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Liouvillian dynamics of the Hopf bifurcation
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Two-dimensional vector fields undergoing a Hopf bifurcation are studied in a Liouville-equation approach.
The Liouville equation rules the time evolution of statistical ensembles of trajectories issued from random
initial conditions, but evolving under the deterministic dynamics. The time evolution of the probability densi-
ties of such statistical ensembles can be decomposed in terms of the spectrum of the redaerantes
relaxation ratesof the Liouvillian operator or the related Frobenius-Perron operator. The spectral decompo-
sition of the Liouvillian operator is explicitly constructed before, at, and after the Hopf bifurcation. Because of
the emergence of time oscillations near the Hopf bifurcation, the resonance spectrum turns out to be complex
and defined by both relaxation rates and oscillation frequencies. The resonance spectrum is discrete far from
the bifurcation and becomes continuous at the bifurcation. This continuous spectrum is caused by the critical
slowing down of the oscillations occurring at the Hopf bifurcation and it leads to power-law relaxatiogitas 1/
of the probability densities and statistical averages at long times. Moreover, degeneracy in the resonance
spectrum is shown to yield a Jordan-block structure in the spectral decomposition.
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I. INTRODUCTION resonances are defined as the generalized eigenvalues of the
Frobenius-Perron operator or of the Liouvillian operator and
In many nonlinear dynamical systems, sensitivity to initial they control the relaxation of the probability density toward
conditions as well as bifurcations deeply affect the time evothe stationary state if it exists. Accordingly, their knowledge
lution. In these cases, trajectories issued from random initighrovides us with the time-asymptotic behavior of the time-
conditions evolve differently, leading to a statistical distribu- correlation functions that characterize the system. In this
tion of the trajectories over the phase space. Such statisticabntext, we have previously obtained the spectrum of the
time evolutions are of great experimental importance beLiouvillian operator for the pitchfork bifurcatiof8]. In such
cause many time-dependent phenomena are characterized dyifurcation, all the asymptotic states are stationary.
the time-correlation function between the statistical distribu- The purpose of the present paper is to study the Liouvil-
tion of initial conditions and an observable quantity mea-lian dynamics of systems undergoing a Hopf bifurcation
sured at some later time. In this context, a major preoccupd-3], which is known to generate oscillatory time behavior.
tion is to understand, thanks to these time-correlationThe importance of the Hopf bifurcation holds in the fact that
functions, how the system relaxes at long times toward dhis bifurcation provides a unique mechanism to explain the
certain stationary or time-dependent state. emergence of oscillatory behavior in far-from-equilibrium
Recently, methods have been developed in order to preghysicochemical systemfl]. This bifurcation has been
dict the behavior of the time-correlation functions and, inmuch studied at the level of the trajectorids14—14. The
particular, to calculate the relaxation rates of the systeneffect of stochasti¢or noisy) perturbations on the Hopf bi-
[1-4]. These methods are based on a probabilistic approadircation have also been studied in the frameworks of the
in which the statistical ensembles of trajectories are detangevin, Fokker-Planck, and master equatiftiz—19, as
scribed in terms of probability densities defined in the phasevell as in the numerical simulation of far-from-equilibrium
space of the systenil]. The deterministic dynamics is chemical reaction$20,21. Our aim is here to develop the
known to induce the time evolution of the probability densi- probabilistic study of the Hopf bifurcation at the level of the
ties. Since the probability is locally conserved in phaseliouville equation, in which the dynamics is considered to
space, the density obeys a conservation equation called the deterministic, so that the effect of the stochastic fluctua-
generalized Liouville equatiofl]. Integrating the Liouville tions will notbe considered in the present paper. Instead, our
equation in time, we obtain the so-called Frobenius-Perrostudy deals with the deterministic time evolution of statisti-
operator, which gives the probability density at current timecal ensembles of trajectories issued from random initial con-
in terms of the initial probability density of the randomly ditions and the characterization of such evolution in terms of
distributed initial datd4]. the spectrum of the Liouville equation.
During the last decade, much work has been devoted to Near a Hopf bifurcation, we expect the emergence of sus-
the Frobenius-Perron operator of different systdis10| tained oscillations so that the asymptotic states are no longer
and to the related Pollicott-Ruelle resonaniEl 12. These stationary in contrast with the asymptotic behavior near a
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pitchfork bifurcation. After the Hopf bifurcation, a periodic parameter time-continuous group called tflew, which
orbit—also called limit cycle—coexists with an unstable sta-maps each initial condition onto the position at a current
tionary point in phase space. A fundamental problem igimet

therefore to understand how the emergence of oscillations

manifests itself in the spectrum of the Liouville equation Xi=®'X, 2
before, at, and after the Hopf bifurcation.

In systems with periodic orbits, the Liouvillian spectrum
can, in principle, be calculated with the Cvitano@ckhardt
trace formula[3] and its cycle expansion2]. In this . . o : i)
periodic-orbit theory of classical systems, the Liouvillian or t|met e(\i/)c>LtOJt|on_of a statistical ensemble of _trajectodgs‘f;
Pollicott-Ruelle resonances can be obtained as the zeros ofa® Xo'ti—1 issued from ~random initial conditions
Selberg-Smale zeta functidiz—4]. However, in periodic- {X’}i=1- If the initial conditions are randomly distributed,
orbit theory, few results are known about systems undergove have to introduce the probability density of the initial
ing bifurcations such as the Hopf bifurcation. In this regard,conditions as
the coexistence of a stationary point with a periodic orbit is LN
of very special interest because the stationary point contrib- e o _ (@
utes to the Liouvillian spectrum by extra resonances that are po(X)= lim N Z A(X=Xo),
not predicted by the periodic-orbit theory. In the present pa-
per, one of our goals is to show that the periodic-orbit theorysuch that
can be extended to incorporate the effects of the coexisting
stationary points. _

Furthermore, we shall explicitly construct the eigenstates f po(X)dX=1, ®

and other root states that are associated with the Liouvillian | . hi dtob hf ion in oh |
resonances. We shall see that special methods are required¥§ich iS assumed to be a smooth function in phase space. In

carry out this construction in the presence of certain deger! €XPeriment where a statistical ensemble of trajectories of
eracies between a resonance of the limit cycle and anothél?e g_ypammal systgrﬁ) fVOIVeS. In time f“’”."' re;]ndom |n|t|all
one associated with the coexisting unstable stationary poinEOn itions, a quannty of great importance Is the mean va'ue,
Indeed, such degeneracies can lead to Jordan-block struc€ the statistical average of an ob_servable quantity defined
tures involving Jordan-type root states beside the standaf@’e’ he phase space by the functia(x). At the current
eigenstates. The knowledge of all these eigenstates and otH&P€ . the mean value of this observable is given by

and which defines the trajectody, issued from the initial
condition X.
If we know the flow(2), we can infer the properties of the

N— oo

root states provides us with the asymptotic time dependence 1 N
of all the possible time-correlation functions of a system un- (A} = lim N 2 A(q,txg)):j A(PX) po(X)dX
dergoing a Hopf bifurcation. N—ow N i=1

The plan of the paper is the following. The general theory
of the Liouvillian dynamics is summarized in Sec. Il, where _ J' ACX) 0 (X)dX 4
an extended trace formula including the effect of the station- (X)p(X)dX, @

ary points is derived. In this way, we obtain explicit expres- : . .
sions for the Liouvillian resonances of generic systems withWhere we have introduced the probability density at tirae
stationary points coexisting with a periodic attractor. In Sec. I®
I, we present the Hopf bifurcation and we derive the Liou- pt(X)=f S(X—®Y)po(Y)dY = X
villian spectrum for a general Hopf bifurcation from the ex-

tended trace formula. In Sec. IV, we derive the detailed spec- =(P'po)(X) (5)
tral decomposition of the normal form near the Hopf '

bifurcation: before, at, and after criticality. Conclusions are\ynich defines the so-called Frobenius-Perron operéfor

—t

(X)|po(®@™'X)

drawn in Sec. V. We notice that a time-dependent mean value such a$4Eq.
defines a time-correlation function between the initial density
Il. GENERAL THEORY po and the observable quantifymeasured at timé There-
fore, the present framework describes the time evolution of
A. Time evolution of statistical ensembles general time-correlation functions.

We consider a deterministic dynamical system given by a Since the probability is conserved locally in phase space,
set of first-order differential equations of the form the probability density obeys a partial differential equation of
continuity known as the Liouville equatidd,22

X=F(X;m), (1) . -
dpy=—div(Fpy)=Lpy. (6)
whereX are variables belonging to a phase spAde RY, F The Liouvillian operat0|£ is the generator of the Frobenius-

is a time-independent vector field defined¥, wis asetof  perron operato®!=exp(t). The Frobenius-Perron operator
parameters, and the dot denotes a derivative with respect iovides, therefore, the global time evolution of the density
the timet: X=dX/dt. The vector field(1) induces a one- over a finite-time interval, while the Liouvillian operator
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rules the time evolution over an infinitesimal time step. Into the right and left eigenstates and other root states that turn

this regard, both operators and their properties are thus inteout to be Schwartz distributiog4], as well as to justify the

connected. spectral decomposition that holds on a suitable Gel'fand trip-
For conservative systems, the Liouvillian operator definedet [25].

as in Eq.(6) is anti-Hermitian. However, for dissipative sys-  According to Eq(4), the spectral decompositi¢h0) pro-

tems, the Liouvillian operator is not anti-Hermitian. This vides the time evolution of the mean value of an observable

property has its origin in the nonpreservation of phase-spacia the following form:

volumes in a dissipative system for which

L+L7=—(divF, ) (A= (AP po)
where LT=F. gy is the adjoint ofL and1 is the identity =S AT o) + A A
operator. Therefore, the spectral theory of the Liouvillian ; < |l/fj>e]<¢1|po> EK (Al (Al )

operator and of the related Frobenius-Perron operator is, in _

general, more complicated than for Hermitian or anti- sd 1 t) [ (tipo)

Hermitian operators. xexl g 1]l e 11
(¥2lpo)

B. Spectral decomposition
The time evolution of statistical ensembles can be characVe observe that the right-root states are distributions acting
terized in terms of the relaxation rates toward the stationar®" the observables, while the left-root states are distributions
invariant measure that is reached after long times. These r@Cting on the initial densities. Since the root states are
laxation rates can be considered as complex eigenvégies Schwartz distributions, both the observables and the initial

of the Liouvillian operator with Re;=<0. Since the Liouvil- densities s_houlr:i behsmooth erlu()jugh test fu_nctions. id
lian operator is not anti-Hermitian, we should expect in gen- e notice that the spectral decompositidi) provides

eral that the left and right eigenstates be different and thati!"e asymptotic behaviqr of the mean value at arbitrarily long
Jordan-block structures be possitigg]. In the case of a t|mestﬂ+00._lndeed, in the particular case where the real
spectrum of eigenvalues, a possible spectral decompositidtp'ts Of the eigenvalues are ordered as
of the Liouvillian operator is thus

so=0>Res;=Res,= - - -, (12

I:=; |'ﬂj>3j<<~//j|+; (I 0¥ )

the leading eigenvalug,=0 determines the limiting value

s 1 I
( K ) (<~ k,1|) L @® of the mean value as
0 s (Y
with possible higher-dimensional Jordan blocks. The right- lim (A= (Al o) (Yol o), (13

t—+o

and left-root stateg]|,),(,|} are supposed to form a
complete biorthonormal basis

while the next-to-leading eigenvalues determine the slowest

(hml 17 ,m) = O S relaxation modes toward the asymptotic stationary state. In
the particular case where the eigenvadye0 is unique and
E | m><l7,| m|:i' (9) that Eqg.(12) holds, the system is known to be ergodic and
m ’ mixing [4].
] ] The previous considerations show that the root states can
with I=j .k, ..., andm=0,1,2 ... be explicitly constructed by studying the asymptotic behav-

As a consequence of E(B), the Frobenius-Perron opera- jor of the mean value of an observable like Ed) at arbi-
tor has the eigenvalugexp@t)} and the spectral decompo- trarily Jong timest— . This asymptotic behavior provides
sition the spectral decomposition of the Frobenius-Perron operator
X and, hence, of the Liouvillian operator, by identification of
pt=gtt=> |¢j>esjt<"¢j|+2 (| )] ¥ 2) the terms in Eq(11). This spectral decomposition is valid
] k ’ ’
4. (10) struct the spectral decomposition of the Liouvillian operator
' near a pitchfork bifurcation in our previous wo&] and we
problems have to be conceived on suitable functional spacesigenvalues is expected when the dynamics presents power-
of smooth enough test functions in order to give a meanindaw relaxations at criticality{8]. In this case, the spectral

only for positive timest>0 and it therefore corresponds to
~ the forward semigroup. We have used this method to con-
xesk‘(l t)((‘fk,ﬂ
0 1/\ (¥l . . :
shall here apply this method to the Hopf bifurcation.
Many works[4—6,8,11,12 have shown that such eigenvalue Let us remark that a continuous spectrum of Liouvillian
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decomposition can also be constructed by studying the The trace of the Frobenius-Perron operator directly de-
asymptotic time evolution of the mean value of an observpends on the linear stability of the closed solutions, which
able att— + . we first assume to be hyperbolic, i.e., without marginal sta-

The past asymptotic behavior te-~ —0 leads to another bility eigenvalue. The linear stability of a stationary point is
spectral decomposition corresponding to the backward seméharacterized in terms of the vector field linearized near the
group. stationary point

C. Trace formula X = dyF(Xg)- 8X, (17

As long as we are interested in the eigenvalues, there )
exists a systematic method of calculation based on a trad@hich has the solution
formula for the Frobenius-Perron operaf@4]. Indeed, if

we defined the Frobenius-Perron operator by its spectral de- oXi=exf dxF(X9t]- 6X,. (18)
composition(10) in the biorthonormal basi$9), its trace
would be given by The matrix of the linearized vector field has in genedal

eigenvalues{gsyj}?zl, which characterize the linear stability.

The Lyapunov exponents of the stationary point are given by

\sj=Regs; . None of them vanishes because of the assumed

hyperbolicity.

where the first terms correspond to the nondegenerate eigen- The linear stability of a periodic orbit is characterized in

values, the second to the doubly degenerate eigenvalues, eterms of the linearized Poincansap in a surface of section

This formal result shows that the trace of the Frobeniustransverse to the periodic orbit. If we suppose that the phase-

Perron operator is a sum of decaying exponential functionspace variables separate into one variahlgparallel to the

in spite of the Jordan-block structure. This property allowsperiodic orbit and §—1) variablesX, transverse to the pe-

us to identify the eigenvalues of the Liouvillian operator.  riodic orbit, an infinitesimal perturbation of the periodic orbit
Now, the trace of the Frobenius-Perron operator can bé& mapped after one period onto

calculated by noticing that its kernel is given by the Dirac-

type distribution in Eq(5). This distribution gives the con- SX, ry1=[0x (I)Ip(xp)], 8X, ;=my-8X, (19

ditional probability density to move from the initial poiivt +

to the final pointX during the timet. This conditional prob- .

ability density is the analogue of the transition matrix of a_Whefe @, is the transverse compqnent w and.we have

Markov chain for a continuous Markov-state space such alitroduced the d—1)x(d—1) matrix m, of the linearized

. ’ . d_l .
the phase space. In this perspective, we can define the traf@incaremap. lts d—1) eigenvalue$A, j}i—; characterize
of this transition probability density as the linear stability of the periodic orbit, which has the

Lyapunov exponents\,;=(1/T,)In[A,;|. Here, also, be-
. - cause of the assumed hyperbolicity, no Lyapunov exponent
TrP'=Tr e“=f S(X—®'X)dX, (15  vanishes(except the one corresponding to the direction of
the flow).
which is a definition independent of the coordinate system in Using these results of linear-stability analysis in order to
phase spacE2—4]. The contributions to the trace are given calculate the trace of the Frobenius-Perron operator, we ob-
by the trajectories that return to their initial condition after atain the trace formula
varying timet according to

TP=Tret=3 &9 423 e (19
]

1

Bt_ Lt_
X=®X. (16 TP =TT = 2 et~ e axFORaTT]
These closed solutions of the vector field are the stationary e T, S8(t—rT,)
points, F(X9=0, and the periodic orbits such that, > > P . (20
=®"ToX , whereT,, is the prime period and=1,2,3 . . ., is p =1 defl —[dx P (Xp]'}|

the repetition number of the prime period. Both kinds of
closed solutions contribute to the tra(¥5) as long as they This formula shows that the trace of the Frobenius-Perron
are isolated, i.e., if they do not form continuous families.operator diverges like
Otherwise, the integral of the Dirac distribution is not well
defined in Eq(15). 1

Previous works have emphasized the contribution of un- TrPt~— fort—0
stable and isolated periodic orbits that are dense in Axiom-A
basic invariant sets such as the chaotic attractors and repel-
lers [2,3,7. However, stable periodic orbits as well as sta-and that Dirac peaks appear at each positive repetition of
tionary points also contribute to the trace of the Frobeniuseach prime period. If we express the trace formula in terms
Perron operator, which is important in the case of a vectoof the stability eigenvalues of the stationary points and of the
field with a Hopf bifurcation. periodic orbits, we obtain

(21
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Trpt=Trelt=Y, > exg > &gt
s I,m=0 Regsj<0
- 2 (Mg D Tpa(t—rTy)
Reés;>0 por=l
| r
A
Iy J<1 p.j
y et T (22
I,m=0 mj
H |Ap,i|Ap,Ji
|Ap,j‘>1

for t>0.
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seminal work by Hopf13]. A version of the theorem de-
scribing this bifurcation is provided by

TheoremWe suppose that the systéf) with X e RY and
meR has a stationary point which is put at the origin for
convenienceX( u) =0 for all x. The matrixdyF(Xg; u) of
the linearized vector field at the critical parameter value
=0 is supposed to have a simple pair of pure imaginary
eigenvalues, &£ (u=0)==*i|lmé.(x=0)|, and all the
other eigenvalues have a negative real par¢Re=0)<0
for j=3,4,...d. Moreover, the pair of simple imaginary
eigenvalues is supposed to satisfy

d
Reé. (u=0)+#0.

o (25

We observe that the Liouvillian eigenvalues associated . ) ) )
with the basic invariant set formed by a stationary point arel hen there is a unique center manifold passing through (

given by
Sim= li&s
Regs <0
- 2 (m+1)&;, stationary point, (23)
Refq;>0

with I;,m;=0,1,2,3. .. . These resonances satisfy the relax-

ation condition Re,<0 of the forward semigroup.

On the other hand, after a Laplace transform of &%)
[2—4], we obtain the Liouvillian resonances associated wit
the basic invariant set formed by a single isolated periodi
orbit as

Il

Imn
S —T
p

\A§<1

+2min

nAp,j—‘Ag>1 (In|Ap[+myInAy))

,  periodic orhit, (24

with I;,m;=0,1,2,3..., andn=0,£1,+2,=3,....These
resonances also satisfy the relaxation conditiorsRe<0
of the forward semigroup.

h

=0,u0=0) and a smooth system of coordinates for which the

vector field has the form
zZ=7(Co+Cylz|?+cylz|*+ - +) (26)

on the center manifold witz=x+1iy. The Hopf bifurcation

occurs at the critical parameter valpe=0 where Rey=0.

If Rec,<0, the stationary point is a stable focus for
Recy<0. For Recy>0, the stationary point destabilizes into
an unstable focus and gives birth to a stable periodic orbit.
The Hopf bifurcation is said to be supercritical.

If Rec,>0, the stationary point is a stable focus for
(Beco<0, where it coexists with an unstable periodic orbit.
At Recy=0, the unstable periodic orbit merges with the sta-
tionary point, which becomes an unstable focus forcjre
>0. In this case, the Hopf bifurcation is said to be subcriti-
cal.

If Rec,# 0, the radius of the periodic orbit vanishes like
Vx| near the critical valug.=0 where its period is

2 B 2
[Imé.(u=0)| [Imco(pn=0)|"

See Refs[1,14-14.
We remark that the codimension-two case withcRe

T(u=0)= 27)

_Besides, the Liouvillian resonances associated with a cha= g s a marginal situation connecting the supercritical and
otic basic invariant set in which there is a countable set ok critical cases. Near such a codimension-two vector field

dense unstable periodic orbits are given by the zeros of
Selberg-Smale zeta function as shown elsew2red]. In

fFhore than a single periodic orbit may exist. We shall here
restrict ourselves to the study of the codimension-one Hopf

the case of a single periodic orbit, the zeros of this zetafyrcation in the vicinity of the sole critical parameter value
function are precisely the Liouvillian resonances given by,u=0 and of the bifurcating stationary poiKt(=0). Sta-

Eq. (24).

tionary points and periodic orbits outside this vicinity are

The same method can also be used for isolated stationagynored. Moreover, we notice that, in the subcritical case, the
points or periodic orbits of marginal stability as shown belowdynamics near the Hopf bifurcation is globally unstable since

for the Hopf bifurcation.

Ill. THE HOPF BIFURCATION AND ITS LIOUVILLIAN
RESONANCES

A. Hopf theorem

The Hopf bifurcation is a transition in which oscillations

the trajectories escape from the phase-space region under
study, unless Rey,<0 and the initial condition belongs to
the basin of attraction of the stable focus. Therefore, we shall
only study the supercritical case where an attractor exists
throughout the bifurcation. The attractor is the stable focus
before the bifurcation and the stable limit cycle after the
bifurcation when the focus has become repelling.

The result that the vector field reduces to the two-

are born out of a stationary solution in a nonlinear dynamical
system. This bifurcation has been much studied since thdimensional vector fiel@26) in the sense of the center mani-
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fold theorem can be derived by the theory of normal forms (a) (b)
[1,15]. This result shows that the trajectories are attracted ! n<o ' n>0 '
toward a two-dimensional center manifold on a transient
time scale. After this transitory behavior which is not de-

scribed by Eq.26), the trajectories follow, on a long-time -0 6\ -0
scale, a nontrivial dynamics very close to the center mani-

fold. The projection on the center manifold of this long-time
dynamics is ruled by the vector fiel@6). Accordingly, we
can restrict the study of the long-time dynamics of a Hopf -1 : -1 '
bifurcation to the study of the vector fiel@6). x x

After an appropriate rescaling of the parameters, we can
set

FIG. 1. Typical phase portraits of a two-dimensional system
undergoing a Hopf bifurcationia) before criticality foru<0; (b)
Co=ptio, (29) after criticality for u>0.
) _ B. The Liouvillian operator
Cr=—a—iB=—1-ipB. (29 L . .

The Liouvillian operator of a vector field undergoing the
The last equality is obtained after a rescaling of the phase=OPf bifurcation can be written in polar coordinates. If the
space variables under our assumption that the Hopf bifurcsduations of motion are
tion is supercritical so thak>0. ot

Introducing polar coordinates r=rf(r),

9=g(r), (37)

the Liouvillian operator is

z=x+iy=rexpih), (30

the vector field(26) becomes

Lp=—t L pez o 38
i:r[ﬂ_rZ_’_o(rA)]’ pP= FE[r (r)P] g(r)%, ( )
b= w— Br+o(r). (31) while its adjoint is
. . . L A ap ap
The linearized radial equation is LTp= +rf(r)E+g(r)(9—0, (39
Sr=[u—3r?+0(r*)]ér. (32 so that

Consequently, the focus at the origir0 has the stability e df(r)|.

eigenvalues: L+Li=—j2f(r)+r——I. (40)
focus: §.=u*io, (33 C. The Liouvillian resonances

so that the focus is stable if<0 and unstable ifx>0. The general theory of the trace formula presented in Sec.

On the other hand, the periodic orbit exists at the radius!l provides the spectrum of the Liouvillian operator using the
results of the linear stability analysis of the stationary point
rp=Vu+0(x®¥) if w>0, periodicorbit. (34  and the limit cycle.
The trace of the Frobenius-Perron operator of the vector
Inserting this radius in the angular equation of E§4), we  field (31) is given by

infer that the periodic orbit has the period 1
S
20 TP |1—2 exp ut)coswt +exp2ut)|’ p=0

: (35 (41
|w—=Bu+O(u?)] , , _ _
before the bifurcation when there only exists the stationary
and the Lyapunov exponent point. When the limit cycle is born, the trace of the
Frobenius-Perron operator becomes

T(p)=

7\(,U«):W|H|A(M)|:_2M+O(M2), (36) Tr Pt 1
|1—2 exg ut)coswt+ exp2ut)]
corresponding to a positive stability eigenvalueZ Q(u) % ()
<1. Typical phase portraits of the vector figldll) are de- +> (—'ué(t—rT(,u)), w>0 (42
picted in Fig. 1. =1 |1-A(n)"|
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FIG. 2. Typical spectrum of Liouvillian resonances C before FIG. 3. Typical spectrum of Liouvillian resonancss C after
criticality («<0). criticality (u>0). The filled circles are the resonances associated
with the unstable focus, while the open circles are those associated
with the periodic-orbit contribution for>0. with the limit cycle.
Accordingly, the Liouvillian resonances of the forward .
semigroup are given by We have already calculated the resonances, i.e., the general-

ized eigenvalues. In the present section, we shall construct
s | =(l,+1 ) u+i(l,—1_)o, wu<O0, stablefocus, the corresponding eigenstates and other root states.
o (43) Here, we consider the vector field with the nonlinear
terms responsible for the Hopf bifurcation in the following
truncated cubic form:

with 1.=0,1,2,3. ... Therefore, the spectrum forms a py-
ramidal array of resonances before the bifurcation, as de- - oo . 2
picted in Fig. 2. z=(ptio)z—(1+ip)|z%, (45

After the bifurcation, the resonances become 0¥ 0 where . is the bifurcation parameter. In the polar coordi-

natesz=r exp(d), the vector field becomes

St . =—(My+m_+2)u
r— 3
, r=mpr—rs,

—i(m,—m_)w, unstable focus, ) K

0=w—Br2. (46)
s(c)——[| In|A(w)|+2min] The Hopf bifurcation occurs at the critical parameter value
T(w) n=0. Before the bifurcationg<0), the stationary point at
—I[—2p+O0(u2)]+in[w—Bu+0(u?)], the origin is a stable focus, which becomes unstable after the

bifurcation (u>0). At criticality (w=0), a limit cycle is
born with a radiug = /.

As we explained in Sec. Il, the time evolution of the av-
erage of an observable can be calculated if we know the flow
2) of the system. In the case of the vector fi¢ltb), the
quations can be integrated to get the following flow:

limit cycle, (44)

with m.,1=0,1,2,3..., andn=0,=1,+2+3,.... The
spectrum is now composed of a half lattice of resonances du
to the limit cycle together with a pyramidal array of reso-
nances due to the unstable fodese Fig. 3. The resonances
o 1, \/
ro+(u—r

M
Sexp —2ut)

of the limit cycle withl =0 have a vanishing real part so that
Res=0 and they control the long-time oscillations of the
system. These resonances with a vanishing relaxation rate
are the Koopman eigenvalues of the Liouvillian operator.

In the following section, we shall obtain the eigenstates §,=6y+ (w—uB)t+In \/
and other root states associated with the generalized eigen-

o
ro+ (m—rd)exp—2ut)

values(43)—(44) of the Liouvillian operator. (47)
For a fixed initial condition at radial distancg, Egs. (47)
IV. THE HOPF BIFURCATION AND ITS SPECTRAL hold for times larger than a critical negative time at which
DECOMPOSITION the trajectory diverges to infinity
A. The vector field and its Liouvillian operator 5
r
Our purpose here is to obtain the full spectral decompo- t>t.=— 2—In > ° <o, (48
sition of the Liouvillian dynamics of the Hopf bifurcation. Horo—m
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This critical timet, exists for all values ofry before the 1 = _
bifurcation ©<0, and for trajectories exterior to the limit p(r,0)= — pn(r)eting (56)
cycle withr > \/u after the bifurcationu>0. For the trajec- V2 n==c

tories inside the limit cycle with o<+/u, Egs.(47) hold at

all times. The divergence of the trajectories at the negative 2m do .

time t. is due to the cubic term in the vector field. Since we pn(r)= . Ee p(r,0), (57)
are here interested in the forward semigroup that applies at

positive timest>0, we shall always work within the domain g the coefficients of the Fourier series are functions of

of validity (48) of Egs.(47).
The inverse of the flow47) is given by

_ M
re+(u—ryexp2ut)

M

e+ (u—rf)exp2ut)
(49

o= 06— (0—Bu)t+BIn \/

The Jacobian of the transformation is
e—2/1,t

rodrodéy=
B R e

redridé;. (50

satisfying

A_n(N=Ax(r), and p_n(1)=pi(r). (58

If we assume that the observable or the density is a function
that is analytic in each of the Cartesian variablemdy, we
notice that the coefficients of orderof the Fourier series
behave as

A(x,y) analytic=A,(r)=r"f (r?), (59)
p(x,y) analytic=p,(r)=r/"g,(r?), (60)
wheref,, andg, are analytic functions of?.

In the following, we shall treat separately the spectral
decomposition in the subcriticalu(<0), the critical

Thanks to Eqs(47), we can calculate the time evolution =0), and the supercritical{>0) regimes.
of the average of an observable and, consequently, obtain the

spectral decomposition of the Liouvillian operator that is

here given by

ap 19 ap

ot =Lo=— o[t (p=r?)p]= (0= pr?)

ot ror a0’ (51)

C. The subcritical regime: p<0

In the subcritical regime, the vector fie{ld6) has no pe-
riodic orbit but a unique stationary point that is a stable
focus. In order to obtain the spectral decompositip® of
the Frobenius-Perron operator, we study the asymptotic be-

In order to obtain the spectral decomposition of the Liou-havior of the mean valu€52) at long positive times, by
villian operator, we consider the time evolution of the meanP€rforming a Taylor expansion in the small quantity

value of an observabl@t), which is given by
(A)FJ drrd@p(r,0)A[®Yr,6)], (52

with r =ry and 6= 6, and where we usedix dy=r drd 4. In
Eq. (52), p denotes the density of initial conditions aAdhe
observable. Moreover, we introduce the inner product

® 2m
(¢|¢)EL d”JO do ¢*(r,0)y(r,0). (53

B. Fourier series

In polar coordinates, both the observable and the initial

density are periodic functions in the angleof period 2.

Accordingly, these functions can be expanded in Fourier

series

+
8

An(r)etin?, (54)

—o0

A(r,0)=

n

27 do
An(f)ZJ \/?

0 T

5~
3

e MIA(r, ), (55

exp(—|ult) that vanishes for— + . This asymptotic expan-
sion should allow us to identify the eigenstates and other root
states thanks to Eql11).

With this aim, we start from Eq52) for the mean value
of an observable, with the flow given by Eqgg7). Since
both the observable and the initial density are periodic in the
angle d, we expand them in Fourier series according to Egs.
(54) and (56). After integration over the anglé, we get

+o . 2 2 ingl2
(A= e‘"‘“’tf drr| 14+ —— —e 2t
== 0 il ul
reflli‘t
X pn(r)A] . (61

r2 I,.2
1+ —— —e 2ult
|| |l

In the limit t— +c0, the quantity expf|u/t) decays to zero

so that the spectral decomposition into decaying exponentials
can be obtained by a Taylor expansion of this quantity. How-
ever, we notice that this quantity appears in the group

reflﬂ‘t

SN =

(62
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in Eq. (61). Therefore, we can equivalently perform the Tay-
lor expansion in terms of this new variabde
Substituting Eq(62) into Eq. (61), we get

+oo o [ r2\ingl2
<A)t=n;we fo drr(1+m
. eVul
X pn(F)(1—£2)MA2ax | ==—"|. (63
’ -2

A Taylor expansion is performed with respect to the variable
& around its limité=0" for t— +oo

- V| pl
_g2\inBR2p*
(1-¢9) An \/1_—§2
s Elul
— 2 1— 2 Ir‘IB/ZA* )
Z I! g |:( g ) Vl_g &=0+
(64)

Replacing in Eq(63), the series in powers @f gives us the
different terms corresponding to the different exponential re-
laxations expfl|ult). Whereupon, we finally obtain the
spectral decomposition

s +1

<A>t:|:20 n;,l <A|¢In>eslnt<zbln|9>a (65
with the expected generalized eigenvalues
Sin= —||,U,|—inw, 1=0,1,2,3...,
n=—1I,—1+2,... +1-2+I, (66)
and the coefficients
J . &Vl
- _g2\inBlR2p*
<A|lrlfln> I {(l 5) An \/1_—52 §:O+,
(r\Tul)!
<'r/fln|P> j (1+r2/| |)(| |n,8)/2 n( ) (67)

We notice that the integeris restricted to the values ranging
from —1 to +1 by steps of two, hence, the restricted skirh
in Eq. (65). The vanishing of the other terms has its origin in
the fact that the observabkeis supposed to be analytic near
the origin in the Cartesian coordinatesy), or equivalently
of (z,z%).

Using the definitions of the Fourier coefficien(5) and
(57), as well as the inner produ¢b3), we can obtain the

PHYSICAL REVIEW E 64 056232

exp(ing) 1 &

" T

’pln(r,

elul
V1-&

(rI\u])!

(1+r2/|M|)(|+inﬁ)/2'

X (1_§Z)inﬁl2%5( r—

g=0*

exp(in @)

V2m

These eigenstates are biorthonormal

6)=

Ynnr, (68)

(nlthr0r) =81 Sy - (69)
We can verify that the kernel§8) are the eigenstates of the
Liouvillian operator (51) associated with the eigenvalues
(66) in the sense that, fon <0,

L= (70)

SIn‘ﬁln ’

LT(ﬁIn:Sﬁﬂpln- (71

The first line is checked by applying a smooth enough test
function A(r, 6) to both members of the equation. The sec-
ond line is checked by a direct calculation.

As aforementioned, the assumption of analyticity of the
observables implies that most of the coefficients of the Fou-
rier series ofA vanish atr=0, except those witm=—1,
—1+2,...,+1=2,+1. As a consequence, the eigenvalues
(66) form a pyramidal array in the plane of the complex
variables, as depicted in Fig. 2. The pyramidal array is the
signature of the stable focus existing before the Hopf bifur-
cation. Indeed, in the subcritical regime, this stationary point
is the attractor around which the oscillations are damped.
The oscillations can be decomposed by the Fourier analysis
into their harmonics. It turns out that the relaxation rate of
the harmonics increases with their frequency. As a conse-
guence, the relaxation of the oscillations creates a pyramidal
array of Liouvillian resonances. We notice that, as the criti-
cality is approached, the relaxation rates decrease so that the
pyramidal array becomes wider and wider because the reso-
nances approach the imaginary axis. Near criticality, the real

spacing between the resonances also decreases because the

damping decreases, so that the resonances accumulate into
lines, as shown below.

D. The critical regime: p=0

At criticality, the stationary point becomes a slowly at-
tracting focus. Equation@l6) can be integrated and the flow
(47) becomes

o

Vit2rdt
(9t 00+(1)t ﬁln\/l+2r

(Dt: I‘t=

(72

explicit expression for the right and left eigenstates in terms

of their integral kernels as

which holds for
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1
t>t;=——<0, (73 - 1=0 .
2rg 2 .
and, thus, for our purpose to derive a forward semigroup oL i
valid for positive timeg>0. We observe that the radial po- ° i _
sition relaxes to zero according to the power law 1/\t, % L -
although this relaxation was exponential in the subcritical 5 -
case. This slow dynamics is a characteristic feature of critical 4| .
systems at bifurcations and it is referred to agitical slow- - -
ing down -6
As in Sec. IV C, we calculate the time evolution of the -10 IO 10
average value of an observable by substituting the critical ms
flow (72) in Eq. (52). By using the Fourier serie$4) and FIG. 4. Continuous spectrum of the spectral decomposifi@n
(56), we get of the cubic vector field46) at criticality (w=0).
+ 00
. % _AK*
<A>t: Z eflnth drrpn(r) <A|¢O>_AO(0)1
n=—co 0
. r 2aingi2 74 <~¢0|P>:JO drr po(r),
AY | —|(1+2r°t)'"P~, 74
. - . A:(l)(o) o\ -iBn-2/2
Since the argument of the functioAg tends to zero in the (AlYon) = Z W ) )
limit t— +o, we perform the following Taylor expansion: T2 r( > )
r ” A*(D(0) r!
n 2):'6‘?;(0)+2 n|| 207172
V1+ar% =N asaE (Donlp)= f dr r%exg | par). (79
75

whereA* (1) denotes théth derivative ofA* (r). Here, we  With the definitions of the Fourier coefficients5) and(57)
assume the analyticity of the observaligx,y) in each vari- ~ and of the inner produ¢g3), the kernels of the right and left

ablesx andy so that eigenstates can be obtained as
A*(0)=0 forn=0, (76) 1 [8(r—R)
! Po(r,0)= \/? ; ,
according to the propert{9). Moreover, we use the follow- m R=0"
ing integral representation
1
I Po(r,0)= —
r [’
. = j do exp(at) 2m
(L+2r2)miemz (I—Iﬂn)
2 exping) < 1
Pon(r,0)= 2 .
o = I—iBn
( U)(l ipn—2)2 p(a) X 2|,r< ,3)
X| —— exp —|. 2
2r? 2r2
(-ipn-212[ o sr—R
7 -2 g TRy
2 IR r .
This formula shows that the spectrum of relaxation rates is R=0
continuous at criticality, although it is discrete away from )
criticality. Ton(r a)zexmnmr—ugn (80)
Substituting the resultg5), (76), and(77) into the expan- ome 27 2r

sion (74), we obtain finally the spectral decompaosition
The kernel980) can be verified to be the eigenstates of the

~ 0 Liouvillian operator(51) with =0 associated with the gen-
<A)t:<A|lﬂo><lﬂo|P>+nZ_m f_wd(T(AWan) eralized eigenvalus=o—inw.
As aforementioned, the spectrum is here continuous and
Xe("_i”“’)t@anhﬂ)- (78) extends froms=inew to s=inw—o with n=0,+1,£2,
+3,...,(see Fig. 4 Consequently, the spectral decompo-
with the coefficients sition is expressed as an integral over the continuous relax-
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ation rate|o|, instead of a discrete sum over a discrete specThe first domain is exterior to the limit cycle while the sec-
trum of resonances. Accordingly, the coefficients of theond is interior. The average of an observable can be decom-
spectral decomposition also depend on the continuous relayosed into two terms, one corresponding to each domain
ation rate|o|. '

The continuous character of the Liouvillian spectrum di- (A)=(A)T+(A). (85)
rectly implies that the time evolution obeys a power-law re-
laxation at criticality. The power-law relaxation of the aver- The domaing83)—(84) will be treated separately. The exte-
age (A); to the stationary value easily follows from the rior domain will be treated before the interior domain be-
spectral decompositiof78) and(79). Indeed, because of Eq. cause its treatment is easier.

(79), we have for smal|o]|
1. The exterior domain

ingne T/ The exterior domain is easier because it contains a single
(Algon)~ \/—_e 17 (gnlp)~const,  (81)  closed solution of the flow, namely, the limit cycle, which is
o] the boundary of the exterior domain.

) For the flow given by Eq(47), we calculate the time
and, because of the Abelian theorem for the Laplace transsojution of the mean valués?) of an observable. We ex-
form [26], we have pand the observable and the initial density in Fourier series

of the angled according to Egs(54) and (56) and we inte-

° —i ~ 1 grate over the angle to get
| dotalyer "N Wonlp)~ eI,

82 + o - w r ing
(82 W= 3 s dr -
n=-—ox N o
The next terms of the asymptotic series decay a$' Mith
[=2,3,...,multiplied by the oscillating factor. The leading inBI2p % 2
. e X \/——
term withn=0 decays as 1. Therefore, the statistical av- pa(r) (1+ )77 A 1+¢) (86)
erage(A), relaxes to its stationary value according to the
power law 14/t. where we have introduced
We notice that the continuous Liouvillian spectrum is
caused by the critical slowing down of the amplitude of the o ot
oscillations at the Hopf bifurcation, as described by &@). {=|5-1]e . (87)

Moreover, the continuous spectrum has, for consequence,
that the probability densities and the statistical averages

ruled by the Frobenius-Perron operator have power-law re- his quantity decays to zero in the lintit- + so that the
spectral decomposition into decaying exponentials can be

laxation as 14t in the long-time limitt—o. We can under- . S .
stand this power-law relaxation by the collapse into a cond btained by a Taylor expansion in powers of the quantity

tinuous spectrum of the numerous resonances existing befoggn as
and after the Hopf bifurcatiorisee Secs. IV C and IV)E
Indeed, away from the bifurcation, the spectrum is discrete (1+ g)inﬁ/ZA:< N e

and each resonance corresponds to an exponential relaxation. 1+¢

Under such circumstances, the statistical averages are given o

by the sum of many exponential functions of time. When the — 2 é ‘9_ (1+ g)‘”ﬁ’zA*( N
resonances collapse into a continuous spectrum at criticality, i=o Il 9 " 1+¢ §=0,'
the sum of many exponential functions with distributed re- (88)

laxation rates turns into an asymptotic power-law behavior at
long times, which explains the power-law relaxation of sta-

tistical averages occurring at the Hopf bifurcation. Substituting the resultigg) into the expressiofg), we

obtain the decomposition

E. The supercritical regime: u>0 te = (On -9~ ox(©)
ex__ ex(c S ex(c
In the supercritical regime, the vector fie{d6) has an (A _n;_w 20 (Algin ) (Yin™lp), (89
unstable focus at=0 with the stability eigenvalueg *iw

and a periodic orbit(limit cycle) at r= \/ﬁ with the  with the generalized eigenvalues
Lyapunov exponenk=—2u. The phase space (@) sepa-

rates into two domains: s9=-2lu—in(w—up), 1=01,23...,
Jusr<w, the exterior domain; (83 N=0+1+2+3 (90)
o=sr< \/; the interior domain. (84) and the coefficients
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1 | \/T 4 T T T T I T L] T L]
ex(c) ___ + ingl2 * = | > 0

(=0 2 4
. ing M | i T
x(c), fdr _ - (r) Qe ©o00000000000000OCOO O e
<l/j| |p> \/; r2 pn E F0 0 0O 0O 00O OO0 O e 0O O 00 0 O O 0 0 01
(91) -2-9000000000.0000000006—
In the present supercritical case, the intedexsdn have no ceeeepereYrlTLTeee e
constraint becaus&? is here evaluated on the limit cycle at AP0 eg0 o0 @000 o
r=u+#0 so that the analyticity condition at=0 plays no 0,000 2200 T Te e
role here. As a consequence, the resonances associated w '6_10 R 10

the external side of the limit cycle form a half lattice. Im s

By the definitions of the Fourier coefficients5) and(57)
and of the inner produdi53), the right and left eigenstates  FIG. 5. Spectrum(93)—(94) of the Liouvillian resonances
can be explicitly expressed in terms of their integral kernelse C of the cubic vector field46) after criticality («>0). Notice the
as degeneracies for the resonances orsin®. The filled circles are
the resonances associated with the unstable focus, while the open

exp(ing) 1 ¢ circles are those associated with the limit cycle.

V2m o

A, 0)= {(1+ =
r cation(26) was truncated after the quintic term instead of the

cubic term, i.e., ifc,#0. In our cubic system, no further
XS r—\ /ﬁ , degeneracy occurs under the condition that
(=07
- | ©KB LN with nnreN (95
exp(me) "ML » ot N eN.

O r )= L

92 Now, we calculate the mean val@®2) of an observable
(92) for the flow (47). After expanding both the observable and
the initial density in the Fourier series and after integrating

where 6(r — i) denotes the Heaviside function that is the
over the angled, we get

characteristic function of the exterior domain.

+ oo _
2. The interior domain (A= 3 e_i”(“’_”ﬁ)tfvyﬂdr ;
The interior domain has the stable limit cycle for its n=-—o 0
boundaryr = \/ﬁ and contains the unstable focusratO. ;2 2 ingl2
We may expect that the dynamics on the internal side of the x| — 41— —|e2mt pn(r)
limit cycle also produces the half lattice of the resonances n m "
(90). Furthermore, we also find the resonances associated
with the unstable focugcf. Eq. (44)]. The expected reso- .
nances are thus: XAq : (96)
—|eemt
sip=—2lp—in(w—pup), \/_ 1 :
with e N& neZ, stable cycle; (93)  In the limit t— +, this expression becomes
s = —(m+2)u—inw, withmeN ot N
(M= 3 (ATl p) + Ro1), (97
andn=—-m,—m+2, ... m—2m, unstable focus. e
(94)

where the leading resonances are given by

This spectrum is depicted in Fig. 5.

We observe in Fig. 5 that the resonances of the limit cycle
coincide with those of the unstable focusnf0 because
these resonances are integer multiples-qf, as shown by
Egs.(93) and (94). This degeneracy of the resonance spec- <A|¢m(c)> A*(\/ﬁ)
trum leads to the formation of a Jordan-block structure in the " '

s=—in(w—upB), with neZ, (98)

their corresponding left and right eigenstates by

spectral decomposition of the Liouvillian dynamics in the _ ;\ine
interior domain, as shown below. We notice that this degen- PO 5\ = J“”d” — r 99
eracy would be lifted if the normal form of the Hopf bifur- (#on”le) 0 \/; pulr). ©9
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ing

pn(r), forn#0,
(106

and where the rest decays faster than the leading term
|n(c)| > f

r
|Ro(t)|<O(exp — 2ut)expst), (100 Ve
with e>0. We observe that the resonand®8) take the
values given by Eq(93) with =0, as expected. These reso-
nances are associated with the limit cycle because the rig
eigenstates/"(© have the limit cycler = \/u for support.

In order to obtain further resonances, we need to perform < _ 1
the asymptotic expansion of the rest in E@j7). We consider [Raa(D)]<O(exp( = 3pt)explet). (107
separately the contribution for zero Fourier index 0, and
the other contributions fon+#0:

ﬁ’{‘d the rest

According to the analyticity conditiori60), we have that

pn(r)~r!" near the origin so that the integral @3¢ p) in
Eqg. (106) converges atr=0 under the conditiom#0.
Ro()=Rodt) + 2, Ron(t), (101)  Therefore, the conditiom#0 is consistently satisfied. The
n#0 resonance$105 have the values expected from E®3)
_ with [ =1. They are also associated with the limit cycle be-
with cause the right eigenstates have the limit cycte\/u for
support.
On the other hand, the contributi@y ((t) corresponding
to the casen=0 requires a separate treatment because it
pn(r) contains the asymptotic behavior caused by the degeneracy
between the resonance of the limit cycle and another from
the unstable focus both decaying as expt). Since the
_Aﬁ(\/ﬁ)}, unstable focus has an opposite stability with respect to the
limit cycle, we need to perform a change of variables from
the initial condition ¢,0) to the current point at time,
which is given by ¢’,6')=®'(r,6). Thanks to the inverse
mapping(49) and its Jacobiaf50), we obtain

inB

. Vi
Royn(t)ze*'”(‘”*”ﬁ)tf drr
0

r
i
x (1+§>‘“B’ZA:( Vics

for n=0,1,2,3..., (102

where we have introduced here again the quarn@).

On the one hand, the contributio ,(t) with n#0 can
be treated as the leading terms. Equati®8) can here also _ ) - 2ut
be used at=0" instead of{=0" in order to obtain Rogt)= f"“dr, re

inBl2p* el
(1+9) ﬁzAn(\/Hg

1
:A:(\/;)‘FE

[1+r'2(e 2 —1)/u]?
rref,ut
Vi+r'2(e " =1)/u

X po [AS(r)—AF(Vw)].

108
. (108
r.2

e M [inB AL (Vi)

If we took the limitt—oo at this stage, we would encounter

— AL () T+ - (103 a problem because the integral of the leading term of the
o asymptotic expansion diverges t=\x. In order to cure
Inserting into Eq(102), we get this divergence, we separate the bracket in #§9 as
(0 12
Ron(t) =(AlYIi) e (YO p) + Rin(t), (104 , , T
o o AS(r') = A (Vi) = A5 (r') = A (Vo) = A5 () =
with the next-to-leading resonances H
, r'2—pu
+AE (\/ﬁ)—2 o (109
s(lc,?:—ZM—in(w—M,B), forn#0, (105 K

their corresponding left and right eigenstates The last term of this equation is integrated by going back to

_ the original variablesr( ). At r =0, another divergence ap-
(A ) %A*(\/_)— EA* am pears that is treated with a similar method as in #q9 but
2 " 2" ' applied to the densityy(r). We obtain
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rle M

B
RO,O(I):eiz'Lﬂj dr’
0

Vi

, m
—672’“’714(? (\/;)joludr/

31
7

_ , \m
—e MI——Af (\/;)po(o)fo dr

The integrall in this equation can be carried out to get

ut

The power law that appears is the evidence of the formatio
of a Jordan-block structure due to the degeneracy betwed

the resonances corresponding to the invariant sets=dt

andr = \u. We can now consider the asymptotic expansionS

of Eq. (110 for t—, and we get

Rodt) =L (Al WR Tl o) + (Al (T8l )

+ (AT (Rl p) 1+ O(e 3, (112
with the next-to-leading resonance given by E2B) with |
=1 andn=0,

9=

—2u, (113

and the corresponding Jordan block given by the root states

<A|w'”<°>>——£A (V)

(Wi5%p)= f dr = po(r) - Mf‘rzpo(m,

(114
(Alyid)= f e ,2)2
x| A5 (r') - A% (V) — AL J_)rlz_“
r)— — J——
of o(Vm)—Ag (Vu il
(U0 p)=1?po(0). (115

By comparing with Eq(8), we infer thatzp(l% is a right-root

(1472 2= D/l

x| A —AF(m) — A (Vi)-

VI+r2(e 2% = 1)/ u

12 __

M
2\

2

"
P+ (u—r?e 2

po(r)— - 500(0)
w—r

7

2+ (u—r?)e 2H

(110

=I

tor. We observe that the right eigenstat® has the limit
cycle for support, while the left eigensta#d? has the un-

stable focus for support. The integral @#1¢®|p) converges
atr =0 because the bracket vanishes asthe origin. More-
qQver, the integral of A|4{?) converges at=\u because
dhe bracket vanishes as’(- Ju)? near the limit cycle.

In order to reveal the resonances associated with the un-
table focus, we need to obtain the further terms in our
asymptotic expansion. For this purpose, we consider the rest
Ran(t) in Eq. (104, which we obtain by using the Taylor
expansion103

r ing
R n(t) Zin(e=uA)t drr| — n(r)
1, f \/; P
inBl2p* L _A*
X (1+) “An( Tz AW

—g[inBAﬁ(Jﬁ)—JﬁAﬁ'(Jﬁ)] ,

(118

with n# 0. Since we expect a contribution from the unstable
focus, we carry out a change to the variables §’) of the
trajectory at the current timeby using the inverse flou49)
and the Jacobiafb0). In these new variables, E@7) be-
comes; = (u/r'?)—1. An asymptotic expansion leads to the
result

(M~
Ran()=(AlgDen' (Pl )+ Ron(t), (117
where the eigenvalues are given by
sf?=—-3u—inw, withn==1, (118

state, Whl|61//m(c) is a left-root state of the Liouvillian opera- the corresponding eigenstates by
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/2+|n,8

A= [ ar

()

xﬁnﬁAﬁ(Jﬁ)—JﬁAﬁ’(Jﬁ)]},

/2 (5/2)+| npgl2)

inpl2

1
AL =AT(w) =3

r/2

(Ihlp) =1y’ (0), (119
with n= =1, and the rest satisfies
|Ron(t)| <O(exp( —4ut)expet)). (120

We notice thaip,,’ (0)=0 for |n|=2, so that the terni117)

is nonvanishing only fon==*=1. We remark that the con-

vergence of the integral afA|4{") in Eq. (119 is guaran-

teed by the fact that the expression inside the brace is essen-
tially the quadratic term of the Taylor expansion of

(1+)"B2A%[ ul(1+ )] which vanishes asr(—u)?
near the limit cycle, whereupon, the integral converges.
Furthermore, we remark that, in the reB (t), there

exists another term of order 3#! that can be derived in a
similar way, but it vanishes since it is proportional to

p4(0)=0 [cf. Eq. (60)].
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+ o
(c), ~
A= S (AU TE0)
- (©)
C ~
+ 2 (Al e (i)

n#0
+ 3 (ATl p)
<”u;§‘3|p>)

(UBlp)
(122

o1t
+(<A|¢&%>><A|z/f‘l%>>es(m"(0 1)(
+Ra(1),

with the eigenvalues given by Eq®3) and(94), and with a
rest decaying as

|Ro(1)| <O(exp( —4ut)expet)). (123

The root states associated with the limit cycle are given by

(AlyEh =A% (), (124)
<A|¢&°3>="$A:<Jﬁ>—gA:'wﬁ> : (125
~ ® r ng
<wé°n’|p>=Jodrr(TM) pn(r), (126)

ing 2
~@ v [l ] AT
<¢1n|p>_J‘o dl’( \/;) r pn(r) (I'HEO),

(127

For the interior domain, the asymptotic expansion at long

times of the average is therefore given by E3y) where the
restRRo(t) splits as shown in E¢101) into the termRq (t)

given by Eq.(112) and further termsRy,(t) given by Eq.
(104). Moreover, the resk, ,(t) of Eq.(104) is given by Eq.

(117). These terms consistently give all the contributions tha

decay slower than exp{4ut).

3. The full spectral decomposition

(#3lp)= Jdr [Po(r)—ﬂizﬁ(\/— r)po(0)|,

(128
whered(\/u—r) is the Heaviside function. Besides, the root
tates associated with the unstable focus are given by Egs.
(115 and(119.
The first term in Eq(122) corresponds to the oscillation
on the limit cycle. The other terms decay exponentially to
zero and correspond to the relaxation of the probability den-

In order to obtain the spectral decomposition in both thesity that is attracted by the limit cycle and repelled by the

interior and the exterior domains, the decompositi¢(89)

and (97) [together with all the aforementioned terms given

unstable focus.
The asymptotic expansion is here consistently truncated at

by Egs.(101), (104), (112), and (117] must be added ac- terms of the order of Eq:123. The rest of the asymptotic
cording to Eq{(85). We note that the right eigenstates relatedeXxpansion can be obtained by recurrence. These following
to the limit cycle of the exterior and interior domains are theterms will correspond to the different resonances depicted in

same

o=y O=y{d, 1=0,1; n=0,x1x2, ...,

(121)

as shown by comparing E¢Y1) with Egs.(99), (106), and
(114). Hence, we finally obtain

Fig. 5. As Res— —», the resonance spectrum presents a
structure of per|0d|C|ty— 2, as observed in Fig. 5. Within
each period, we find an infinite number of resonances asso-
ciated with the limit cycle that produce terms similar to those
in the second line of Eq122), and a growing finite number
of resonances associated with the unstable focus that produce
terms similar to those of the third line. At zero frequency, the
double degeneracies yield second-order Jordan blocks simi-
lar to the one in the fourth line.
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V. CONCLUSIONS array of resonances, also seen in Figs. 3 and 5. Contrary to

In this paper, we have constructed the specral decomp(;[he subcritical pyramidal array depicted in Fig. 2, the super-

. S . : ; critical one is not centered on the origin but on a resonance
sition of the Liouvillian dynamics of nonlinear vector fields

. ) . L . . with a nonvanishing relaxation rate and a zero frequency.
undergoing a Hopf bifurcation, which is the major bifurca- __, . N L :
. . . : S This feature has its direct origin in the fact that the focus is
tion giving birth to oscillatory behavior in far-from-

equilibrium dissipative systems. The Liouvillian dynamics _unstable after criticality, although it is stable before critical-

rules the time evolution of statistical ensembles of determin-~" . . _ -
L . S . . In the cubic vector field that we have studied in detail in
istic trajectories issued from random initial conditions.

. Sec. IV, the zero-frequency resonances of the unstable focus

near a Hopf bifurcation manifest themselves in the Liouvil—%Jrn out to be degenerate with some zero-frequency reso-

. . ..nances of the limit cycle, as it is the case in Figb&t not in
lian spectrum by the existence of complex resonances with. .

. o ig. 3. As a consequence of these degeneracies, a Jordan-
real frequencies. We have shown that the Liouvillian spec;

trum is discrete before and after the Hopf bifurcation, While.bIOCk structure appears in the spectral decomposition, lead-

: . . ing to special asymptotic time evolutions in which the expo-
the discrete spectrum collapses into a continuous spectrum at®__. o - .
criticality. nential relaxation is multiplied by a positive power of the

We have shown in Sec. IV D that the power-law relax-tlme’ such as gxp(—z,ut)._ . - .
. o ... For a generic vector field with terms of quintic or higher
ation at the transition, a phenomenon also referred to as crit

) . . . Idegree:s, these degeneracies and the related Jordan blocks
cal slowing down, can be explained by the continuous Liou-

- L . . would not occur because no degeneracy happens generically
villian spectrum at criticality. In the light of the previous -
L : : between the resonances of the limit cycle and those of the
work on the Liouvillian spectrum near a pitchfork bifurca-

tion [8], a continuous spectrum appears to be a general feg_nstable focu_s, as seen in Fig. 3. -
ture of far-from-equilibrium systems undergoing a bifurca- I.n conclusion, the presept haper shows how the periodic-
tion. In the pitchfork bifurcation, the continuous spectrum isO'Pit theory of classical dissipative systems must be ex-
purely real because of the absence of oscillation near thignded to include the effect of stationary states coexisting
bifurcation [8]. However, in the Hopf bifurcation, the con- with periodic orbits. These sta_t|onary states contribute to the
tinuous spectrum extends to complex eigenvalues because Bfice formula of the Frobenius-Perron operator by extra
the emerging oscillations, as shown in Sec. IV D. terms involving the linear stability eigenvalues of the station-
Away from the bifurcation, the Liouvillian spectrum is ary states, as shown in Sec. Il C. These extra terms are re-
discrete and composed of a countable set of resonances ttaonsible for the existence of the further resonances associ-
are the analogues of the Pollicott-Ruelle resonances in thated with the stationary states. Moreover, the methods
present system. developed in the present paper allows us to obtain not only
Before the Hopf bifurcation, all these complex resonanceshe full spectrum of Liouvillian resonances but also the as-
have a nonvanishing relaxation rate because the oscillatiorsbciated eigenstatéand other root states in the presence of
are damped in the subcritical regime. All the subcritical reso<Jordan-block structurgsThese time-asymptotic methods are
nances are associated with the stable focus that attracts tkigerefore particularly powerful and promising for the study
trajectories and, therefore, the probability density. Conseof time-dependent phenomena in nonlinear dynamical
quently, the right eigenstates of the spectral decompositiogystems.
have the stable focus for support in the subcritical regime, as’ |y 5 future publication, we shall present a systematic

shown in Sec. IV C. _ _ o method to construct the full spectral decomposition and we
After the Hopf bifurcation, there exist purely imaginary gp, give the proof of its convergence.
resonances with a real frequency and a vanishing relaxation

rate. These resonances describe the time evolution of statis-
tical ensembles of trajectories on the attracting periodic orbit.
The resonance at zero frequency and relaxation rate corre-
sponds to the eigenstate with a stationary distribution along
the limit cycle, while the other resonances with nonzero fre-
quencies describe the oscillations of the mean values or time- We thank Professor G. Nicolis for support and encourage-
correlation functions and, especially, the harmonics of thénent in this research. P.G. is financially supported by the
periodic but nonlinear asymptotic time evolution. The exis-National Fund for Scientific Resear@ANRS Belgium. This
tence of all these purely imaginary resonances shows that thgork was supported, in part, by the Interuniversity Attraction
system is nonmixing. The resonances with a nonvanishingole program of the Belgian Federal Office of Scientific,
relaxation rate describe the evolution of the probability den-Technical and Cultural Affairs, by the National Fund for
sity that is repelled by the unstable focus and attracted by th8cientific ResearckFNRS Belgium, and by Grants-in-Aid
limit cycle. (B) and (C) for Scientific Research from the Japan Society

On the one hand, the periodic orbit contributes to thefor the Promotion of Scienc@SP$. This work is also a part
Liouvillian spectrum by an array of resonances filling a halfof the project of the Institute for Fundamental Chemistry,
lattice, as seen in Figs. 3 and 5. On the other hand, theupported by JSPS — Research for the Future Program
unstable focus contributes to the spectrum by a pyramidalJSPS-RFTF96P002D6
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