. In con-so we find zero dc current. The symmetry will be broken
trast, the nondissipativigdiamiltonian case is much less well when tuning¢ away from the values (@;). The stochastic
understood[4]. A time-dependent Hamiltonian system is layer will deform. Most importantly any trajectory in the
usually nonintegrabl¢5]. A strong dc current component layer will then be characterized by a nonzero value of the
was found in the corresponding stochastic layer of such average velocity. Due to ergodicity inside the layer this value
system[3]. While its presence or absence was clearly conwill be unique for all trajectories from the layer. While the
nected to the above mentioned absence or presence of syfact that it may become nonzero is understandable using
metries, the dynamical nature of directed transport in thesymmetry analysis, its appearance and magnitude are due to
stochastic layer is not fully understood. The importance ofdynamical mechanisms of motion inside the stochastic layer.
this understanding can be seen from, e.g., the resuli§]in In this paper, we show that the dc current is induced by the
where kinetic equations for probability functions were stud-presence and desymmetrization of ballistic channels inside
ied. In particular, it was found that the approaching of thethe stochastic layer. The existence of these channels is due to
Hamiltonian(dissipationlesslimit leads to an increase of the resonances. The characterization of the realization of flights
dc current value by 2—3 orders of magnitude. Thus the deinside ballistic channels is described by distribution func-
scription of the dynamical mechanisms of directed currentions. We obtain these distribution functions numerically and
generation in the stochastic layer of a driven Hamiltonianfind very good agreement with simulation data.
system will provide very useful information for dissipative  System(1) has a mixed phase space, which contains cha-
systems as well. otic areas and regular resonance islafitls These islands
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FIG. 1. Poincaremap for (a) ¢=0 and(b) ¢= /2. FIG. 2. x(t) for ¢=0,m/5m/2 (lower, middle, and upper

. ble f haoti . . d fi | curves, respectively Left upper inset: Poincarmap for ballistic
are impermeable for chaotic trapctone; and, atafirstg anCq’l’ight with ¢= /2 as indicated by arrow. Right inset: enlargement
may be excluded from the consideration of the phase spacg x(t) for ¢= /2.

flow inside the stochastic layer. In reality the phase space

topology inside the stochastic layer is very complex préyairy argumentsFig. 2). The large hole in the middle of this
cisely at the boundary between chaotic and regular regionSyer corresponds to regular trapped motion in the well of
[7]. Close to resonances the stochastic layer shows a hlerat[r(x)_ Additional resonances are seen above and below the

chical set of cantori, which form partial barriers for a trajec- conrg| |ayer. These thin ballisticlike but yet stochastic chan-
tory from the layer. Due to the presence of these barriers 345 have no overlap with the central layer.

chaotic trajectory can be trapped for a long time near aregu- » \yeak asymmetryp= /5 leads to a slight deformation

lar island resonance. This trapping or §t|ck|ng effect Ie_ads tQf the main stochastic layer and to a desymmetrization of the
the appearance of_strongly non.ergodlc episodes durlng tI“@verlap of the chaotic layer with higher-order resonances and
overall chaotic motion. Regular islands are characterized by, ha appearance of a positive current in the system. Note

a corresponding rational winding number=Ax/T which ,5; it still does not overlap with the thin ballistic channels
defines the distancx traveled during one periotl= 27 of seen in Fig. (a). Most importantly, we observe a nonzero
the drive. If the winding numbew is nonzero, the corre- s .

average velocityx)~0.05 (Fig. 2).

sponding sticking episode of the chaotic trajectory is a bal- Further increase of the asymmetey= /2, results in an

listiclike unidirectional flight. Fore=0 the sticking episode overlapping of the main stochastic layer with the upper bal-

corresponds to trapped oscillations. S : !
Thus the complicated evolution of a trajectory in the sto-I'StIC resonance Fig. (b). Note that at the same time the

chastic layer can be subdivided into several pfis The Iower -ba||IStIC resonance is noF ov.erlappm.g. The average ve-
first one is a fast diffusion in the bulk of the layer, while the 10City increases tdx)~0.2, which is four times larger than
other ones are stickings to the above mentioned regular ighe result for¢==/5. Standard harmonic mixing theories
lands and correspond to propagation in ballistic channeldsee[2,9]) would predict a dependenéa)~sin¢ and thus
The switching from the diffusion process to a ballistic flight an increase by a factor of only 1.7.
will be described by some probability distribution. The same In the x(t) curves in Fig. 2 we observe many ballistic
will be true for the actual residence or sticking time inside aflights. For one of them an inset shows the corresponding
given channel. We will show for the cases studied that thd?oincaremap result, which verifies that these flights corre-
fast diffusion alone is not capable of explaining the observedgpond to stickings of the chaotic trajectory to the upper bal-
dc current. The main point is that the leading mechanism ofstic resonances. A zooming of th&€t) curves showself-
current generation in thetochastic layeris related to the similarity, i.e., the seemingly random dynamics between
desymmetrization of the strongiyonstochastiqart of the  observable long flights is actually again composed of shorter
overall stochastic dynamics inside the layer. Note that ouflights and seemingly random dynamics, €gee the insets
kinetic energy choic@?/2 in Eq.(1) implies that the stochas- in Fig. 2).
tic layer is bounded ip, so we will always expect ballistic In order to quantify our analysis of the symmetry broken
channels to appear. dynamics we compute the distribution of traveling times of
Let us study the case of weak driviigy =0.252 andE, “uniform” flights to the left P_(t;) and to the rightP, (t;)
=0.052. A Poincarenap of the phase space flow =0 is  separately. Here, “uniform” means no change of direction
shown in Fig. 1a) [8]. The main stochastic laygicentral — of motion [10]. For each separate flight we note both the
location shows up with zero average velocity due to sym-timet; spent in this motion and the distancetraveled. Note

056236-2



DYNAMICAL MECHANISMS OF dc CURRENT . .. PHYSICAL REVIEW E 64 056236

10° — —— — secutive flights, since they are almost always separated by
e o dispersive chaotic motion.
N s { - g Assume that there exidt different resonances with wind-
\ = ° 1M b ", 1 ing numbersw;, i=1, ... N. Every resonance is character-
- \\ - T . ized by a probability distribution functiofPDF) of sticking
2107 | O L RN A times S(t). After finishing a random phase event, the prob-
= \A o3t e N0 et f ability of sticking to theith resonance ip;, =\ ;p;=1. The
£ g ' \\} ' random phase residing time is characterized by a BDf.
£ Vh \\ All functions S;(t) andS;(t) must have finite first moments,
T . ‘4‘\ ‘\ due to the Kac theorem about finiteness of recurrence times
Q10 W T \ 1 in Hamiltonian systemf7]. With these definitions we obtain
‘L"ut‘w H. the following expression for the current:
@ \'ﬁ,‘ ®) 1 N
-6 . {1 \‘I\H . ! |=2]_ wipi<ti>
T 100 1000 100 1000 10000 =, (3
" " 2, pi(t)+(t)
FIG. 3. P, (t;) (solid line) and P_(ts) (thick dashed ling In- "
sets:x; versust;. For parameters see text. where(t;)= [tP;(t)dt.

For the above discussed cases ¢f 7/5,7/2 we find
that such a definition of flights has to be imrpoved if manyonly two relevant ballistic channels—one with positive
resonances are involved and especially if ballistic resonanceginding number and a second one with negative winding
Contribute, which are characterized by nonuniform motion. number. In order to proper|y obta'@(t), we note that our

The dependence of; ont; is shown in the inset of Fig. numerically obtained functioR(t) consists of a lot of short
3(a) for ¢=m/2. As in the other case=0,7/5 we observe  “flights” as defined through the numerid40]. These may
a simple forklike structure. This is due to the fact that anype either stickings to islands with zero winding number or
considerable distance covered in the stochastic layer is reathaotic motion. We observe that for flight times>10T
ized through flights while sticking to the boundary of the only ballistic flights with nonzero winding number are ob-
stochastic layer. The slopes in the inset of Fi@) &re given  tajned. So the functionS. (t) may be easily obtained from
by the corresponding winding numbers of the layer boundp  (t,) by cutting out the central patt< 10T and properly
aries. Note that the two fork parts merge at valuest{of normalizing. In this case the expression for the average cur-
~10T. In principle other ballistic channels with different rent simplifies to
winding numbers might be present. Here they were too weak
to be detected.

In Fig. 3@ we show the corresponding distribution func- J= m(“’+<t+>+ fo_(t-)), 4
tions P.(t;) (again for ¢==/2). They are obtained by
counting the number of flights with; falling into a time  where the two constants andf can be obtained from the
window of sizeT. Fort;<<10T we observe exponential de- total time of a simulatiorl,,; and the number8l.. of bal-
pendence oP. ont;. These short flight distributions are in listic flights, k=T;/(N,+N_) andf=N_/N, .
fact independent of the direction of flight. Skipping all  For ¢==/5 we obtain from the numerical rurfs=0.57,
longer flights would lead to the prediction of nearly zero «~1900, (t,)~(t_)~220, and w,=10/6~1.67, w_=
average velocityrestricting consideration to flights of length —1.5. In this case ofveak desymmetrizatidhe main source
t;<<10T yields about 1% of the numerically observed cur-of a nonzero current is the different probabilities of entering
reny. Thus the desymmetrization will manifest itself for a right or left going flight because# 1. At the same time the
longer flights. Fort;>10T a crossover to a power la® . average flight times in both ballistic channels are nearly
~t{* takes place. Here we find a significant desymmetrizaidentical. With the help of Eq4) we find J~0.056 which is
tion for ¢=7/5,7/2. Estimating the exponenfg1] we find, ~ close to the numerically observed value of 0.05.
for ¢=ml5, a_~2.5, a,~2.4, and for¢p= /2, a_~3.7, For the casep=m/2 we find f~0.16, k~2600, (t. )
a,~2.3. It is worthwhile noting that<3 implies unidirec-  ~400, (t_)~150, andw, =2, w_~—1.4. Note that the
tional anomalous diffusion with diverging second momentsabove discussed overlap with the upper resonance yields a
of P(t). The flights are termetlevy flightsin such a case further strong desymmetrizatioim the probabilities of real-
[12]. izing a left or right going flight, and in addition the average

Following the continuous-time random wa@TRW) for-  flight times in both channels significantly differ. Expression
malism [13] we propose a generalized asymmetrical flight(4) yields J~0.22 which is in good agreement with the nu-
model capable of reproducing the above results. The applinerically observed value of 0.2.
cability of the CTRW model follows from the assumption ~ For stronger driving amplitudé&, =3.26, E,=1.2, and
that the presence of a random phase with fast decaying cogp= w/2 we obtain an average veloci{x)~0.85. The cor-
relations leads to the absence of correlations between comespondingx;(t;) dependence and the PDM.(t;) are
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shown in Fig. 8b). Thex;(t;) dependence shows that more zation of flight probabilities in ballistic channels inside the
than two ballistic channels are involved. The asymmetry oflayer. It follows from our sum rulg3) that the resulting
the PDFs at short flight times indicates that a considerableurrent depends among other parameters on the average time
number of left going flights become dominant at short timesspent in a ballistic channel. These times will sensitively de-
in agreement with the tendency of the previous results. Thipend on control parameters of the system if the expornent
makes the application of the simplified sum r@g impos-  pecomes less than 3. In such cases small changes may sig-
sible; instead the original definitia) should be used. Care- pjficantly alter the current value as shown above.
ful analysis of the structure of the stochastic layer shows that A important question is whether the analysis presented is
relevant resonances become embedded in the bulk of they st with respect to weak dampifidissipation. While a
stochastic layer. While these structures are of rather smallomplete analysis is beyond the scope of this work, we
size, they are frequently visited. A restriction to short flights checked that the mechanisms of dc current generation stay in
t;<<10T now yields a considerable nonzero current, which is,jace. Ballistic resonances are replaced by attradtyys-
however,negative i.e., opposite to the total current value. cq|ly limit cycles with nonzero winding numbérsThe cha-
Again the long ballistic flights are necessary in order to propgic |ayer of the Hamiltonian case is replaced by a compli-
erly obtain the observed current value. cated entanglement of basins of attraction of different
The last example suggests that the applicability of By. attractors(see alsd14]).
is rather limited. While this is to some extent true consider- A recently proposed geometric approach of counting ar-
ing the practical side, it can of course be improved by usingas and winding numbers is in principle also capable of ob-
refined definitions of ballistic flights. However, the mostim- {5ining the observed mean value for the currgi®]. This

portant property of Eq(3) is its validity in principle. It rep-  gnnr0ach may also require sophisticated studies of the fractal
resents a dynamical approach to directed transport in drivegtyycture of the chaotic layer. It represents a nontrivial

Hamiltonian systems. This approach states that transport in &mplementary result, since, although not explaining the dy-
chaotic layer is realized through balllst|c_ channels. This hag,3mical mechanisms of current generation, it is capable of
been successfully tested for some cagég. 3a)] and we  ghtaining the average current valfgrovided the sums in

conjecture that it has general validity. Eq. (3) of [15] converge fast enough
In summary, we have explained the dynamical mecha-

nisms of current appearance in driven Hamiltonian systems
inside a stochastic layer with broken time reversal symmetry. We thank M. Fistul, A. A. Ovchinnikov, H. Schanz, O.
The key source of such directed transport is the desymmetri¥evtushenko, and Y. Zolotaryuk for useful discussions.
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