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Approaching classicality in quantum accelerator modes through decoherence
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We describe measurements of the mean energy of an ensemble of laser-cooled atoms in an atom optical
system in which the cold atoms, falling freely under gravity, receive approxirddieks from a pulsed
standing wave of laser light. We call this system &Kicked accelerator.” Additionally, we can counteract the
effect of gravity by appropriate shifting of the position of the standing wave, which restores the dynamics of
the standard-kicked rotor. The presence of gravitg-icked acceleratgryields quantum phenomena, quan-
tum accelerator modes, which are markedly different from those in the case for which gravity is absent
(5-kicked rotoy. Quantum accelerator modes result in a much higher rate of increase in the mean energy of the
system than is found in its classical analog. When gravity is counteracted, the system exhibits the suppression
of the momentum diffusion characteristic of dynamical localization. The effect of noise is examined and a
comparison is made with simulations of both quantum-mechanical and classical versions of the system. We
find that the introduction of noise results in the restoration of several signatures of classical behavior, although
significant quantum features remain.

DOI: 10.1103/PhysReVvE.64.056233 PACS nuni)er05.45.Mt, 32.80.Pj, 42.50.Vk, 72.15.Rn

I. INTRODUCTION This quantity is useful in characterizing the behavior of the

system because its variation is considerably different de-
The consensus of theoretical investigations into chaoti®ending on whether the system is classical or quantum me-
systems has been that many effects peculiar to classicghanical. We also introduce noise through induced spontane-
chaos(e.g., exponential divergence in phase space of pathgUs emission, and find that the noise results in the restoration
beginning in close proximityare no longer observable in a of a classical-like variation in the mean energy of the atoms;

quantum SysenfL 2} The chalenge has been to observe"® SIS ete of e procuces e modifeaton to e
e e e geTSeraion o e systams behaor n the resence cf

- q T . noise, we discuss the extent to which this can be viewed as
teristics of “quantum chaos,” thus defining more carefully

what such a concept means. Furthermore, if the behavior caelng more classical. We find good qualitative agreement

the quantum svstem can be made to resemble more close etween experimental results and numerical simulations.
d Y . . . Y In Sec. Il we summarize the theoretical background to this
that of a theoretical classical systém terms of its momen-

tm distribution and variation of mean energy with fime investigation and the motivation for undertaking it. In Sec.

then it is possible to investigate quantum-classical corres onIII we explain our experimental and numerical methods, and
P gate qual o PO, Sec. IV we present and discuss our results.
dence and how the observed classical behavior in nature has

its ori_gin in the qua}ntum domain. In the case of classically Il. MOTIVATION
chaotic systems this correspondence cannot be made using _ _ _ _ _
the semiclassical Bohr-Sommerfel{i3,4] or Einstein- Due in particular to the ease of integrating the equations

Brillouin-Keller [5—8] quantization schemes that are appro-of motion[12-15, a great deal of theoretical study of cha-
priate for systems with more than one degree of freefl@jn  otic dynamics, both classical and quantum mechanical, has
In this paper, we utilize an atom optical system in whichbeen carried out on one-dimensional integrable systems per-
cold trapped atoms are released and periodically kicked witturbed by a periodic train of position-dependent kicks:
a vertically oriented, spatially periodic potential created by akicks,” whose time dependence is described byfanction.
standing wave of laser light. Thig-kicked accelerator is Experimentally accessible atom optical systems are, within
equivalent to a realization of thé-kicked rotor[10] with an  certain parameter regimes, capable of closely emulating such
additional linear potential due to gravity. This can markedlyidealized dynamics, and thus provide a direct check for the-
alter the behavior of the system, resulting in, for exampleoretical and numerical predictions.
guantum accelerator modgkl]. We have achieved an atom optical realization of such a
We study the variation in the mean energy of the atomssystem, thes-kicked accelerator, the relevant dynamics of
which can be described by the following Hamiltonian:
*Prgsent address: Univergiteonstanz, Fachbereich Physik, Uni- 0= p_2 i mg3<+ Iﬁx[l—kcos{ G;()]E S(t—NT), (1)
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Where;( is the position operatoﬁ is the momentum opera- situation in solid state phySiCS in which any Bloch state is
tor, mis the particle masg is the gravitational acceleration €quivalent to the one whose wave vector differs from that of
of free fall, I o is the magnitude of the maximum possible the first by an integer number of reciprocal lattice vectors
impulse received by aclassical point particle, G ~ and lies in the first Brillouin zong18,19. This property is
=27/ \ gpay Wheregpyiis the spatial period of the potential, dué to the spatial periodicity of the system.

t is the time, T is the time interval between applications of ~ In the case of thes-kicked rotor (i.e., y=0), whenK

the potentialthe “pulse period’), andN is the kick number. <1 the classical motion of the system is predominantly
Note that we use a caret to denatperator quantities, so regular and the majority of this classical phase space consists

that, for examplex is the operator corresponding to the clas-Of Stable regions. Any momentum diffusion of an initial en-
sical positionx. semble of particles is greatly restricted due to numerous

The time evolution of the system can be described in dis<©'mogorov-Amol'd-Moser (KAM) tori [55-57, which

- : C rm barriers in phase space through which trajectories may
crete steps corresponding to successive applications of tl'fg S . .
kicks, producing a kick-to-kick mapping. We use a conve.not pasg12]. As K is increased, the KAM tori progressively

nient choice of rescaled effective position and momentunPreak. up, and. th? proportion of phase space exhibiting sto-
variables,y=Gx and p=GTp/m, to arrive at the classical chastic behavior increases, leading to a much greater possi-

mapping bility of momentum diffusion. As discussed in R¢L2], for
K>0.97164, momentum increase to arbitrarily large values
=5 +Ksi —y, 2 is possible and the behavior is globally chaotic. Whén
Pea=pn "xn) = @ >1 the behavior of the momentum distribution of the system
y is well characterized by random walk diffusion, so the mean
Xn+1=Xnt Par1t 5 (3)  energy of the system will increase linearly with kick number.
The diffusive behavior is not as a result of any randomness
in the force but is due to the pseudorandom behavior char-
\LVF Se(_T_/ that dthe_re Ge_lrrze or(ljlyf two freg Oparameteh{s, acteristic of chaotic dynamics. It can, like any diffusion, be
=ImaGT/m and y=g , and if we sety=0, we regain o4 cterized by a diffusion parameter, in gen&éK,y).
the.standard map, qorrespondmg tp the dynamlcs_of the usu though the global behavior of the system is dependent
5f—]k|ci<_e_<3 rotor[lz]t, n l\Nh'Ch Kis s!mplyt tlhe CI?SS'C? stqt—. only on the stochasticity parametéythe precise behavior of
Coziié)clleﬁopzmr‘faerzt?vzw. \?a?urinedxepe(:lnrgi?]t? (():f(znslgutrhaaltovr\:el Sindividual particles depends also on their initial conditions. It
Ean (in an acceleratiz frg/meeaﬁze sim )I/e 5—k’icke d rotor is, for example, possible for certain particles to fulfil the
9 P condition for linear momentum increase by being in the cor-

dyrramcs[lG,ltﬂ. hanical int te th rect position at the instant of every kick so as to receive the
n thé quantum-mechanical case we can Integraté e Cof, 5yimym possible impulse. Such particles are in an accel-

responding Schidinger equation over the interval Abetween erator modé12], and in phase space are to be found in small
two successive kicks. We thus arrive [k, 1)=U|#)  islands, localized around the valuesxdbr which the poten-
where|y,) is the wave function just prior to the application tial gradient is maximum. Their energy increases\&s so
of the (n+1)th kick, andU is the Floquet operator, that the mean energy of an ensemble of particles can be
described by
U=exd —i(yx+p?2)/rlexd —iK{1+cog x)}/ 7].

E(N)=D(K,7)N*, ®)
The Floquet operator describes the wave-mechanical equiva-
lent of the classical mapping of Eq®) and(3); note thatin  whereq is a little more than 1. The system is said to exhibit
addition toK and vy, the quantum evolution depends on the gnomalous diffusion whenever differs from 1 (when «
parameterr=#G?T/m=—i[ y,p], which is effectively a >1 the energy growth is superdiffusive; when<l the
scaled Planck constant. It is possible to regard the effect ajrowth is subdiffusive: it is, for example, possible for con-
the kicking potential on the incident de Broglie waves assecutive kicks to cancel out each other’s effect for certain
being equivalent to that of a phase diffraction grating. Theinitial conditions.

amplitude of the variation(with position of the induced The behavior of the quantum system is radically different
phase shift ispq= K/, which is the maximum classical im- from that of its classical counterpart and numerous theoreti-
pulse in units of grating recoils, i.e¢q= I na/ (2 G). cal investigations concerning it have been made. The most

Due to the spatially and temporally periodic nature of thecelebrated aspect of this quantum behavior is dynamical lo-
system, phase space is also periodic. Thus classically orwlization. This was first discovered numerica]li6], and
need consider only initial conditions such thatr<y;<wm  subsequently explained by analogy with the phenomenon of
and — 7<p;<, as these encompass all possible types ofAnderson localization of electronic states in random lattices
dynamical behavior. Quantum mechanically, initial plane[20,21. The effects of dynamical localization were first ob-
waves whose values @f differ by 27 respond identically to  served experimentally in microwave ionization of hydrogen
the diffractive effect of the kicking potential. Any momen- atoms[22,23, and dynamical localization itself was first ob-
tum of an initial plane wave is equivalent to a momentum inserved directly by Mooret al. [24] in an atom optical sys-
this range, known as guasimomentunihis is similar to the  tem.
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When the §-kicks are applied, the mean energy at firstminimizing these effects. On the other hand, if we can con-
increases diffusively, i.e., linearly with kick number, as in trol the noise levels we can investigate systematically any
the classical system. Provided this not a rational multiple  modifications in behavior. In particular, the presence of a
of 47 [13,25, this diffusive behavior only persists for a quantifiable level of noise could be useful in attempting to
finite number of kicks, the so-called quantum break timeinvestigate the role of coherence in a system and to what
Beyond this, the mean energy of the system no longer in€xtent, if any, a quantum system can be regarded as being
creases; the classical diffusion has been quantum mechaffore c[assmal if the cpherence is perturbed. From a classical
cally suppressed. The final momentum distribution of theViewpoint, the noise introduces a random compor{@8{
ensemble displays a symmetric exponential form whose falllnto the momentum incrementation of the standard mapping,
off is characterized by the localization leng®0]. The spec- with consequent modlf_lcatlon to _the diffusion parameter. In
trum of quasienergies associated with the Floquet states the quantum case, noise als_o d_|sturbs the coherenc_e of the
the eigenvalues associated with the eigenstates of the Floqufive function. When the noise is weak compared with the
operatoy is discrete, and the Floquet states themselves ar§icking strength, the classical motion is only slightly af-
exponentially localized and separated in momentum spacéected, whereas the quantum-mechanical motion is signifi-
Momentum diffusion is thus limited by the extent in momen- ¢antly modified, in that signatures of characteristically quan-
tum space of those Floquet states that are initially occupiedUm behavior, such as dynamical localization, are degraded.

When r=4malb, wherea and b are integers, the spec- Wg empha@ze that we are not d|scu§S|ng .the case where
trum of quasienergy states is absolutely continuous and thoise dominates the energy growth, either in the classical
system exhibits a so-called quantum resondi8e25,26 of ~ System or in the quantum systef80]. We also note that,
order b. This is characterized by a momentum distribution€ven with the degradation of particular signatures of quan-
that is nonexponential in form, and in which dynamical lo- {Um behavior, the system cannot be regarded as being truly
calization does not occur. Instead, for certain initial values of-lassical since we do not approach the lifit-0, which is
quasimomenta quadratic growth in the energy with kick@ necessarythough not, it has been argué8il], sufficien
number occurs in the limit of a large number of kicks. Thecondition for a system to behave classically.
values of the quasimomentum for which this quadratic There have been both theoreti¢@9,30,32,33 and ex-
growth occurs depend on the valueofFor all other quasi- Perimenta[34—4Q investigations of the effect of noise. The
momenta we observe numerically that the mean energy o$00St important result. pf these is that the dn‘fuswe. beh_avu_)r
cillates with kick number. The amplitude and period of theseOf the system is modified so that the momentum diffusion is
oscillations grow as the initial quasimomentum approache80 longer zero after the quantum break time. Any diffusion
one of the resonant values for which unbounded quadratiH1at takes place after the quantum break time will henceforth
growth can occur. Since the ensemble consists of a continde referred to as “quantum diffusion,” following the con-
ous range of initial momenta that exhibit these differentvention established by Ammaret al.[35], who argue that
types of energy-growth behavior as kicks are applied, thdhis diffusion is not acco_qnted for by classical behawor_of
growth in the mean energy of the ensemble as a whole ithe system but by a mpdlflpat|on of the quantum'-mec'hamcgl
linear in the limit of a large number of kickR7]. behawor in the zero-d|ffu§|on case. These previous investi-

For the 5-kicked accelerator¥+0), the behavior is dra- 9ations lead us to examine further the effect of noise in
matically modified for certain values of. Quantum accel- Modifying the behavior of our system, particularly with re-
erator mode$11] appear, characterized by a linear increase>Pect to quantum accelerator modes, which constitute a pro-
in the momentum along the axis of the external force of gounced quantum effect peculiar to the-0 case.
portion of the ensemble of quantum-mechanical particles as
pulses are applied. This leads to a pronounced asymmetric . METHODS OF INVESTIGATION
momentum distribution and as such constitutes an easily ob-
served quantum effect. In the diffractive picture the effect of
the kicking potential is to diffract the wave function into  The first experimental investigations of quantum chaos
different momentum states, as discussed in R&§]. Those [22,23,41,42 studied the microwave excitation and ioniza-
which rephase after subsequent kicks determine the mometion of excited hydrogen atoms. Observation of the
tum of the accelerator mode. The presence of gravity allowsoherence-destroying effects of no[8&] used similar tech-

a small number of states with progressively larger values ofiiques involving Rydberg states of rubidium atoms. More
momentum to rephase just before the next kick is applied. recently, atom optical approaches have yielded almost exact

Any experimental configuration can only approximate arealizations of thes-kicked rotor[10,11,28,35—-40,43—45
S-kicked system because real kicks must be of finite durathis has the great benefit of allowing investigation of the
tion. For sufficiently short kicks and particlés our case extensive theoretical predictions available for this paradig-
cold caesium atomsof sufficiently low absolute velocity, matic system. The configuration used in the current experi-
this distinction is unimportanthis will be discussed further ment is a slight modification of that described in our previ-
in Sec. Il A). A practical realization is also susceptible to ous work[11,28.
noise, ignored in an ideal system. Noise may be due to fac- Our apparatus consists of a glass vacuum cell in which we
tors such as vibrations of the apparatus, variation in time otreate a magneto-optic trafMOT) for caesium atoms
the applied potential, or spontaneous emission of the atoméwhose massis 2.209< 10~ ° kg). A schematic diagram of
We can achieve a system that is approximately ideal byhe experimental configuration is shown in Fig. 1. Typically,

A. Experimental methods
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. tional power losses occur at the retroreflecting mirror and the
D1 light windows of the vacuum s [ is i -
ystem. Taking all of this into ac
Gravity ' count, we estimate the power in the retroreflected beam,
= ,D2light when incident on the atoms in the MOT, to bel20 mW

a T and hence the maximum intensity experienced by atoms in
/- the standing wave to big~1x10° mW/cn?. The time be-
B tween consecutive pulses can be varied fromu6 to
TOF detection B 210 us. The sequence @1 light pulses is applied 5.2 ms
beam Emm—mp- O after the end of molasses cooling and lasts for, at most, 6.3
- ms. The steady-state spontaneous emission rate of atoms in a

Crystal Phase farjdetuned Iight field is given by‘{=921“./455 [46], yvhere
Modulator Q) is the Rabi frequency of the atoms in the field,s the
™~ linewidth of the transition, and, is the detuning of the light
SYSSSSSSS\  Mirror from this transition. In this case, since the red detuning of the

D1 light from resonance is 30 GHz, the mean number of

FIG. 1. Schematic diagram of the experimental arrangementspontaneous emissions for each atom over the time of one
T_he_tlmg of_ flight(TOF) measurement of the atomic momentum ulse is less than 210 3. The atoms are then allowed to
distribution is made 50 cm below th(_e MOT,_and the crys_tal phas_%)aII 50 cm under gravity to a point where they pass through
modulator allows the atoms to experience different effective gravi- . . .
tational accelerations. a_shee_t of on-resonaf2 I|g_ht. A time c_)f fllght_(T(_)F) tech-

nique, in which the transmitted intensity of this light is mea-

a trap consists of foatoms and is-2 mm in diameter. The sured by photodiodes as a function of time, is used to estab-
trapping and molasses cooling use tHe2 (6%S;, Ii_sh the momentum di.stribut.ion of the atoms. The output
—62Py)F=4—F"=5 transition (we denote hyperfine Signal from the photodiodes is passed through a lock-in am-
states of the 8S,,, level by F, those of the 8P, level by  Plifier, whose reference signal is at 40 kHz, in order to in-
F’, and those of the 5, level by F”). The atoms’ distri- ~ crease the signal-to-noise ratio. Since the typical width of an
bution in momentum is then Gaussian, centered around ze@Psorption signal is-10 ms, the dither frequency is suffi-
and with a full width at half maximunfFWHM) of 124k, ciently high to allow resolution of all its features. The time
(wherek,=7.374x10° m™! is the wave vector of th®2  constant of the lock-in amplifier's low-pass filter is 1 ms, and
light), corresponding to a temperature of 5K. The poten- this flnlt_e pandwdth causes some distortion of narrow mea-
tial that the atoms experience is produced by the applicatiofured distributions. This leads to an apparent asymmetry and
of a standing wave of light from a Ti:sapphire laser that is 30cOnsequent increased width. For example, a distribution
GHz red detuned from thB1 (62S,,—62P,)F=4—F' Whos_e true \{v_ldth is 172k, has an apparent width due to the
=3 transition. TheD1 light is passed through an acousto- lock-in amplifier of 12.%k,, and the high-momentum half-
optic modulator(AOM) and the emergent first order is de- Width exceeds the low-momentum half-width by8%. The -
livered to the vacuum system via an optical fiber and optic@Symmetry and width increase are less pronounced for wider
that ensure that the light is linearly polarized. The light isdistributions(i.e., those with smaller high-frequency compo-
then directed vertically downwards through the cell, parallelents. o
to the gravitational acceleration, and is retroreflected to pro- The energy of an atom is shifted by an amount deter-
duce a standing wave. Before and after retroreflection, th&ined, through the light shift, by the intensity and detuning
light is passed through a crystal phase modulator; this caff the D1 light in which the atom finds itself. Thus the
produce a shift in the position of the standing wave betwees$tanding light wave creates a spatially varying sinusoidal po-
two consecutiveD1 light pulses such that, in the frame of tential for the atoms, in which the maximum Rabi frequency
reference of a falling atom, the standing wave appears in th&o i given byQg=T31,/1 s, wherel';= (27)4.55 MHz is
position expected if there were no gravitational field. the D1 transition linewidth, and,=1.66 mwi/cni is the

The AOM allows the light to be flashed on periodically saturation intensity of this transition. For a sufficiently large
with a pulse duration of,=500 ns and a shape that is ap- detuningd, , the excited state amplitude can be adiabatically
proximately rectangular in form. The maximum power deliv- eliminated[47,48]. If we then regard the short pulses as be-
ered to the vacuum system during this pulse-i850 mw. ing approximates-kicks, the maximum impulse, which the
Due to fluctuations in the power emerging from the Ti:sap-standing wave can deliver classically to an atom, is given by
phire laser and in the polarization of tBel light coming out Imax=ﬁQ§th/(45,_), where G=2k,;, and k;=7.025
of the fiber before entering the polarization-maintaining op-x10® m~! is the wave vector of th®1 light. We are jus-
tics, the power delivered to the system can varyh§% tified in making thes-function approximatioriand ascribing
over the time scale of the experiment, while the detuning cathe impulse delivered by the finite-duration pulse to that of
vary by ~100 MHz (i.e., 0.3%. Passage through the phase an instantaneoué-function) provided that the atoms do not
modulator results in a narrowing of the beam and an overalinove a distance comparable with the period of the standing
loss of power. Fitting a Gaussian to the retroreflected bearwave during the time for which the light is on. In this case
profile, we estimate the waist of the resulting standing waveany averaging over the spatial variation of the potential, due
to be ~1.0 mm(FWHM) in the region of the MOT. Addi- to movement of the atoms during the time for which the
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pulse is applied, is negligible. An atom that fulfils this crite- not completely negligible and will be discussed both later in
rion is said to be in the Raman-Nath regime. Outside thighis section and in Sec. IV.

regime, the finite pulse duration causes the effective value of The experiments were performed in two different con-
the stochasticity parameter to be reduced as the atomic véigurations: with and without the counteraction of gravity’'s
locity increaseq45]. In our experiment, the momenta at- effect, constituting thes-kicked rotor and theS-kicked ac-
tained by the atoms were such that, in general, the Ramarelerator, respectively. After the prescribed number of kicks,
Nath condition was imperfectly fulfilled but the degree of the momentum distribution was measured, the results being
averaging over the potential was sufficiently small that theaveraged over three runs. The mean energy of the ensemble
behavior observed was still characteristic of-&icked sys-  of atoms was then determined from the averaged momentum
tem, albeit one with a reduced stochasticity parameter. Onlglistribution. These energy values are subject to a degree of
in those cases where the atoms attained the very highest mgocertainty because those atoms in the wings of the momen-
menta(see Sec. IV B in the discussion of the resuttiel the tum distribution, where the signal-to-noise ratio is worst,

departure from the Raman-Nath regime completely precludgontribute the _most“s.ignifican_tly o the mean energy. Thus
the application ofs-function-like kicks to the atoms. noise in the signal”signal noise”) (as opposed to noise

The importance of the phase modulator is due to the dralitroduced by application ob2 light) can seriously affect
matic modifications to the dynamics of the kicked atomsthe results. The problem of signal noise in the TOF distribu-

wrought by gravity, namely, the quantum accelerator modéIon was most S'Q”'f'ca"?t n the cases where a Igrge level of
. . Spontaneous emission-inducii? light was applied, thus
[11,28. It is thus very useful to be able to vary gravity's . : .
reducing the size of the signal.

gffect, or even coupte;ra(?t i.t o .SUCh an extent that the behav- The TOF method measures the population of atoms over a
lor qf the system is indistinguishable _from the pase_whe_rqixed range of momentat 754 G. The extent of the experi-
gr_awty is truly absent. When th_e standing wave is Sh'ﬁ?d '"mental momentum distribution of atoms, however, was al-
this way so as to remove g_rawty’s effect, the syst_em is, O(/vays less than this rangand never exceedeti 604 G), so
course, not completely equivalent to one located in a zerog \yas always necessary to impose a momentum boundary
gravity environment because the rest frame of the atoms iBeyond which the data would not be taken into account, as
our system is not an inertial frame. In general relativisticany signal in the extrema must be noise. The value of this
terms, the rest frame of the atoms in our experiment is nognomentum boundary depended on the momentum width of
equivalent to the rest frame of atoms in the genuine absenage atoms. Additionally, to minimize the effect of the signal
of gravity. However, this distinction has no effect on the noise within the limits specified by the boundary, it was nec-
dynamics of our experimental system. Hence we do have thessary to impose a signal threshold below which data was
capability of investigating how atoms react in a reduced- olignored. Both the boundary and the threshold were chosen so
zero-gravity environment. as to cause negligible degradation to the important features
In order to quantify the effect of noise, we use additionalof the observed variation in the mean energy, while at the
laser pulses of controllable intensity. Between each pulse afame time reducing the noise present in that variation. For
standing wave light, a 4.s pulse ofD2 light, red detuned different experimental configurations, different values of the
by 60 MHz from theF=4—F"=5 transition, is applied. number of pulses applied or of the pulse period led to differ-
This induces, with a laser-intensity-dependent probability, &nt momentum widths. The momentum boundary for a given
transition in an atom after which spontaneous emission wilconfiguration was chosen so that when the atomic momen-
occur. The mean number of induced emissions per atom peéum distribution was at its widest, as much as possible of it,
D2 pulse is varied between 0 and 0.2. This technique isvhile as little as possible of the signal noise in the momen-
similar to that used in Refd.35,3§, in which, however, tum range beyond, was included. This procedure meant that
lower levels of spontaneous emission were generally utiin the case where the atomic momentum distribution ex-
lized. On the other hand, in Ref39,4Q, the effect of am- tended close to the imposed momentum boundary, the mo-
plitude noise was investigated, and the noise level was gementum possessed by a very small fraction of atoms in the
erally significantly higher than that used in our work. wings of the distribution was neglected, thus lowering the
Noise has the effect of randomizing the phase of the wavenean energy below its true value. We estimate the reduction
function of the atom undergoing the transition by introducingin the measured mean energy of the atoms due to the impo-
a randomly directed change in its momentum of magnitudesition of a signal threshold, and due to the momentum cut, to
fk,. This upsets the coherence of the evolution from pulse tde in each case less than 5%. On the other hand, in the case
pulse and introduces momentum and hence phase-noise inidhere the atomic momentum distribution was much nar-
the system. Note that there is always a background rate abwer than the included momentum range, the signal noise
spontaneous emission due to tBd light of the standing with amplitude greater than the threshold and lying within
wave, which is less than>210 2 per atom per pulse and the momentum boundary led to a mean energy background
negligible in its effect on the system’s development for theupon which the true mean energy of the narrow atomic mo-
number of pulses that we are applying. There is also amplimentum distribution was superimposed. Hence the values of
tude noise in the potential experienced by the atoms due tmean energy calculated using the experimental data were
fluctuations in the power of thB 1 light forming the stand- higher than would be expected due to the atoms alone in the
ing wave and its detuning. Though small in comparison withabsence of signal noise. In the case of the narrowest momen-
the noise applied through spontaneous emission, its effect isim distributions, this led to a 5% increase in the calculated
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mean energy due to the signal noise; for wider momentumvave in this form with scaled wave numbercorresponds to

distributions the fractional increase was smaller than this. a momentum eigenstate with eigenvalkdgG. For the in-
The fact that the laser power delivered to the vacuumerkick free-evolution operator, we can factorize fhandp

system to create the standing wave varies+#0%, and the  dependent parts, resulting in

detuning of thisD1 light varies by~0.3%,means that the

depth of the potential experienced by the atoms fluctuates by ex —j(yy+ p2/2)/ r]l=exd —i(p2+ yp)/27]

~10%. This amplitude noise in the potential is another re-

spect in which our experimental system is nonideal and leads X exp( —iyy/ r)exp —iy?/47).

to quantitative disagreement between the mean energies as

calculated from the experimental data and those which @

would be expected in a noiseless system. Moreover, in an . . oA .

ideal system all atoms experience the same potential. How! 'S readily seen that exp(iyx/7) is also simply a momen-

ever, in our system the diameter of the trap is somewhalim displacement operator, describing free fall due toAgraV|—

larger than the waist of the beam BfL light. This means tational acceleration between pulses, and that[ ek’

that about 25% of the atomhose on the periphery of the +1p)/27], when applied to a momentum eigenstate, will

MOT) experience a potential sufficiently reduced below thesimply provide a phase. We will ignore the global phase

maximum value that the potential’s effect on their dynamicsexp(—iy?/4r) from now on. The fact that the Floquet opera-

is small compared with that on atoms in the center of theor can be decomposed into a combination of momentum

MOT. Therefore, in the experiments whelbel light pulses displacement operators and terms proportional to the mo-

caused a significant broadening of the momentum distribumentum operator makes a basis of momentum eigenstates an

tion, the smaller response of these atoms led to a lower measbvious choice for numerics. This is a direct result of the fact

energy than would be expected if all atoms were exposed tthat what is taking place is diffraction of the de Broglie

the same potential. The mean energy of the atomic ensembleaves. We, in fact, use a basis that is offset-by/r in

was approximately half the value that would be obtained ifmomentum between successive iterations. This is how we

all the atoms experienced the mean valuepgf=0.87 (see  incorporate the effect of exp(iyy/7), although the actual

discussion in Sec. IV A This goes a long way towards eX- momentum must be used when determining the phse

plaining the quantitative difference in the mean energies calyccumulated between successive pulses. In vector notation,

culated from the simulations and the experiment in the casge thus definen) to be a basis state with a scaled momen-

of the 6-kicked accelerator, for which there is considerabley,;m immediately prior to theNth pulse given byp, y=p;

broadening of the momentum distribution. +n7r—(N—1)y, wherep; is the initial scaled momentum of

the plane wave in the direction of the applied standing wave.

B. Numerical methods Using this notation we can depict the effect of the kick as

The numerical simulations model idealized quantum and - R
classical versions of our experimental system, and can in- Unn= (=)™ " n(ba)[m)(n], )
clude the effect of noise. The classical model consists of an ] o ) )
iteration of Eqs.(2) and (3), and takes into account the ex- wherem and n are the final anq |n!t|al diffraction orders,
perimental kicking strength and initial distribution of the at- "espectively{13]. The free evolution is then expressed by
oms in position and momentum. In our experiment the atoms ~ e _
are initially distributed almost uniformly over a given period Ui = €XQ(i ) Sl M)(N| C)
of the potential. Their initial distribution in momentum is
Gaussian, centered around zero with a FWHM dfli2 The ~ Where
simulation propagates 1Q@rajectories with a range of initial 1
conditions that reflects these experimental distributions and N 2 _ 2_ _ )
gives the momentum distribution of the particle ensemble at ¢”_27[pi FD)TENIN=1)y" = y(2N=1)(pi+n7)
any subsequent time. The calculation of the mean energy
from this is straightforward.

In the quantum-mechanical case, we first consider the ef-
fect of the kicking potential. Using the identity

+2n7p;]. (10

The initial distribution is assumed to be an incoherent
superposition of plane waves with different values of their
i momentum component along the axis of the periodic poten-
eXF[—i(ﬁdCOE(;()]E E (—i)“Jn(¢d)exmn)}), (6) tial. Each of these is treated separately and the results are
n=-= added incoherently by summing probabilities. The relative
) ) populations of different initial momentaleduced from the
we see that the effect of a kick can be decomposed into ajpitial experimental momentum distributiprare taken into
infinite sum of momentum displacement operators ex)(  account in the simulation. The result of the simulation is the
weighted bynth-order Bessel functions of the first kind, probability, for each initial plane wave, of occupation of
Jn(dg) [we have ignored an irrelevant global phase expeach possible momentum state up ge=+60r (=p=
(—idg)]. When applied to a plane wawg(x)<explxy) this  £60rG), i.e., the probability of having acquired each of
is fully equivalent to the effect of a phase grating. A planethese momenta from the kicking potential. This information
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allows us to construct the final state momentum distribution 1200 ——T——— T —— T

of the ensemble and hence find the mean energy. ] (2) Experiment Il
In the case where spontaneous emission is present, the = ] _ 1

momentum of the particlén the classical cager the value 800715 f._a:ﬁ R

of p, v (in the quantum cagés modified if an atom under- 1 oS et o)

goes spontaneous emission. However, only the momentum 4001 BRI _,...:;Z:o°ae°°° °° i

component along the axis of the sinusoidal potential is of = | . osgozo"o"" i

significance as far as the kicked dynamics are concerned. %" manggsgiﬁ:EmnnnanaaﬁassaiﬁsssﬁﬂﬁﬁﬁiﬁEEEEEEEE---

Since spontaneous emission is a statistical process, a Monte & 0 — 1 T T T

Carlo technique is used such that there is a certain probabil- = 20007 (b) Quantum Simulation o

ity per atom per kick(determined by the level dD2 light 3 1500 20 J

applied to the atomof a spontaneous emission taking place. 8 1%

The spontaneously emitted photons are also regarded as be- § 1000 = .,.-" .

ing equally likely to be emitted in any direction. To take 2 100w ....-"

account of the stochastic nature of the decay process, the & 500+ o ooo_

quantum simulation in each case is repeated ten times and gz 1 oueppontiEEEEgEEEEEREReroREaaemeanace e o)

the average taken, whereas the classical system already in- § 200 - e .

.. . (¢) Classical Simulation &
cludes a sufficient degree of averaging due to thetf)ec- S | P " gad
tories that are simultaneously propagated with the appropri- 5 600° ﬁmiwi_&?swm-mmnlw agaﬂ“ﬂ
ate probability per unit time of a spontaneous emission ﬁ LR ———
taking place. 400+ e .

. gnﬁnnq
IV. RESULTS W07 o™ i
iati i i 0 o T T T T T T T T T
A. Variation in mean energy with pulse number 0 10 20 20 40 50

Following the example of Refd.10,35, we study the
change in the mean energy of the ensemble with kick num-
ber, the characteristics of which differ markedly between FIG. 2. Variation of mean energy with pulse number with
classical and quantum-mechanical systems and are strong#y60.5 us; (a) experimental results with light detuning of 30 GHz
influenced by the presence of noise. WeTFet60.5 us, and and beam power of-120 mW, (b) quantum simulation withpg
consider situations where the applied noise levels are 0 and0.87, () classical simulation withpq=0.8w. The momentum
0.2 spontaneous emissions per atom per pulse, both incluguts used for the data and quantum simulationa6&4G for the
ing and counteracting gravity. We have chodeso that, in 5-kicked_ accelerator and-30iG for th_e 5-k_icked rotor. No cuts
the zero applied-noise regime, we expect to observe a quafdte applied to the output of the classical simulatisee text The
tum accelerator mode when the effect of gravity is includednSet figures i@ and (b) show, on an expandedaxis, the varia-
(5-kicked accelerator and dynamical localization when ton of the mean energy with pulse number for iuicked rotor,
gravity is counteracteddtkicked rotoj. Data from experi- bo_th with and without add(_ad spontaneous emission, as calculated

ts, quantum simulations, and classical simulations arg> 9 data fro.m the experiment and quantum simulation, respec-
g?:gla),/e% in Fig. 2; note that t,he momenta are measured aft(%yely' Where induced spontaneous emission is present, the mean

. L umber of emissions undergone by an atom per pulsed2. The
having subtracted the offset due to gravitational free fall, an xperimental energies for thiekicked accelerator in the absence of

it is from these momenta that the mgan energies "’,“’e CalCl’rhduced spontaneous emission are systematically lower than those
lated. The same momentum boundaries were applied t0 thg yhe simulation because of the reduced interaction of part of the
quantum simulations as to the data. No boundaries were ayperimental ensemble of atoms with the potential, imperfect ful-
plied to the classical simulation because localization does n@fiment of the conditions for being in the Raman-Nath regime, and
occur, and the cuts would have resulted in part of the widegmplitude noise in the potential. Those for theicked rotor are
momentum distributions being neglect@mething the data systematically higher, in the absence of added noise, due to signal
cuts were specifically chosen not to)ddhis would lead to  noise in the wings of the momentum distribution and amplitude
an entirely spurious fall-off in the rate of increase in meannoise in the potentialsee text

energy for larger pulse numbers when the distribution is

wide. Assuming the downward and retroreflected beams to

be exactly counterpropagating and perfectly aligned with th&nown experimental parameters. Numerically, we take
MOT, the standing wave to have a Gaussian profile, and the-0.8, a value which gives closer agreement with the ex-
power in the beams creating the standing wave to-i20  perimental data and is well within the range of experimental
mW, the estimated mean value @f; is half the estimated uncertainty in the value of¢y. This means thatl .y
maximum value, and is-0.97. However, due to the uncer- =0.87%G. The equivalent classical regime is not one where
tainty in the precise value of the light intensity experiencedwe expect to see significant anomalous diffusion due to clas-
by the atoms, the diameter of the MOT and the alignment obical accelerator modes.

the beams creating the standing wave, mean valuegqof In Figs. 4a) and 2Zb), we observe good, though not per-
between 0. and 1.57 would not be incompatible with our fect, qualitative agreement between the experimental and nu-

Pulse number
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merical quantum systems. Note that, as stated in Sec. Ill A,
in the experimental system we effectively have a range of
different values for¢y, depending on the positions of the 1000 4
individual atoms in relation to the beam profile, rather than ]
each atom being kicked with equal strength. As the exact .
fraction of atoms experiencing a given value ¢f is un- 100 5
known, it is impractical to take this variation fully into ac- ]
count numerically. In any case, the simulations are used so
as to highlight the features of the physical behavior, and this
is better achieved by using a unique valuefgf. The value
of ¢4=0.87 should be understood as an approximate mean
value, which should yield qualitatively correct dynamics, not
precise quantitative agreement. The quantitative agreement is
also impaired due to the effect of momentum boundaries and
signal threshold that were discussed at the end of Sec. Il A,
and due to the fact that there is always some noise present in
the experimental system. 1.

The qualitative agreement we observe nevertheless con- 0+ . -
firms our theoretical understanding of the experimental sys- -80 60 -40 20 0 20 40 60 80
tem, particularly the prediction of strikingly different behav- Momentum (photon recoils)
iors due to quantum-mechanical effects in the zero applied-
noise case. For thé-kicked accelerator, the mean energy FIG. 3. Experimentally measured momentum distributions,
increases much faster than |inear|y, almost quadratica||}§hOWing the initial distribution of the momenta of atoms in the
with pulse number, due to the presence of a quantum acceMOT (dotted ling, the distribution after 30 pulses &t=60.5 us
erator mode, which dominates the mean energy of the eryvithout applied r.10|sésollld Ilne). and the distribution after 3.0 pulses
semble. It is evident that after 25 pulses, the experimen- atT=60.5 s with applied noise of 0.2 spc_mfaneous emissions per
tally measured energy growth is not as rapid as for thelom Per pulsédash-dotted line In (@) gravity's effect is present,
guantum simulations, and is in fact approximately Iinear.anOI this is example Of.a ,quamum.aCCEIerator mode "lﬁm@k.ed
This is because as the atoms accelerate they increasin ?Ccelerator' In(b) gravity's gffe; tis compensated for; this is an

. y . ge\,/«almple of dynamical localization in thkicked rotor.

leave the Raman-Nath regime. The momentum attained by
the accelerated atoms after 50 pulses in this experimental
configuration T=60.5 us), due to both kicks and gravita- leading to nonzero quantum diffusion after the quantum
tional acceleration, is~57:G, meaning that atoms move break time. However it is much less than that which results
through 0.38 standing wave periods over the duration of thérom the disruption to the evolution caused by spontaneous
pulse. This causes an effective reduction in the valug of  emission(described beloyvso that the suppression of the
leading to reduced diffraction efficiency, and hence populamomentum diffusion rate after the quantum break time has
tion in the accelerator mode, with increasing pulse numberbeen exceeded is still observable. The effect of this level of
In the simulations we apply perfeétkicks, hence we are by amplitude noise is consistent with that observed in Refs.
definition always in the Raman-Nath regime. Additionally, [39,40. The quasiperiodic oscillations are more difficult to
the amplitude noise in the potential depfhp to ~10%  discern unambiguously in the data, though the data are not
variation caused by fluctuations in the power in the standinginconsistent with the result of the simulation. Simulations
wave and the detuning of tH21 light reduces the efficiency using different values otsy show that the period of these
of population of the accelerator mode. This noise is notoscillations depends oy and, in fact, decreases dg in-
present in the idealized situation modeled in the simulationcreases. The fact that the trapped atoms experience a range
So is also a source of quantitative disagreement. of laser intensities means that the resultant variation of the

When the effect of gravity is counteracted-kicked ro-  mean energy of the ensemble with pulse number is a super-
tor), the mean energy of the system shows a much reduceubsition of oscillations with different periods. This tends to
rate of increase beyond a certain pulse number, correspondrash out the quasiperiodic oscillations in the data, whereas
ing to the quantum break timghe third or fourth pulse, in they are clearly visible in the simulations performed with a
our casg and displays small-amplitude quasiperiodic oscil-unique value of¢y. Nonresonant quasiperiodic oscillatory
lations. These effects can be seen in the inset figures in Fidgpehavior of the type present here has been observed in nu-
2 and are particularly clear ifb), which shows the data from merical simulations of the quantums-kicked rotor
the quantum simulation. The evident difference between thg32,49,5Q. The cessation of energy growth is due to dynami-
behavior in the experiment and in the quantum simulation igal localization, where the momentum distribution is expo-
due to the fact that the experiment is not a noiseless systemential in form and does not broaden further after the quan-
even when we do not induce additional spontaneous emigum break time. Figure 3 shows experimentally measured
sion through applied2 light, due to the variation in the momentum distributions after 0 and 30 pulses for both gravi-
depth of the periodic potential. This amplitude noise causefational scenarios in the presence and absence of applied
some disruption to the process of dynamical localizationnoise. The apparent asymmetry in the extreme wings of each

Population

100 4
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distribution is, as explained in Sec. Il A, due to the lock-in number, can be described by a classical model, it is in this
amplifier that was used to amplify the signal from the TOFsense ‘“classical-like.”
measurement. The size of the signal in the region where this For the classical system of Fig(c, the effect of sponta-
asymmetry is evident is so small that it is below the level ofneous emission is small, resulting in a very small decrease in
the signal threshold imposed on the data and therefore dod¢lse mean energy attained after a given number of pulses
not enter the calculations of the mean energy. when gravity’s effect is present, and a slightly larger increase
That the differences in observed behavior between thehen gravity's effect is absent. This is because, in the ab-
cases where gravity’s effect is unalteregtkicked accelera- sence of noise, there is a degree of kick-to-kick correlation
tor) and where it is counteracted-kicked roto) are intrin-  for some particle trajectories, which, for this valueTofpro-
sically quantum mechanical is made particularly obvious bymotes momentum transfer to these particles when gravity is
the classical simulations plotted in Fig(c® where, in con- present and inhibits it when gravity is absdtttis will be
trast to Figs. 2a) and 2b), the difference in energy growth addressed in more detail in Sec. IV.B he effect of random
for each case is only just noticeable. In each case the meanomentum kicks resulting from spontaneous emission is to
energy increases essentially linearly with pulse number, i.edestroy these correlations, and hence the diffusion rate is
a=1 in Eq. (5). We are not in a regime of anomalous dif- slightly altered as stated.
fusion, and the particles effectively execute random walks in In the case shown in Fig.(®, «=1 for all the classical
momentum space. This behavior is evidently quite differensystems shown, with or without noise and/or gravity, and we
from that of the observed quantum-mechanical case in thebserve a linear mean energy increase in the noise-perturbed
zero applied-noise regime. guantum system. Thus the quantum system behaves more
Upon the addition of noise via spontaneous emission, théke the classical. If we were applying a level of noise such
behavior of our quantum-mechanical system is affected drathat it dominated the energy growth of the classical system,
matically. Firstly, the pronounced quantum-mechanical efthis result would not be surprising since the effect of the
fects of enhancement or inhibition of momentum diffusion noise would be expected to swamp all others in the quantum
have been diminished. This is also clear from Fig. 3. For thesystem as wel[30]. However, since we are operating in a
S-kicked accelerator, the effect of the noise has been toegime where the effect of noise on the classical system is
greatly reduce the population of the accelerator mode, whilsmall, its marked effect on the quantum systt], result-
for the effectives-kicked rotor the distribution is still appar- ing in a convergence in the behavior of the two cases, is
ently exponential, but has broadened such that its FWHMmportant. Such convergence of quantum and classical be-
has increased by 30%. This is consistent with the observa- havior in the-kicked rotor system has previously been ob-
tions reported in Ref$37,38. Secondly, the behavior is less served in the work reported in Ref85,36,38—40 The ef-
dependent on the presence or absence of gravity, i.e., tifect of the levels of spontaneous emission used in our
cases of thes-kicked accelerator and th&kicked rotor are  experiment on the mean energy attained after 50 pulses in
less distinct from one another, in that the pronounced asymhe case where gravity’s effect is counteracted is consistent
metry in the 5-kicked accelerator distribution has been al-with that shown in Refd 35,36 by Ammannet al. and Ref.
r_nost removed, the difference in the widths of the distribu-[gg] by Klappaufet al. The noise used in Ref§39,40 was
tions has been reduced and in both cases the distributi%p|itude noise, and generally of a much higher level than

continues to broaden with increasing pulse number. Thirdlyihe noise in our experiment, though the conclusions reached

the behavior in the two cases is similar to that of the theoy e 5150 consistent with our assessment of the behavior of the
retical classical system in Fig.(@ in terms of the linear

S . ) system.
variation in mean energy with pulse number. We can imme- y

diately say that we have made the behavior of the system
more classicain appearanceby the introduction of noise
because the responses of the two systems to the application Another useful approach when considering the behavior
of the kicks, as expressed by mean energy growth, are mowef the mean energy is to determine its variation with chang-
similar to one another. By randomizing the phase of theng values of different experimental parameters for a set
wave packet due to the momentum impulse imparted byiwumber of pulses. There are three basic parameters that de-
spontaneous emission, we have prevented the diffracted méermine the dynamical behavior of the systéfn:y, and the
mentum orders from achieving the correct phase relationshiguantum-mechanical. These can all, in principle, be varied

at the time of the next pulse. For thkicked accelerator independently by changing,.,, G, T, or the effective value

this means that constructive interference of progressivelpf g. However, due to the geometry of our system, it is
higher diffracted orders to yield a linear increase in the mo4inconvenient to varyG by creation of the standing wave
mentum of a fraction of the atoms does not occur. For theotential using counterpropagating laser beams where the
S-kicked rotor, the destructive interference leading to dy-angle between them is not equal to The intensity, and
namical localization is similarly absent. Thus diffusion con-hencel ., can be varied, though with much less precision
tinues even after the quantum break time has been exceedddan is possible fog and T. Experimentally, therefore, we
this is the quantum diffusion referred to in Sec. Il. The sys-either left gravity’'s effect unalteredstkicked acceleratoy

tem cannot be said to be classical, but, because some of it counteracted it as completely as possible using the phase
behavior, viz., the linear rise of mean energy with pulsemodulator (-kicked rotop, and in both cases varietl be-

B. Variation in mean energy with pulse period
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energy of the classical system whe¢g=0.87 and T is

1000 . (@) Analytic prediction varied (thus K varies linearly between 1.2 and 49.7his
800 ) " Nospont. em. i variation is calculated from the analytical prediction given
1 " = 0.2 spont. em. per pulse |4 . . . .
2 600- by Eq.(11), and from numerical simulations, both with and
%" ] - without noise. Note that the numerical simulations assumed a
5 4007 e Gaussian initial momentum distributidthe initial position
= ] distribution is uniform, corresponding to the experimental
o 2004 . . . .
3 ) situation, whereas the prediction of H41) assumes a uni-
; 0+ form distribution in both position and momentum. This may
=) ' T T T T T T ' slightly skew the numerical result relative to the analytical
_81000__ (b) : Analytic prediction | prediction. Note, however, that even if an initially uniform
= 800 - . * No spont. em. u distribution is employed for the numerics then, in spite of
gﬁ 1 0.2 spont. em. per pulse |1 generally excellent qualitative agreement, quantitative agree-
L 600'_ g% ment is not perfecfl2].
g 400 The size of the peaks in mean energy as shown in Fig. 4
S . is enhanced relative to the analytical prediction of the value
= 2007 of D(K,y) by the occurrence at these kicking intervals of
0_' superdiffusive energy growth: a fraction of the atoms fulfil
; . ; . ; . : the criteria for entering a long-lived classical accelerator
0 50 100 150 200 mode[12] due to momentum growth-enhancing correlations.
Pulse period (us) On the other hand energy growth at the troughs is subdiffu-

sive, as there are momentum diffusion-inhibiting correla-
FIG. 4. Variation of mean energy with pulse period according totions. At these extremes the analytical prediction is imperfect
classical simulation and the analytical prediction of Edf) for 30 due to its failure to take into account all correlations.
pulses with¢y=0.87, (a) in the absence of gravitystkicked ro- The effect of gravity on the behavior of the system is
tor), (b) in the presence of gravityskicked acceleratgr No mo-  cjear from comparison of Figs(@ and 4b). For small val-
mentum cuts have been applied to the results of the simulatior]..jes of the pulse period, gravity has little efféat is small
Where it is nonzero, the mean n_umber of spontaneous emissiorgnd therefore the-dependent cosines B (K, y) have neg-
undergone by an atom per pulse is 0.2. ligible effect]. However, for larger values the additional
) change in position and momentum due to gravitational accel-
tween 6.5 us and 210.5us in steps of 1 us. The set num-  gration is increased. This will obviously change the initial
ber of pulses used was 30, ahgh, was held constant. conditions that lead to normal and anomalous diffusion for

eterD(K,y), where exist in one or the other direction in momentum space, never
K21 both simultaneously, as in the zero-gravit§-Kicked rotoyp
D(K,y)= —|= —J,(K)cog },)_Ji(K) case. This is because gravity has broken the symmetry of the
212 system.
The effect of adding a spontaneous emission rate of 0.2
X cog2y)+JI5(K)+J5(K) |, (11)  per atom per pulse does not dramatically alter the dynamics

either in the presence or absence of gravity. This was re-
_ _ ) ferred to in Sec. Il and is discussed in RgX9]. As the peaks
andJ,(K) is thenth-order Bessel function of the firstkind. It ang troughs observed in the variation of the mean energy are
follows that the mean energy is given byEy due to kick-to-kick correlations, and as the addition of noise
=NmD(K,y)/(GT)?, where, as before, this is determined disturbs these correlations, the observed effect is a general
after having subtracted from the momenta the offset due télattening of these oscillations as the probability of spontane-
gravitational free fall. The expression f@(K,y) can be ous emission rises. This can be seen in Fig. 4, and is consis-
determined using the method of Fourier pathg] (see the tent with the classical numerical data plotted in Fi¢c)2
Appendix for an outlined derivation This expression in- The experimental results, plus those of the quantum simu-
cludes the effect of low-order kick-to-kick correlations lations, for the 5-kicked accelerator are shown in Fig. 5,
[hence the presence of the Bessel function corrections to thehere again the mean number of spontaneous emissions per
random phase resuli(K) =K?/4], although, since it always atom per period due to the appli€&® light was either O or
assumes linear diffusion, it cannot fully incorporate the ef-0.2. The corresponding results for the configuration in which
fect of highly correlated classical accelerator modes. Obvigravity was compensated fob<kicked roto) are shown in
ously, if y=0 we regain the usuai-kicked rotor resul{12]. Fig. 6. When comparing our experiments with quantum
Figure 4 shows the variation, when 30 kicks are applied irsimulations, we again see good qualitative agreement. The
both the presence and absence of gravity’'s efféekiCked  same experimental imperfections addressed in Sec. IV A ap-
accelerator ands-kicked rotor, respective)y in the mean ply equally here, and are responsible for quantitative discrep-
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Experiment Quantum Simulation
1000 , . r T T : r — 2000
= No spontaneous emission No spontaneous emission ~
3 © © B FIG. 5. Variation of mean en-
3 8001 1500 5 ergy with pulse period after 30
g 3 pulses when gravity’s effect is not
g 6001 g counteracted §-kicked accelera-
:é. 1000 2 tor). The momentum cut used is
B 4007 T +60hG. Where induced sponta-
g 500 2 neous emission is present, the
§ 2009 é mean number of emissions occur-
> o o = ring per atom per pulse is-0.2.
o 6009 02 spontarlleous emissiolns perpulse' 1 02 Spontat;eous emissio;ls perpulsel 41200 o I_EXpenment_al results are for a
& ® light detuning of 30 GHz and
1_,C” 500+ 1 11000 E beam power of-120 mW. Quan-
§ 4004 ] lsoo ¢ tum simulation results are fopy
g £ =0.87. The labels in the top two
% 3001 1 1600 é panels are discussed in the text.
= 2001 ] lio B Note that the vertical scales in the
2 g simulation graphs differ by a fac-
g 1005 1 4200 § tor of 2 from those of the corre-
= 0 . ' . ' ' . . ' = sponding experimental graphs.
0 50 100 150 200 0 50 100 150 200

Pulse period (us) Pulse period (us)

ancies. As before, the same momentum cuts were applied tnomentum distributions, as discussed in Sec. IV A, and the
the simulation results as to the experimental data. There is lroadening of the atomic momentum distribution due to am-
clear offset to the experimental mean energies; this is beplitude noise in the potential.

cause of background noise in the wings of the measured The behavior in the quantum-mechanical system is very

Experiment Quantum Simulation
T T T T T — 15

4001 No sponta;]eous emission 1 No sponta.;leous emission
350+ k
300+
2501 b
200+ k
150 k
1004 b

504 E

(photon recoil energy/pulse)

Quantum diffusion parameter

4001 02 spontallwous em.issi(;ns per pulse ' 1 02 spontallleous emissic.lms per pulsel
350+ E E
3004 L E
250+ E E
200+ E E
1504 E e
1004 E E

501 E E

Mean energy (photon recoil energy) Mean energy (photon recoil energy)

0 50 100 150 200 0 50 100 150 200
Pulse period (us) Pulse period (us)

FIG. 6. Variation of mean energy with pulse period after 30 pulses when gravity’s effect is counter@&ieked roto). The momen-
tum cut used ist 40k G. Where induced spontaneous emission is present, the mean number of emissions occurring per atom per pulse is
~0.2. Experimental results are for a light detuning of 30 GHz and beam powerl@D mW. Quantum simulation results are fgg
=0.87. Note that the vertical energy scales in all the graphs are the same. The variation of the initidl.ealae the first pulseof the
quantum diffusion paramet&(K,) (see text when ¢4= 0.8 has been plotted as a dashed line over the values of the mean energy of the
S-kicked rotor system calculated from the quantum simulation. This shows that the maxima and minima of the analytical parameter
expressing the extent of the momentum diffusion coincide with the observed maxima and minima of the mean energy. The negative values
of this quantity are not physical and result from the fact that the expressioR(i¢) in Eg. (11), which is used to obtail (K,), is a
truncated series. Inclusion of higher-order terms would avoid this unphysical result, but would not change the gross features of the variation
with pulse period.
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different from that of the classical system, and is stronglyquantum break time, the earlier this happenise effective
dependent on both the effect of gravity and the level of spondiffusion parameter decreas¢53], eventually falling to
taneous emission. The most important difference betweerero. The initial value oD(K,) is a good indicator of the
the two casesd-kicked rotor ands-kicked acceleratgmwith extent of energy transfer to the system, and it is clear that the
zero-induced spontaneous emission is the existence of tlreaxima and minima iD(K,) and in the mean energy are
pronounced peak&) and (b) in the mean energy to either coincident, including the quantum resonance spikedl at
side of T=66 us for the 5-kicked accelerato(see Fig. 5. =66.5 us, T=133.5 us, andT=200.5 us (see below
These peaks indicate quantum accelerator modes. The peaRsntrasting the behavior for two different valuesTofat T
(¢), (d), (e), and(f) are also due to gravity-induced accelera-=30.5 us the distribution has not yet localized after 30
tor modes. All the labeled peaks correspond to a lower valupulses(though it has become exponential in fgremd con-
of the mean energy in the experiment than in the simulationtinues to broaden with increasing pulse number. On the other
As described in Sec. IV A, amplitude noise in the potentialhand, atT=60.5 us localization occurs after-3 pulses,
and the leaving of the Raman-Nath regime with increasingfter which essentially no further mean energy growth oc-
atomic momentum reduce the efficiency of population of thecurs, as shown in Fig. 2 and discussed in Sec. IV A. From
accelerator mode, so these lower experimental values are ekig. 6, the variation in the mean energy attained after 30
pected. Peakséc) and (e) are smaller(relative to the sur- pulses appears periodic when gravity is absent; the period is
rounding energiesn the experimental data than in the simu- the half-Talbot time. This periodic variation of the quantum
lation. In this experimental configuratiqB0 pulses applied, break time and localization length is in agreement with the
T=115.5 us, 191.5 us, respectivelythe momentum of the  behavior deduced fror® (Ky).
fastest-moving atoms relative to the standing wave, when the The behavior of the system whe@=66.5 us, T
effect of gravity is taken into account, is greater that@2 =133.5 us, andT=200.5 us merits further discussion. At
(higher than the 57G attained after 50 pulses witii  these times the kicking interval is such that the system is in
=60.5 us). When the atoms have attained momenta in thig quantum resonance. The principal quantum resonance for
region, they have left the Raman-Nath regime because theyur system occurs for a pulse period of 1334 (the so-
move through a significant fractior<0.5) of the period of called “Talbot time”) [11]. Using the notation defined in
the standing wave over the duration of an individual pulseSec. Il, 7=4 at the Talbot time. The Talbot time is defined
This means that they cannot experimentally be accelerategsing the phase evolved between pulses by diffracted orders
up to these momenta or further with great efficiency. Thusrom a plane wave that has no initial momentum in the di-
the experimental population of such high-momentum statesection of the grating. The Talbot time is the interval be-
is low. The simulation, however, assumes kicks that are trulyween pulses over which adjacent diffracted orders from such
6 functions so that the atoms are always in the Raman-Nath plane wave, in the absence of gravity, accumulate a phase
regime and can be accelerated efficiently to arbitrarily highdifference through their free evolution ofs2 It is given by
momenta. Thus the peaks here are larger in the simulatiol,,,=47m/(AG?). As noted in Sec. Il, additional reso-
than in the experiment. nances occur for rational multiples of this time. The reso-
When the effect of gravity is counteracted-kicked ro-  nances at 66.7us and 200.1us are the lowest and second-
tor), the momentum distribution is exponential in fofms lowest second-order resonances. Quantum resonances have
shown in Fig. 8b)] after 30 pulses for all pulse periods stud- been investigated experimentally for th&kicked rotor
ied exceptT=66.5 us, T=133.5 us, andT=200.5 us.  [43,44), which has been found to be characterized in these
For pulse periods other than these, dynamical localization isircumstances by a momentum distribution that is nonexpo-
setting or has set in. The localization length varieSasr-  nential. Figure 7 shows the momentum distribution of atoms
ies, thus explaining the observed variation in the mean enfrom our MOT after 30 pulses have been applied with
ergy, as shown in Fig. 6. The proportionality of the quantum=66.5 us. The significant population in the wings of the
break time to the localization length, and their variation withdistribution, which should be contrasted with that of Fig.
the quantum version of the classical diffusion parameteg(b), demonstrates that ballistic acceleration of certain mo-
D(K) [12] are explained in Ref§32,52. The values of the mentum classes of atoms has occurred and confirms that we
localization length and quantum break time are proportionahave a quantum resonance. Both the experiment and simula-
to the quantum diffusion paramet®r(K,), i.e., the quantity tion indicate that the energisee Fig. 6 acquired by the
obtained wherK = 2K sin(7/2)/7 is used in the expression system is small for times in the regions around f6,
for the classical diffusion parametBr(K) (as employed, for 133 us, and 200us but that the energy acquired by the
example, by Klappaufet al. [44]). The quantityD(Ky),  system whe=66.7 us, 133.4 us, and 200.1us is a lo-
whose value is expressed here in units of energy per pulseal maximum, with a momentum distribution that is nonex-
has been plotted on Fig. 6 over the variation of the mearmonential.
energy as calculated from the quantum simulation for the At a quantum resonance there is symmetric, linear growth
o-kicked rotor.D(Ky) in these units gives the initial rate of in the momentum width with pulse number for certain dis-
increase in the mean energy with pulse number. At highecrete initial values of the quasimomenta. For a system with a
pulse numbers, however, the energy value obtained by mutontinuous initial spread in quasimomenta, as we have, there
tiplying D(K,) by the pulse number will not give the correct is alinear growth in the mean energy with pulse number in
mean energy of an ensemble of atoms. This is because #se long-time limit, as explained in Sec. Il. For higher-order
dynamical localization begins to occ(and the smaller the resonances, this takes a larger number of pulses to manifest
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L L just that the destruction of the accelerator mode is the most
~ - - - - Initial . .. .

distribution | dramatic effect. When the spontaneous emission level is
Quantum 3 high, the variation in mean energy with pulse period is rather
resonance featureless, due to the destruction by noise of the correlations
] responsible for accelerator modes. Thus the distinctively
quantum effect constituted by the accelerator modes has
been degraded by the presence of noise.

For the &-kicked rotor, see Fig. 6, increasing levels of

Tt e spontaneous emission increase the mean energy because, on
10+ = T — account of the perturbing effect of noise, dynamical localiza-

80 -60 -40 20 0 20 40 60 80 '
M t hot il tion no longer occurs. The increase in energy is most signifi-
omentum (photon recoils) cant for those values af where the quantum break time, and

FIG. 7. Experimentally measured momentum distributions,he_nce the mgan energy, would be smallgst in the absence.of
showing the initial distribution of the momenta of atoms in the noise. The dlfference_ in the mean energies _Of the system in
MOT and the nonexponential form of the distribution after 30 the cases of no applied spontaneous emission and 0.2 spon-
pulses withT=66.5 us when gravity's effect is absent{kicked ~ [@Neous emissions per pulse is greater in the quantum simu-
roton. This is an example of a quantum resonance, in which ballisJation than in the experiment. This is because, as described
tic acceleration of atoms in certain momentum classes occurs.  Previously, the experimental system is not free from the per-

turbing effects of noise even when no spontaneous emission

is induced by applied?2 light. Thus in the experiment, dy-
itself, and the resonance itself is narrowefispace than for Namical localization has already been degraded to a certain
low-order resonances. The behavior we observe regardir@tent without any applied®2 light. This means that the
quantum resonances is in agreement with the observations fRéan energies calculated from the experimental data are
Ref. [43]; we, however, choose to identify resonances byhigher in the “no spontaneous emission” case than those
studying the variation of the mean energy of the systemcalculated from the output of the quantum simulation. The
rather than observation of the form of the momentum distriresence of this amplitude noise in the potential also means
bution itself[43]. The height of the peaks in the mean energythat when additional noise is introduced by & light, the
due to quantum resonances, as shown in Fig. 6, is smaller gffect is less dramatic in the experiment than in the simula-
the experimental data than in the quantum simulation. This i§on, where we truly move from a noiseless situation to one
because the experimenta| popu|ati0n Of the high_momenturﬁ] Wh|Ch nOise iS Significant. In the eXperiment tOO, nOise iS
states causing these peaks in the mean energy is lower thaignificant when thé2 light is applied, but it is not negli-
in the simulation due to the imperfect experimental fulfil- gible when noD2 light is applied. Therefore the difference
ment by high-momentum atoms of the conditions for beingP€tween the behavior in the two situations is not as pro-
in the Raman-Nath regime. nounced as in the simulation.

Additional data(not shown hereshow that wheng, is A very interesting point to note is that, for thkicked
increased, the period between maxima in the mean energy f§tor configuration, the noise has the effect of degrading the
reduced, although the features in the region of the quanturfluantum effect of dynamical localization, but efihancing
resonances, and the periodicity determined by the halfthe local maximum in mean energy at the quantum reso-
Talbot time, remain fixed. Again, this is predicted by the usenances(see Fig. 6. The height of the local maxima &t
of K, in the expression for the diffusion parameter. In the~66,133,200us, is increased relative to the energy attained
classical system, an increasedq results in a similar reduc- at neighboring values of, and the width of these peaks is
tion in the period between maxima in the mean energy.  also increased. Since the resonances are a quantum phenom-

Turning now to the process of spontaneous emission, wit§non, one would have expected noise to remove their signa-
reference to Fig. 5, the most marked effect of its introductiorfure (the local maxima in energy This is actually not the
in the presence of gravity is to reduce the height of the procase, an observation that is somewhat surprigsgy54.
nounced peaks in the mean energy due to the quantum ac-
cel_erato_r modes. Since quantum accelerator modes rely for V. CONCLUSION
their existence on the correct accumulation of phase by the
various diffracted momentum orders, the disruption to this We have presented experimental and theoretical results of
phase due to the spontaneous emission destroys the modevestigations into the behavior of an atom optical system in
When the spontaneous emission probability is low0(01  which approximates-kicks are applied, using a pulsed stand-
spontaneous emissions per atom per pussignificant frac- ing wave of laser light, to cold atoms falling freely under
tion of the atoms will not undergo spontaneous emissiorgravity. The effect of gravity can be effectively counteracted
during 30 kicks. As the probability grows, the effect of spon-by appropriate shifting of the position of the standing wave.
taneous emission becomes more serious with the result th@ibe presence of a gravitational potentiaticked accelera-
the accelerator mode peaks have been greatly degraded whiem) leads to the occurrence of a specifically quantum-
the mean number of spontaneous emissions per atom parechanical phenomenon, which we call quantum accelerator
kick is 0.2. In fact, the noise reduces the mean energy atmodes[11]. When gravity is counteracteds{kicked roto)
tained by the system after 30 pulses for all pulse periods; it isve observe the well-known effect of dynamical localization
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[24]. The effect on the system of the presence of noise has 1

been observed and discussed. The behavior of the system &,(m,q)= zJ’ dyxdpexd —i(my+qp)]

found to be well described by quantum-mechanical simula- (2)

tions that rely on a diffractive picture of the effect of the

periodic potential. Both the experimental results and the XJ dx'dp’8(p—p' —Ksinx'+y)

guantum simulations indicate that the introduction of noise

to the system causes significant degradation to characteristi- Xo(x—x'—p' —Ksiny'+v/2)

cally quantum aspects of the system’s behavior, i.e., quan-

tum accelerator modes and dynamical localization. The noise X J dg’ > exdi(m'x'+q’p")]an_1(m’,q’),
reduces the difference in behavior between the two gravita- m’

tional scenarios, and results in the restoration of some as- (A1)

pects of the behavior seen in classical simulations, for which
the modification in behavior due to the noise is small. TheV
disruption to the coherent evolution of the system by noise, *

which is formally analogous to the process of continuous a,(m,q)= _2 Ji(lg+m|K)a,_[m+1sgrgq+m),
measurement{51], makes the quantum dynamics more ===

classical-like, although not identical to the behavior of the q+mlexdi(q+m/2)y]. (A2)
equivalent ideal classical system. In this case our system is a o ) ) )
noise-perturbed quantum system that exhibits certain charad1"ough repeated substitution of this recursion relation we

teristics of an ideal classical system. arrive at

hich, after integration, becomes

(M, Gn) = 2 31 ([ah-1]K) -3y, (|0l K)ao(mo, o)
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?ncluding the standard low-order corrections by consider-
ation of paths that briefly leave the origin, we determine the

foundation. following K- and y-dependent diffusion parameter:
- K2
Dn(K,7)= 5| 5~ Ja(K)cog y) — Jicog 27)

APPENDIX: DERIVATION OF D(K,y)
2

J— n'y
+I()+I5(K) [—ypi+ - (AB)

We have essentially followed the derivation for the
S-kicked rotor diffusion parameter of Chap. 5 of Lichtenberg _
and Liebermari12], using the method of Fourier paths and wherep; is the mean initial scaled momentum. We subtract
making appropriate modifications to incorporate the effect oliway the offset due to uniform gravitational acceleration to
y. Thus the recursion relation for the Fourier coefficientsarrive at the formula we use in E¢l1) in the text, i.e.,
takes the form D(K,y)=D(K,y)+ yp;—ny?/2.
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