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Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition
in coupled systems
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In weakly coupled systems, it is possible to observe the coexistence of the chaotic attractors which are
located out of the invariant manifold and are not symmetrical in relation to this manifold. When the control
parameter is changed, these attractors can undergo a chaos-hyperchaos transition. We give numerical evidence
that before this transition the coexisting attractors merge together creating an attractor symmetrical with respect
to the invariant manifold. We argue that the attractors that are not located at the invariant manifold can exhibit
dynamical behavior similar to bubbling and on-off intermittency previously observed for the attractors located
at the invariant manifold, and we describe the mechanism of these phenomena.
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Nowadays we can observe a growing interest in highertive Lyapunov exponents. Generally if such a map is
dimensional dynamical systems. Consider a dynamical sysn-dimensional ke R™), one can observe attractors wittn
tem given by a flowk=f(a,x), wherexe R ™ andae R isa  Positive Lyapunov exponents. We assumed that the system
control parameter. Such a system is characterizedmby evolved on the chaotic attractéx (i.e., with one positive
Lyapunov exponentshy, ... A,, Where A\;=\,>--- Lyapunov exponer)ltand allowed the control parameter to
=\, If 2 \;<0, the system is dissipative and its evolu- vary slowly in such a way that the second Lyapunov expo-

. nent became positive and thus the attraétdmrecame hyper-
tion takes place on an attractor. The attractors that are chagy,, vic \ye gave evidence that the chaos-hyperchaos transi-
acterized by_ only one positive Lyapur_10v exponents arg;,, \yaq typically stretchingspreading along the control
called chaotic and they can occur in at least threen,ameter interval, and that its mechanism had the same
dimensional systems. Generally, fordimensional dissipa-  characteristic features as the blowout bifurcation of the at-

tive systems one can observe attractors with 2 positive  ractors located at invariant manifolds in systems with sym-

Lyapunov exponents. The attractors that are characterized kyetry [9].

at least two positive Lyapunov exponents for typical trajec- |n this paper, we consider weakly coupled continuous sys-

tories on them are called hyperchadtid. tems in which it is possible to observe the coexistence of the
_The first example of such an attractor was presented byhaotic attractorgsay.A andB) which are located out of the

Rossler[2] for a model of the particular chemical reaction. jnyariant manifold and are not symmetrical in relation to this

Later, hyperchaotic attractors were found in electronic Cirmanifold. When the control parameter is changed, these at-

cuits and other chemical reactiofs]. In [4], it was shown  tractors can undergo a chaos-hyperchaos transitana

that by weak coupling ofn chaotic systems, it is possible to = 5,). Wwe give numerical evidence that before this transition

obtain a hyperchaotic attractor witm positive Lyapunov the coexisting attractorsl and B merge togethetat a=a

exponents. The transition from chaos to hyperchaos, i.e., the 3 y creating the attracto€, which is symmetrical with

bifurcation that occurs when the second largest LyapunoYegpect to the invariant manifold.

exponent, becomes positive, has been studieSh It has As an example, consider two identical symmetrically

been shown that at this transition the attractor dimension angypled Rssler systems,

N\ grow continuously.

On the other hand, for Hamiltonian systems we have a
condition =", \;=0, and although the evolution of such
systems is not restricted to attractors, it is possible to observe
trajectories characterized by more than one positive
Lyapunov exponents. For example, a three-dimensional
Hamiltonian system can have one or two positive exponents
[the cases with only one positive Lyapunov exponent are

X1= — X277 X3,
5(2:X1+ aX2,

X3=Db+Xa(X,—C)+d(y3—Xa),

those with two(not three integrals of motio[6]. A distinc- Y1=~Y27 Vs,
tion between ‘“strong chaoshyperchaos according to our )
terminology with A, ;>0 and “weak chaos”(chao$ with yo=Yy1+ays,,
A1>0 and\,=0 was made by Pettini and Vulpiafi].
In a previous papéel8], we studied the dynamical system ya=b+ys(y;—¢)+d(ys—Xs), 1)

given by a dissipative map,,,="f(a,x,), wherexe R ?
andae R. In such systems, due to the stretching and foldingwvhere §;,X»,X3,Y1,Y2,Y3) € R® are dynamical variables;
mechanism, one can observe attractors with one or two posa,b,c are constant system parameters, a@nid the coeffi-
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0.1 . . . . - - smooth passage of the second Lyapunov exponent through
zero. A variation of the three largest nonzero Lyapunov ex-
0.05 Wai 0 ponents versua is shown in Fig. 1[for system(1), one of
| the Lyapunov exponents has to be equal to ke@me can
0 observe a typical smooth transition to hypercheisilar to
< that observed if5,8]) ata,,~0.3673. It should be noted here
< -0.05 that the chaos-hyperchaos transitionagtis not the only
< transition of this type. For largea, the second Lyapunov

exponent decreases and then increases again through zero.

These further hyperchaos-chaos and chaos-hyperchaos tran-

sitions are not studied here in particular but their mechanism

is the same as the one described in this paper.

0.2 ' : : : : : The chaos-hyperchaos transition is mediated by an infinite

033 034 035 036 037 038 03 04 number of unstable periodic orbits. In the neighborhood of
the transition point, we observe the coexistence of two

FIG. 1. Variation of three largest Lyapunov exponents for theclasses of UPO’s. UPQO's of the first class have exactly one
coupled Ressler system fod=0.25. The smooth transition to hy- unstable eigenvalues while UPQ’s of the second class have
perchaos occurs ak,~0.3673. at least two unstable eigenvalyd}. [As was shown irf1],

the six-dimensional systeid) can have up to four unstable
cient of coupling. It is well known that the Reler system eigenvalueg.This coexistence is responsible for the occur-
develops continuous chaos through a period-doubling bifurkence of nonhyperbolic behavior known as unstable dimen-
cation cascadg2]. Since the Rssler system has a foundation sion variability and can explain the smooth passage through
in the kinematics of the chemical reactiffl, it is natural to  zero of the second Lyapunov exponent at the chaos-
study the diffusive coupling of two such systefi®)]. hyperchaos transition poift1,8,14.

In our numerical studies we took the parameter values Before the chaos-hyperchaos transition p@ipt system
=2.0,c=4.0, andd=0.25, and we considerexdas a control (1) has two coexisting chaotic attractors located out of the
parameter. With an increase in the control parameteys-  invariant manifold. The corresponding Poincaeetion illus-
tem (1) reveals the transition to hyperchaps0] with a trates both the attractors in Fig. 2. The attractois shown
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in gray, whereas the attract#fis shown in black. Both the the parameter values afclose toa,, (a=0.3672ay, Fig.
attractors.4 and B are not symmetrical in relation to the 3(a) anda=0.3674>ay, Fig. 3b)]). In Fig. 3a), the system
invariant manifoldx=y. Note that the cross section has beentrajectoryx, spends most of the time in the phase-space re-
chosen in such a way that it contains the origin and is normagion, where the attractad was located, and only occasion-
to the symmetric vector (1,0,0,1,0,0). Thus, the sets that arelly jumps to the region of the attractdi, whereas in Fig.
symmetrical with respect to the invariant manifolet y will 3(b) it jumps between the former attractars and 5 more
have also the symmetric images on the Poincasp with  frequently.
respect to the diagonad,=y, in Fig. 2. The calculations The mechanism of this phenomenon can be explained us-
reveal two distinct attractors @=0.363[Fig. 2@] anda  ing an analogy to the attractor bubbling and on-off intermit-
=0.367[Fig. 2(b)], whereas foa>a,~0.367 15 there exists tency for the case of a chaotic set belonging to the invariant
only one invariant set which unites both the previously manifoldx=y [12]. Following[8], we shall distinguish two
distinct attractors4 and B shown in Fig. 1c) for a=0.368. different control parameter intervala<a, and
As the attractoC created after the merging of the attractorsa, <a<a,—before the chaos-hyperchaos transition. In the
A and B is symmetrical with respect to the=y manifold, it  first interval, all unstable periodic orbits embedded into the
is justified to call the bifurcation that occurs a, a  chaotic attractor have only one unstable dimengtbe sec-
symmetry-increasing bifurcatiohe attractoC is still cha-  ond largest modulus of multipliers is smaller than At the
otic asag<ay. end of this interval an=a, the first unstable periodic orbit

It has been observed that shortly after the symmetryembedded into the chaotic attractor becomes doubly un-
increasing bifurcation, systeifl) exhibits intermittencylike stable, i.e., the modulus of the second largest multiplier in-
behavior on the attractaf with a relatively low number of creases through 1. The second intereaka<a, corre-
switches between the previously coexisting attractbrand  sponds to the case in which the attractor still has only one
B. Such behavior can be observed in Fige) &nd 3b) for positive Lyapunov exponent with respect to the natural mea-
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the Poincaranap becomes doubly unstableaat n (a - as)

f FIG. 5. For the systertil) (after the symmetry-increasing bifur-
cation, the average intermittent switching time(a) versus &
—a,). We can see thaty(a)~(a—ag) " 1“

sure but there are unstable orbits with a different number o
unstable directions embedded intd@unstable periodic orbits
with one and two unstable directions have been obsérved
The nonhyperbolic state in which the unstable periodic orbits . -

with a different number of unstable directions coexist is@°sorbed cycle and orbits nearby will diverge out of the
known as unstable dimension variabilifg1]. Finally, the attractor. . . .
chaos-hyperchaos transition occurs at some parameter valye '€ described scenarios create orbits that diverge from

a, when the appropriate weights of unstable periodic orbitdne attractor(say.4). The collision of such a divergent orbit

with one and at least two unstable directions are balanced, ¥4th the boundary of the basin of attractif.4) causes the

was shown if8]. switching to the other attractd®. In our examplg1), due to

Let us consider in detail the appearance of the first doublj€ coexistence of the attractassand B in the phase space,
unstable periodic orbit in the attractor, which occurs whenVe observe intermittent behavior between both the attractors.
the parametea is increasing pasa, . In terms of the Poin- In general, if there are no other attractors in the neighbor-
caremap without loss of generality, we may consider a fixeghood of the attractos, thfan the initially repelled orbit will
point of the corresponding map embedded into a chaotic af€turn t0.A. Such behavior on the attractor located at the
tractor and having the second multiplier crossing througHnvariant manifold is known as bubblingf it occurs before
unity ata, in the modulus. A similar case was considered inthe blowout b|furca_t|ohor.on—off intermittency(if it occurs
[8]. While before the bifurcation both the fixed point and its &fteér the blowout bifurcation .
unstable manifold belong to the attractor, cf. Figa)4after For the observed intermittency one can get the following

the bifurcation it is possible to observe how the unstable>c@ling law. Letr(a) be the average time that the system
manifold AY, which is directed transversely to the attractor, Fjectory stays in the region of the phase space, where one

appears; cf. Fig. @). Figure 4b) illustrates only two pos- of the coe>_<isting zf\ttrac_tors/( or B) was Iocafted before the_z
sible cases when the fixed poi@tundergoes either period- symr_netry-mgreasmg bifurcation. We investigate the scaling
doubling or saddle-node bifurcation. The first case leads té€lation that is to occur between(a) and a control param-
the appearance of period-2 cydRy,R,, whereas the latter eter a. Folloyvlng [13], we expect to obtain the algebraic
one leads to the appearance of two fixed poRfsandR,  Scaling relation
and is generally realized when a system has additional sym-
metry properties. Note that the case considered in Fig. 4 T(a)~(a—as) 7, (2
generally leads to a soft increase in the attractor size. This
follows from the fact that after the bifurcations the orbits whereag is a point of the symmetry-increasing bifurcation.
starting in the vicinity of the doubly unstable poi@twill be Figure 5 showsr¢(a) versus &—ag) on a logarithmic scale
bounded by the local saddle manifolds; and A, of the  for a;<a<0.374, where the number of switching events is
created periodic orbiR;, R, or fixed pointsR; andR,. calculated for each for an orbit of length 3 10°. We have
Another possible scenario which has been observed in thepproximately found the moment where the switching is ini-
considered systerfl) is an absorption of a doubly unstable tiated:a;~0.367 15<a,,. The data can be fitted by a straight
periodic cycle[8]. In this case an unstable manifold of the line with a slopey~ —1.4.
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To summarize, we have shown here that in weaklyon-off intermittency previously observed for the attractors
coupled systems the transition from chaos to hyperchaos oéscated at the invariant manifold. Finally, we believe that the
curs after the symmetry-increasing bifurcation. At this bifur-observed phenomena are characteristic of coupled continu-
cation, the coexisting chaotic attractors located out of theus systemsat least those in which chaos, as in thésRler
invariant manifold and nonsymmetrical in relation to this system, is observed after the cascade of period-doubling bi-
manifold merge together, creating a chaotic attractor that ifyrcations.
symmetrical in relation to the invariant manifold. Both the
symmetry-increasing bifurcation and the chaos-hyperchaos We are very thankful to G. Contopoulos for a number of
transition are caused by bifurcations of an infinite number ofnteresting comments which improved the paper. T.K. ac-
unstable periodic orbits. We have shown that in coupled sysknowledges the support of KBXPoland under Grant No.
tems, the attractors that are not located at the invariant manPB0962/T07/98/15. S.Y. acknowledges the hospitality of the
fold can exhibit dynamical behavior similar to bubbling and Technical University of Lodz.
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