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Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition
in coupled systems
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In weakly coupled systems, it is possible to observe the coexistence of the chaotic attractors which are
located out of the invariant manifold and are not symmetrical in relation to this manifold. When the control
parameter is changed, these attractors can undergo a chaos-hyperchaos transition. We give numerical evidence
that before this transition the coexisting attractors merge together creating an attractor symmetrical with respect
to the invariant manifold. We argue that the attractors that are not located at the invariant manifold can exhibit
dynamical behavior similar to bubbling and on-off intermittency previously observed for the attractors located
at the invariant manifold, and we describe the mechanism of these phenomena.
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Nowadays we can observe a growing interest in high
dimensional dynamical systems. Consider a dynamical

tem given by a flowẋ5 f (a,x), wherexPR m andaPR is a
control parameter. Such a system is characterized bm
Lyapunov exponentsl1 , . . . ,lm , where l1>l2>•••

>lm . If ( i 51
m l i,0, the system is dissipative and its evol

tion takes place on an attractor. The attractors that are c
acterized by only one positive Lyapunov exponents
called chaotic and they can occur in at least thr
dimensional systems. Generally, form-dimensional dissipa-
tive systems one can observe attractors withm22 positive
Lyapunov exponents. The attractors that are characterize
at least two positive Lyapunov exponents for typical traje
tories on them are called hyperchaotic@1#.

The first example of such an attractor was presented
Rössler@2# for a model of the particular chemical reactio
Later, hyperchaotic attractors were found in electronic c
cuits and other chemical reactions@3#. In @4#, it was shown
that by weak coupling ofm chaotic systems, it is possible t
obtain a hyperchaotic attractor withm positive Lyapunov
exponents. The transition from chaos to hyperchaos, i.e.
bifurcation that occurs when the second largest Lyapu
exponentl2 becomes positive, has been studied in@5#. It has
been shown that at this transition the attractor dimension
l2 grow continuously.

On the other hand, for Hamiltonian systems we hav
condition ( i 51

m l i50, and although the evolution of suc
systems is not restricted to attractors, it is possible to obs
trajectories characterized by more than one posi
Lyapunov exponents. For example, a three-dimensio
Hamiltonian system can have one or two positive expone
@the cases with only one positive Lyapunov exponent
those with two~not three! integrals of motion# @6#. A distinc-
tion between ‘‘strong chaos’’~hyperchaos according to ou
terminology! with l1,2.0 and ‘‘weak chaos’’~chaos! with
l1.0 andl250 was made by Pettini and Vulpiani@7#.

In a previous paper@8#, we studied the dynamical syste
given by a dissipative mapxn115 f (a,xn), where xPR 2

andaPR. In such systems, due to the stretching and fold
mechanism, one can observe attractors with one or two p
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tive Lyapunov exponents. Generally if such a map
m-dimensional (xPR m), one can observe attractors withm
positive Lyapunov exponents. We assumed that the sys
evolved on the chaotic attractorA ~i.e., with one positive
Lyapunov exponent! and allowed the control parameter
vary slowly in such a way that the second Lyapunov exp
nent became positive and thus the attractorA became hyper-
chaotic. We gave evidence that the chaos-hyperchaos tra
tion was typically stretching~spreading! along the control
parameter interval, and that its mechanism had the s
characteristic features as the blowout bifurcation of the
tractors located at invariant manifolds in systems with sy
metry @9#.

In this paper, we consider weakly coupled continuous s
tems in which it is possible to observe the coexistence of
chaotic attractors~sayA andB) which are located out of the
invariant manifold and are not symmetrical in relation to th
manifold. When the control parameter is changed, these
tractors can undergo a chaos-hyperchaos transition~at a
5ah). We give numerical evidence that before this transiti
the coexisting attractorsA and B merge together~at a5as
,ah) creating the attractorC, which is symmetrical with
respect to the invariant manifold.

As an example, consider two identical symmetrica
coupled Ro¨ssler systems,

ẋ152x22x3 ,

ẋ25x11ax2 ,

ẋ35b1x3~x12c!1d~y32x3!,

ẏ152y22y3 ,

ẏ25y11ay2 ,

ẏ35b1y3~y12c!1d~y32x3!, ~1!

where (x1 ,x2 ,x3 ,y1 ,y2 ,y3)PR 6 are dynamical variables
a,b,c are constant system parameters, andd is the coeffi-
©2001 The American Physical Society35-1
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cient of coupling. It is well known that the Ro¨ssler system
develops continuous chaos through a period-doubling bi
cation cascade@2#. Since the Ro¨ssler system has a foundatio
in the kinematics of the chemical reaction@2#, it is natural to
study the diffusive coupling of two such systems@10#.

In our numerical studies we took the parameter valueb
52.0, c54.0, andd50.25, and we considereda as a control
parameter. With an increase in the control parametera, sys-
tem ~1! reveals the transition to hyperchaos@10# with a

FIG. 1. Variation of three largest Lyapunov exponents for
coupled Ro¨ssler system ford50.25. The smooth transition to hy
perchaos occurs atah'0.3673.
05623
r-

smooth passage of the second Lyapunov exponent thro
zero. A variation of the three largest nonzero Lyapunov
ponents versusa is shown in Fig. 1@for system~1!, one of
the Lyapunov exponents has to be equal to zero#. One can
observe a typical smooth transition to hyperchaos~similar to
that observed in@5,8#! at ah'0.3673. It should be noted her
that the chaos-hyperchaos transition atah is not the only
transition of this type. For largera, the second Lyapunov
exponent decreases and then increases again through
These further hyperchaos-chaos and chaos-hyperchaos
sitions are not studied here in particular but their mechan
is the same as the one described in this paper.

The chaos-hyperchaos transition is mediated by an infi
number of unstable periodic orbits. In the neighborhood
the transition point, we observe the coexistence of t
classes of UPO’s. UPO’s of the first class have exactly o
unstable eigenvalues while UPO’s of the second class h
at least two unstable eigenvalues@14#. @As was shown in@1#,
the six-dimensional system~1! can have up to four unstabl
eigenvalues.# This coexistence is responsible for the occu
rence of nonhyperbolic behavior known as unstable dim
sion variability and can explain the smooth passage thro
zero of the second Lyapunov exponent at the cha
hyperchaos transition point@11,8,14#.

Before the chaos-hyperchaos transition pointah , system
~1! has two coexisting chaotic attractors located out of
invariant manifold. The corresponding Poincare´ section illus-
trates both the attractors in Fig. 2. The attractorA is shown
re

FIG. 2. Symmetric Poincare´ cross section il-

lustrates how two symmetric attractors a
merged together ata'0.367 15.
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FIG. 3. Switching behavior ofx1 component
of the Poincare´ map for a50.3672 ~a! and a
50.3674~b! (n5t/h, whereh is an integration
step!.
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in gray, whereas the attractorB is shown in black. Both the
attractorsA and B are not symmetrical in relation to th
invariant manifoldx5y. Note that the cross section has be
chosen in such a way that it contains the origin and is nor
to the symmetric vector (1,0,0,1,0,0). Thus, the sets that
symmetrical with respect to the invariant manifoldx5y will
have also the symmetric images on the Poincare´ map with
respect to the diagonalx25y2 in Fig. 2. The calculations
reveal two distinct attractors ata50.363 @Fig. 2~a!# and a
50.367@Fig. 2~b!#, whereas fora.as'0.367 15 there exists
only one invariant setC which unites both the previousl
distinct attractorsA andB shown in Fig. 1~c! for a50.368.
As the attractorC created after the merging of the attracto
A andB is symmetrical with respect to thex5y manifold, it
is justified to call the bifurcation that occurs atas a
symmetry-increasing bifurcation. The attractorC is still cha-
otic asas,ah .

It has been observed that shortly after the symme
increasing bifurcation, system~1! exhibits intermittencylike
behavior on the attractorC with a relatively low number of
switches between the previously coexisting attractorsA and
B. Such behavior can be observed in Figs. 3~a! and 3~b! for
05623
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-

the parameter values ofa close toah „a50.3672,ah, Fig.
3~a! anda50.3674.ah, Fig. 3~b!#…. In Fig. 3~a!, the system
trajectoryx1 spends most of the time in the phase-space
gion, where the attractorA was located, and only occasion
ally jumps to the region of the attractorB, whereas in Fig.
3~b! it jumps between the former attractorsA and B more
frequently.

The mechanism of this phenomenon can be explained
ing an analogy to the attractor bubbling and on-off interm
tency for the case of a chaotic set belonging to the invar
manifold x5y @12#. Following @8#, we shall distinguish two
different control parameter intervals—a,ar and
ar,a,ah—before the chaos-hyperchaos transition. In t
first interval, all unstable periodic orbits embedded into t
chaotic attractor have only one unstable dimension~the sec-
ond largest modulus of multipliers is smaller than 1!. At the
end of this interval ata5ar the first unstable periodic orbi
embedded into the chaotic attractor becomes doubly
stable, i.e., the modulus of the second largest multiplier
creases through 1. The second intervalar,a,ah corre-
sponds to the case in which the attractor still has only o
positive Lyapunov exponent with respect to the natural m
5-3
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sure but there are unstable orbits with a different numbe
unstable directions embedded into it~unstable periodic orbits
with one and two unstable directions have been observ!.
The nonhyperbolic state in which the unstable periodic or
with a different number of unstable directions coexist
known as unstable dimension variability@11#. Finally, the
chaos-hyperchaos transition occurs at some parameter v
ah when the appropriate weights of unstable periodic orb
with one and at least two unstable directions are balanced
was shown in@8#.

Let us consider in detail the appearance of the first dou
unstable periodic orbit in the attractor, which occurs wh
the parametera is increasing pastar . In terms of the Poin-
carémap without loss of generality, we may consider a fix
point of the corresponding map embedded into a chaotic
tractor and having the second multiplier crossing throu
unity atar in the modulus. A similar case was considered
@8#. While before the bifurcation both the fixed point and
unstable manifold belong to the attractor, cf. Fig. 4~a!, after
the bifurcation it is possible to observe how the unsta
manifold Lu, which is directed transversely to the attract
appears; cf. Fig. 4~b!. Figure 4~b! illustrates only two pos-
sible cases when the fixed pointO undergoes either period
doubling or saddle-node bifurcation. The first case leads
the appearance of period-2 cycleR1 ,R2, whereas the latte
one leads to the appearance of two fixed pointsR1 and R2
and is generally realized when a system has additional s
metry properties. Note that the case considered in Fig
generally leads to a soft increase in the attractor size. T
follows from the fact that after the bifurcations the orb
starting in the vicinity of the doubly unstable pointO will be
bounded by the local saddle manifoldsL1 and L2 of the
created periodic orbitR1 , R2 or fixed pointsR1 andR2.

Another possible scenario which has been observed in
considered system~1! is an absorption of a doubly unstab
periodic cycle@8#. In this case an unstable manifold of th

FIG. 4. Scheme of possible bifurcations when the fixed poin
the Poincare´ map becomes doubly unstable atar .
05623
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absorbed cycle and orbits nearby will diverge out of t
attractor.

The described scenarios create orbits that diverge f
the attractor~sayA). The collision of such a divergent orb
with the boundary of the basin of attractionb(A) causes the
switching to the other attractorB. In our example~1!, due to
the coexistence of the attractorsA andB in the phase space
we observe intermittent behavior between both the attract
In general, if there are no other attractors in the neighb
hood of the attractorA, then the initially repelled orbit will
return to A. Such behavior on the attractor located at t
invariant manifold is known as bubbling~if it occurs before
the blowout bifurcation! or on-off intermittency~if it occurs
after the blowout bifurcation!.

For the observed intermittency one can get the follow
scaling law. Letts(a) be the average time that the syste
trajectory stays in the region of the phase space, where
of the coexisting attractors (A or B) was located before the
symmetry-increasing bifurcation. We investigate the scal
relation that is to occur betweents(a) and a control param-
eter a. Following @13#, we expect to obtain the algebra
scaling relation

ts~a!;~a2as!
2g, ~2!

whereas is a point of the symmetry-increasing bifurcatio
Figure 5 showsts(a) versus (a2as) on a logarithmic scale
for as,a,0.374, where the number of switching events
calculated for eacha for an orbit of length 33105. We have
approximately found the moment where the switching is i
tiated:as'0.367 15,ah . The data can be fitted by a straig
line with a slopeg'21.4.

f

FIG. 5. For the system~1! ~after the symmetry-increasing bifur
cation!, the average intermittent switching timets(a) versus (a
2as). We can see thatts(a);(a2as)

21.4.
5-4



kl
o
r
th
is
t
e
a

r o
y
a
nd

rs
he
tinu-

bi-

of
ac-

the

SYMMETRY-INCREASING BIFURCATION AS A . . . PHYSICAL REVIEW E64 056235
To summarize, we have shown here that in wea
coupled systems the transition from chaos to hyperchaos
curs after the symmetry-increasing bifurcation. At this bifu
cation, the coexisting chaotic attractors located out of
invariant manifold and nonsymmetrical in relation to th
manifold merge together, creating a chaotic attractor tha
symmetrical in relation to the invariant manifold. Both th
symmetry-increasing bifurcation and the chaos-hyperch
transition are caused by bifurcations of an infinite numbe
unstable periodic orbits. We have shown that in coupled s
tems, the attractors that are not located at the invariant m
fold can exhibit dynamical behavior similar to bubbling a
s
.
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on-off intermittency previously observed for the attracto
located at the invariant manifold. Finally, we believe that t
observed phenomena are characteristic of coupled con
ous systems~at least those in which chaos, as in the Ro¨ssler
system, is observed after the cascade of period-doubling
furcations!.
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